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Organ fiir den Verein Schweizerischer M athematik- und Physiklehrer

Publiziert mit Unterstiitzung des Schweizerischen Nationalfonds
zur Forderung der wissenschaftlichen Forschung

El. Math. Band XIII Nr.6 Seiten 121-144 Basel, 10. November 1958

Einige Dreiecksungleichungen’)
Herrn Prof. Dr. A. ALDER zum 60. Geburtstag

1. Hilfsbeziehungen

Ein Dreieck mit den Seiten a; und den zugehoérigen Hohen 4; (¢ = 1, 2, 3) habe den
Inkreisradius g. Dann gilt

Lemma 1: Die Hohensumme eines Dreiecks ist mindestens so gross wie der neun-
fache Inkreisradius, das heisst .
90 §2h€ .
i-1
Das Gleichheitszeichen wird vom gleichseitigen Dreieck und nur von diesem beansprucht.

Beweis: Aus der bekannten Relation

11
4 h,‘ Q’

3
1=1

welche aus a;h;,=2F =29 s (F ist die Fliche, 2s der Umfang des Dreiecks) ge-
folgert werden kann, gewinnen wir

Es gilt aber x + 1/x = 2 fiir ein beliebiges positives x mit Gleichheit nur fiir x = 1.
Somit ist

oder wegen der letzten Gleichung

3 1
g{‘h‘gﬁ—-é-.

1) Zur vorliegenden Untersuchung wurde der Verfasser angeregt vom gleichlautenden Paragraphen
in L. FEjEs T6TH, Lagerungen in der Ebene, auf der Kugel und im Raum (Springer-Verlag 1953).
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Gleichheit besteht, wenn 4; = 1, das heisst fiir ein regulires Dreieck mit dem Inkreis-
radius ¢ =1/3. Mit andern Worten: Betrachten wir simtliche Dreiecke mit diesem

3
Inkreisradius, so gilt die Ungleichung J4; = 3. Zu jedem dieser Dreiecke gibt es
P

ein dhnliches mit ¢ =1. Da die Hohen jeweils mit 3 multipliziert werden, besteht

fiir die Gesamtheit der Dreiecke mit der Einheit als Inkreisradius die Abschitzung
3

2. h;=9. Misst schliesslich der Inkreisradius g, so finden wir nach der gleichen

i=1
3
2
i=1

Uberlegung
wobei das Gleichheitszeichen in der Tat einzig fiir das gleichseitige Dreieck reserviert
bleibt.

\¥%

9o,

Figur 1

Ist m; die Halbierende der Seite a; und » der Umkreisradius, so wollen wir eine
weitere Ungleichung festhalten in

Lemma 2: Die doppelte Summe der Seitenhalbierenden eines Dreiecks ist hichstens
so gross wie der neunfache Umkreisradius oder

3

E m, é 2.'
. 2
t=1

Das Gleichheitszeichen greift fiir das gleichseistige Dreieck und nur fily dieses Platz.

Beweis: a) fiir das spitzwinklige Dreieck:
Ist AgA3=a,, A3A,=asund 4,4, = ay, so habe der Umkreismittelpunkt M den
Abstand p; von der Seite a;. Es gilt

m =7 +p;,
wie Figur 1 zeigt, und somit
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Jetzt greifen wir auf den bekannten Satz zuriick, dass die Summe der Abstinde des
Umkreismittelpunktes eines spitzwinkligen Dreiecks von den Seiten gleich der
Summe von Um- und Inkreisradius ist:

3
;?i=7+9: (*)

woraus folgt
3
Zm,. =4r+op.
i=1

Hier mochten wir nebenbei daran erinnern, dass

3
4r+0=2"0

i=1

ist, wobei p; der Radius des die Seite a; beriihrenden Ankreises ist. Da nun p < 7/2,
gilt wirklich die zu beweisende Ungleichung

3
2™
1=1

Dabei ist leicht einzusehen, dass das Gleichheitszeichen vom gleichseitigen Dreieck
beansprucht wird.

Wir fiigen noch bei, dass (*) etwa folgendermassen verifiziert werden kann: Nach
PToLEMAUS ist im Sehnenviereck M; A;M,M

IA

9y
7

a a a
Pl"zi+?271="’§3“'

Zwei entsprechende Beziehungen lassen sich in den Vierecken My,4,M M und
MgA,M ;M aufstellen. Fassen wir in diesen 3 Gleichungen ¢; (¢ =1, 2, 3) als Unbe-
kannte auf, so erhalten wir durch Auflésen

a3 + a} — a?

Pr=7 Zaya, ¥ COSoy
und Analoges fiir , und p4. Hieraus ergibt sich
3 3
D=1 cosa,.
1=1 1=1

Daraus folgt aber (*) vermége

3 3 3
— in 2 in 2% =
§C°5“5—1+4g5m > und 4rgsm > =0

Lemma 2 gilt auch fiir das rechtwinklige Dreieck. Ist nimlich etwa «;, = /2, so
wird einfach p, = 0 und m, = », was am gewiinschten Schlussresultat nichts dndert.
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b) Fiir das stumpfwinklige Dreieck.

Anders gestaltet sich die Lage, wenn «, > n/2. Die obige Schlussmethode kann
nicht iibertragen werden, unter anderem deshalb, weil wir anstelle von (*) p, + p5 — $,
=r + p erhalten.

Der Beweis kann hier wie folgt gefithrt werden: Weil ¢ > #/2, ist m, < r. Zusitz-
lich entnehmen wir Figur 2

4
2

m2<—aé1—+—azi und my << +—q21.
so dass
3
o m < r+a1+%+%1.

i
Da a, < 27, stossen wir schliesslich auf die Ungleichung
2 1
O m< 37+ (ay+ay).
i=1

Wir wollen aber zeigen, dass (a;+ a)/2 < 7 V2 ist und somit im stumpfwinkligen
Dreieck
2 9y
2 m<5
t=1

gilt: Ohne Einschrinkung der Allgemeinheit diirfen wir annehmen, es sei ay = ;.
Es gelte

Cyt ag _
2

a,-—-—a‘—;r—ol“—+w und  og= mit O§w<~?i;—-&<—g—.

Auf diese Weise ist

g+ g

7 Cosw,

sin oty + sin oty = sin (“’—;‘"’— + w) + sin (33—}?-’— - w) = 2 sin
was durch Anwenden des Additionstheorems und Streichen der wegfallenden Glieder
gewonnen wird. Der letzte Ausdruck wird in unserem Falle maximal, wenn w =0 ist,

das heisst aber
O3t oy

sinag + sinag < 2 sin >
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Bedenken wir, dass

oyt 0g ki
- <
und damit

. gt og 15
sin—— =3 VZ,

so finden wir sina,+ sina; < V2. Unter Beriicksichtigung von (a, + a,)/2
=7 (sinay + sinag,) erhalten wir das gewiinschte Resultat

1
- (32 + ay) <rVa.

Lemma 2 ist damit bewiesen.

2. Der zentrale Satz

Ist w; die Halbierende des Winkels «;, so gewinnen wir mit Lemma 1 und 2 ohne
viel Umtriebe folgenden

Satz: In einem beliebigen Dreieck gilt
3
<3'h,
t=1

Anstelle von Z h; darf 2 m; oder 2’ w; gesetzt werden. Gleichheit hervscht in jedem

i=1
Falle im reguldren Drezeck und nur in dzesem.
Bewers: Offensichtlich ist w; = h; und ebenso m; = 4;. Damit ist dank Lemma 1
die Abschitzung nach unten durchgefiihrt.

Die letzte Ungleichung liefert uns unter Beriicksichtigung von Lemma 2 ohne
weiteres

A

9y
5 -

97
b=

.

-

[y

mit Gleichheit fiir das gleichseitige Dreieck. Schliesslich folgern wir etwa aus dem
bekannten Satz der Halbierenden der Innenwinkel eines Dreiecks w; < m;, womit

nochmals unter Heranziehung von Lemma 2 auch die Abschitzung nach oben voll-
zogen ist.

3. Anwendung

Der aufgestellte Satz ist fundamental, so dass er wohl ab und zu bei Anwendungen

zur Sprache kommen kann. Wir begniigen uns vorliufig damit, deren zwei heraus-
zugreifen.

Fiir

D

o

gilt die Abschitzung

3
99 1 9r
IF =25 =F @

i=1 °*
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mit Gleichheit fiir das regulidre Dreieck. Es folgt nimlich aus 4; = 2 F/a;:

woraus wir nach Division durch 2 F tatsidchlich (1) erhalten.
Auf ebenso einfache Weise zeigen wir, dass fiir ¢ + 5 gilt

36 o® gEa,- a; =97 (2)
1,17
Setzen wir
3
e
F= 4

in (1) ein und bringen wir zudem

auf den gemeinsamen Nenner H a;, so stossen wir nach Multiplikation mit diesem
Produkt auf o=t

18rp< ) a0, <972
3]

und schliesslich auf (2) wegen 2 ¢ < 7. Diese letzte wohlbekannte Ungleichung liefert
uns iibrigens ohne Hilfe der in dieser Note hergeleiteten Resultate als Komplementa-
rium zu (2)

1 1 1
-;nga"ai é 493’ (3)

dies auf folgende Weise: Setzen wir wie iiblich

1 3
724=S
t=1

so gilt
3 3 3
Ju T Ya
21=i-1 _ =1 _i=1 _ 1
—~d a; a; 3 4rF 4rps 27rp

m*

und damit ‘auch (3). Es ist leicht ersichtlich, dass sowohl in (2) als auch in (3) das
Gleichheitszeichen im gleichseitigen Dreieck und nur dort realisiert wird.
F. LEUENBERGER, Zuoz
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