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gungsmenge von n < 3 abgeschlossenen und konvexen Punkitmengen darstellen, die
Zahl 3 kann nicht durch eine kleinere ersetzt werden.

Miihelos kann man schliessen, dass sich 4 in # = 2 abgeschlossene, konvexe und
disjunkte Teilmengen zerlegen ldsst, wenn 4 nicht zusammenhingend ist. Ein nicht
triviales Problem liegt lediglich dann vor, wenn 4 zusammenhingend ist.

Es ist unseres Wissens nicht gegliickt, einen analogen Satz fiir riumliche Punkt-
mengen zu finden. Nachdem auch der Unterzeichnete vergeblich versuchte, die Frage
abzukliren, soll diese in unserer Rubrik Aufnahme finden: Das Problem lautet:
Gibt es ein rdumliches Analogon zum Valentinschen Satz tiber ebeme abgeschlossene
Punktmengen mit der Dreipunktkonvexititseigenschaft ? H. HADWIGER

Kleine Mitteilungen

Bemerkung zu der Arbeit von Herrn G. Kirschmer
«Uber eine mit den Pythagoriischen Zahlen zusammenhingende Gruppe »!)

Durch eine Abdnderung der von Herrn G. KirscHMER gewdhlten Normierung kann
man den Aufbau der Gruppe besonders durchsichtig machen.

Die Gruppe ® enthalte die Elemente G = (a|b; c¢), wobei die Bedingungen c?=a?+ b?;
a, b, ¢ reell; ¢ > 0 erfiillt sein sollen. Die Verkniipfungsvorschrift wird nachher ange-
geben werden.

Wir fiihren noch die komplexe Zahl « = a + ¢ b ein. Dann ist || = ¢. Die Bedingung
¢ > 0 ist gleichbedeutend mit « = 0.

Wir fassen nun die Gruppe ® ins Auge, die die Elemente G = («; |a|) enthilt. Als
Verkniipfungsvorschrift bietet sich von selbst dar

61052= (oy otg; [otg otgf). (1)

Wie man sieht, ist ® eine zur multiplikativen Gruppe des Korpers der komplexen
Zahlen isomorphe Gruppe.
Da die Beziehung

oy 0y = (@3 @y — by by) +1(a;, by +ay by) (2)
gilt, so wird G eine zu & isomorphe Gruppe, wenn man setzt
G,0Gy,= ((a; a3 — b, by) |(a; by +azby); ¢y Cs)- (3)

Eine Untergruppe ®g,,ss von G erhilt man, wenn man @ und b auf rationale Zahlen
beschrankt; B¢,y iSt isomorph der multiplikativen Gruppe des Korpers, den man aus
dem Korper der rationalen Zahlen durch Adjunktion von ¢ gewinnt.

Verlangt man auch noch, dass ¢ rational ausfillt, so entsteht eine Untergruppe ® p,;.
von Gg,,ss- Diese Untergruppe hat in arithmetischer (zahlentheoretischer) Hinsicht
einiges Interesse.

Wir fiihren ein Beispiel an:

(3]4; 5) 0 (5]12; 13) = (—33|56; 65). (4)

Es ist leicht zu sehen, wie der bei  bzw. G angegebene Aufbau zu modifizieren ist,
wenn man statt vom Korper der reellen Zahlen vom Schiefkérper der Quaternionen
ausgeht; man erhilt dann natiirlich eine nicht kommutative Gruppe.

1) El Math, 12, 49ff. (1957).
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Wir bemerken noch, dass die Gruppeneigenschaft von G erhalten bleibt, wenn man
fiir a, b, ¢ statt reeller Zahlen Elemente eines angeordneten Koérpers wihlt; ersetzt
man noch die Bedingung ¢ > 0 durch ¢ %0, so kann man von einem voéllig beliebigen
Korper ausgehen, insbesondere also auch von dem Korper der komplexen Zahlen. Die
Gruppeneigenschaft von @ driickt sich niamlich in gewissen Identititen aus, und diese
gelten fiir einen beliebigen Korper.

Es soll noch deutlich gemacht werden, wie die hier dargelegte Normierung mit der
von Herrn KIrRSCHMER zugrunde gelegten zusammenhingt, und zwar zunichst an
einem Beispiel. Nach unserer Normierung gilt, wenn man die im vorigen Absatz
gemachte Bemerkung beachtet,

(5/31;4)0(13|51%;12) =(80|641; 48),
nach der Normierung von Herrn KIRSCHMER ist
(5;3;4) 0 (13; 5; 12) = (80; 64; 48).

Allgemein kann dieser einfache Zusammenhang so ausgedriickt werden: Bei uns
wird die bekannte Identitidt benutzt

(af + b3) (a3 + b3) = (a; a; — by by)% + (a, by + ay b,)2. (5)

Setzt man hier ein
ap ="¥p, bk=-i5k,
so erhidlt man die Identitit

(73 —s3) (73 —s3) = (r1 7o+ 5189)% — (71 S2+ 72 51)% (6)

und diese liegt bei Herrn KIRSCHMER zugrunde. P. SENGENHORST, Miinster

Uber eine Extremaleigenschaft des Simplex im n-dimensionalen Raum

Es sei P ein beliebiger Punkt im Innern eines Simplex 4; ({=1,...,n+1) des
n-dimensionalen Raumes. Die Ecktransversale durch A4; schneidet den gegeniiberlie-
genden Grenzraum in B;(¢=1,...,n +1). Bezeichnen wir mit R; ({=1,...,n+1)

die Strecke PA;, mit d; (i =1, ..., n+1) die Strecke PB;, so gilt die Ungleichung

n+1 n+1
l lR,-gn"“l ld,c. (1)
g=1 1=1

Beweis: Seien x,, ¥,, ..., %, ., die baryzentrischen Koordinaten von P beziiglich der

Eckpunkte des Simplex, so gilt

Ry, x4t a+% g+ 42 (2)
d; )

X

Verwenden wir die bekannte Ungleichung zwischen dem arithmetischen und geome-
trischen Mittel, so folgt aus (2)

un
R. ”(xlxz"'xi—-lxi+l'”xn+1) !
d; — %

und hieraus

1 Un
H i > N(¥) Xg o ¥_g Hiy1 Fa)”
*;
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weiterhin

n+1l n+1(xn1m

R; n+l i")
Iz ] ——- (3)
1=1 1=1

Aus (3) folgt unmittelbar die Behauptung (1).

Gleichheit tritt nur dann ein, wenn sidmtliche x; (i =1, ..., n +1) gleich sind, also
wenn P der Schwerpunkt des Simplex ist. Bezeichnen wir jetzt mit»; (1 =1, ..., » +1)
den Abstand des A; gegeniiberliegenden Grenzraumes von P, so gilt auch die Unglei-
chung

n+1 n+l

HR,g n”“HV,-. (1*)
t=1 =1

Beweis: Es ist leicht einzusehen, dass
d;zr;,(1=1,...,n+1). (2%)

So folgt aus (1) und (2*) unmittelbar die Behauptung (1*).

Gleichheit tritt nur dann ein, wenn simtliche Ecktransversalen durch den Schwer-
punkt zu dem gegeniiberliegenden Grenzraum senkrecht stehen, das heisst, wenn das
Simplex regulir ist.

Die Behauptung der Ungleichung (1*) ist fiir » =2 lingst bekannt. Ein Polygon-
ungleichungssatz von FEjes T6TH!) enthdlt auch (1*) fiir » = 2.

Einen elementaren Beweis der Ungleichung (1*) gab unlingst BErkEes?) fiir den Fall
n =2, und n=3. J. Scaorp, Budapest

Anmerkung dev Redaktion: Herr J. BERKES teilte uns nachtriglich mit, dass die in
seinem Artikel verwendete Methode auch zum Beweis fiir ein allgemeines n benutzt
werden kann. Der wesentliche Schritt in seiner Ableitung ist erschienen als Aufgabe
Nr. 329 (dieser Band, S. 67).

Tetrahedra Equivalent to Cubes by Dissection

It is known that one cannot, in general, dissect a tetrahedron by plane cuts into a
finite number of pieces which can be assembled to form a cube!). However, special
cases can be so dissected. Among these are three one-parameter families of tetrahedra
and one special tetrahedron described by M. J. M. Hirr?). In a recent publication?),
J.-P. SYDLER described four new special dissectible tetrahedra, designated by the
symbols T;, T,, T, and T, which are not included in the cases described by HiLL.

The tetrahedron T; has a trirectangular vertex. The tetrahedron T, is formed by
joining T; with a symmetric tetrahedron at one of the right-triangular faces. SYDLER
seems to have overlooked the possibility of combining these two tetrahedra at the
other right-triangular faces. These will give the new tetrahedra designated by Ty and
T, in the accompanying table.

1) L. Fejes TétH, Lagerungen in der Ebene, auf der Kugel und im Raum (Springer -Verlag, Berlin 1953),
S. 83.

%) J. BeERrkes, Einfacher Beweis und Verallgemeinerung einer Dreiecksungleichung, El. Math. 12, 121-123
(1957).

1) M. Deun, Uber den Rauminhalt, Math. Ann. 55, 465-478 (1902).

2) M. J. M. HiLr, Determination of the Volume of Certain Species of Tetrahedrons, Proc. London Math.
Soc. 27, 39-52 (1896).

3) J.-P. SYDLER, Sur les tétraédres équivalents d un cube, E1, Math. 11, 78-81 (1956).
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All the known tetrahedra A BCD, which can be deformed by dissection into cubes,
are given in the table, where n/3 < a < n/2. At the suggestion of H. S. M. COXETER,
the table has been simplified by the use of the relation sina =}/1 + r?(2 which replaces
HiLL's parameter 7 by the new parameter a. Also, the relation 7 = (J/5 +1)/2 simplifies
SYDLER’S surds. M. GoLDBERG, Washington, D.C.

Wochentag - Mathematik

Braucht man schnell den Wochentag eines historischen Datums, so beniitzt man eine
Tabelle, die man irgendwo hat und meistens nicht findet. Daher ist es niitzlich, den
Wochentag nach einer Methode bestimmen zu kénnen, die man leicht im Gedichtnis
behailt.

Es sollen zwei Methoden vorgefiihrt werden. Bei der ersten braucht man einen belie-
bigen Kalender, bei der zweiten geht es auch ohne Kalender. Freilich sind bei der zweiten
Methode Regeln zu merken, jedoch diese Regeln kénnen in manchen Fillen eine recht ein-
fache Gestalt annehmen. Will man zum Beispiel den Wochentag des 18. 9. 1456 wissen, so
fiigt man diese drei Zahlen zusammen, hingt eine Null an und dividiert durch 7. Kommt
als Rest 0, so bedeutet dies Samstag. Bei einem andern Rest zdhlt man vom Samstag so
viele Tage weiter, als der Rest anzeigt. Im obigen Fall ist also zu bilden 18914560:7,
Rest 0, Samstag. Der Wochentag vom 20. 3. 1208 wird gefunden aus 20312080: 7, Rest 5,
also Donnerstag.

Die Kalendermethode

Man ermittelt den Wochentag von Weihnachten und schliesst dann mit Hilfe eines
beliebigen Kalenders auf die Wochentage der iibrigen Daten. Den Wochentag von Weih-
nachten findet man beim Julianischen Kalender durch Anhédngen einer Null an die
Jahreszahl bei Schaltjahren. Bei Gemeinjahren hdngt man an die Jahreszahl des vorher-
gehenden Schaltjahres statt der Null die Anzahl der seit jenem Schaltjahr verflossenen
Jahre an. Man bildet bei 1456 also 14560, bei 1457 bildet man 14561, bei 1458 kommt
14562 usw. Dividiert man diese Zahl durch 7, so ist der Rest die Wochentagszahl fiir Weih-
nachten; fiir 1456 also Samstag, fiir 1457 Sonntag, fiir 1458 Montag, denn 14562:7 gibt
Rest 2. Algebraisch driickt man dies aus fiir die Jahreszahl J, indem man sagt J:4, Restv,
und die Wochentagszahl w erhidlt man aus [10 (J —#) + 7] : 7, Rest w.

Will man den Wochentag vom 20. Juli 1456 wissen und hat man einen Kalender von
1958, so sieht man, dass 1958 Weihnachten an einem Donnerstag ist und der 20. Juli an
einem Sonntag. Der 20. Juli ist also um 3 Tage voraus. Da 1456 Weihnachten an einem
Samstag war, muss der 20. Juli an einem Dienstag gewesen sein, 3 Wochentage spiter.
Diesen Schluss zieht man fiir Daten ab 1. Mérz. Fiir Janner und Februar sucht man den
Wochentag von Weihnachten des Vorjahres, der zugleich der Wochentag von Neujahr ist.

Dies alles gilt wohlgemerkt nur fiir den Julianischen Kalender. Fiir den Gregorianischen
Kalender ist eine kleine Korrektur anzubringen, von der die Rede sein wird, nachdem fiir
die Weihnachtsmethode der Beweis geliefert ist. Bei diesem Beweis geht man so vor:

Man entnimmt einer Tabelle, dass der 1. Janner 1 ein Samstag war; dann war auch der
25. Dezember des Jahres 0 ein Samstag. Gidbe es keine Schaltjahre, so wiirde man den
Weihnachtswochentag w von J finden aus J:7, Rest w. Weil nun jede vierteilige Jahres-
zahl die eines Schaltjahres ist und in einem solchen der Weihnachtswochentag um 2 Tage
vorriickt, so findet man w aus

(]—i— J;r)ﬂ, Rest w,

wobei » sich aus J:4, Rest 7, ergibt. Der Rest w bleibt derselbe, wenn zum Dividend ein
Vielfaches von 7 hinzugefiigt wird, zum Beispiel

7] 47 ]:.' — 7,
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wobei zu betonen ist, dass (J — 7)/4 eine ganze Zahl ist. Wir bekommen demnach

(j+7]+ J;' +7 =" —77):7, Rest w,

4
oder
8J+2]—2r—177):7, Restuw,
oder
(10J —97):7, Restw,
oder

[10(J—7)+7]:7, Restw.

Damit ist die Methode bewiesen. Will man den Weihnachtswochentag beim Gregoriani-
schen Kalender wissen, so bedenke man, dass dieser Kalender seit 1900 dem Julianischen
um 13 Tage voraus ist. Wir rechnen also in den Julianischen Kalender um und sagen:
Wenn im Julianischen Kalender der Weihnachtswochentag in einem Jahr ab 1900 w ist,
so ist er im Gregorianischen 13 Wochentage frither oder einen Wochentag spiter, also
w+ 1. Ab 1800 ist der Unterschied 12 Tage, ab 1700 ist er 11 Tage, und ab 1582 ist er
10 Tage. Daher bekommen wir fiir den Weihnachtswochentag ab 1800 w + 2, ab 1700
w43, ab 1582 w + 4.

Diese Korrektur ist unschwer zu merken. Man kann sie aber eleganter gestalten, wenn
man statt w+1 sagt w+1—1001. Das kann man tun, weil 1001 durch 7 ohne Rest
teilbar ist. Braucht man also den Weihnachtswochentag von 1958, so bildet man zuerst
julianisch 19562:7, Rest 4, und dann gregorianisch (19562 —1000):7 oder 18562:7,
Rest 5, Donnerstag. Man hat also, statt w + 1 zu bilden, die Jahrhundertzahl 19 um 1
vermindert auf 18. Ab 1800 vermindert man die Jahrhundertzahl um 2, ab 1700 um 3, ab
1582 um 4. Braucht man den Wochentag von Weihnachten 1600, so bildet man 12000: 7,
Rest 2.

Die Jahreszeiten-Methode

Die kalenderlose Methode kann man auch die Jahreszeiten-Methode nennen, und wir
werden gleich sehen warum. Brauchen wir den Wochtentag vom x-ten Méirz, und haben
wir bereits den Weihnachtswochentag w, so sieht man aus dem Kalender, dass der 1. Mirz
2 Tage gegen w voraus ist, der 0. Mirz also um 1 Tag. Wir finden demnach den Wochentag
w’ des x-ten Mirz aus (w + 1+ #) : 7, Rest w’, oder wenn wir Vielfache von 7 hinzuzéihlen,
999999 ¥ 4 299999, aus (w + 1000000 x 4 300000):7, Rest w’, oder ganz allgemein aus
[1000000 x + 300000 410 (J —7) +7]:7, Rest w’, fiir den julianischen Kalender, und
mit der Korrektur an der Jahrhundertzahl fiir den Gregorianischen Kalender. Man findet
also w’ vom 27. 3. 1187 aus 27311843:7, Rest 6, Freitag, und »’ vom 20. 3. 1958 aus
20318562:7, Rest 5, Donnerstag.

Wie mit dem Mérz kann man es nicht auch mit dem April machen, sondern nur mit dem
Juni, dem September und dem Dezember, also mit den Monaten, in denen eine Jahreszeit
beginnt. Die Daten der andern Monate muss man in ein Datum eines Jahreszeitmonats
verwandeln. Der »-te April ist der (31 + x)-te Marz, der x-te Mai der (31 + 30 + x)-te Mirz,
der »-te August der (30 4 31 + #)-te Juni, der v-te Februar der (31 + 31 + x)-te Dezember.
Bei Janner und Februar ist also der Weihnachtswochentag des Vorjahres zu nehmen.

Sehr zu achten ist bei diesen Bildungen auf den Stellenwert. Das Monatsdatum muss an
der Millionenstelle stehen, die Monatszahl an der Hunderttausenderstelle. Will man also
den Wochentag vom 7. 4. 30 wissen, so bildet man 38300282:7, Rest 6, Freitag, das
heisst, die Jahreszahl muss immer vierstellig sein. Aus 30 hat man 0030 zu machen.

Deshalb ist auch bei der Monatszahl 12 fiir den Dezember eine Korrektur vorzunehmen.
Man kann nicht die zweistellige Zahl 12 an die einstellige Hunderttausenderstelle setzen.
Es stellt sich heraus, dass es geniigt, statt 12 bloss 2 zu setzen. Befragt man einen Kalender,
so ist der 0. Dezember (30. November) gegen den Weihnachtswochentag um 3 Tage
voraus. Man findet also w’ des x-ten Dezember aus (w+3+4%):7, Rest w’, oder aus
(w + 3 + 199997 + x + 999999 x) : 7, Rest w’, oder (1000000 » + 200000 + w) : 7, Rest w’.
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Der 0. September ist gegen w auch um 3 Tage voraus, daher kénnte man beim September
ebenfalls 2 an die Hunderttausenderstelle setzen. Da aber der September die Monatszahl 9
hat, setzt man 9 statt 2, was man unbeschadet des Restes tun kann. Beim 0. Juni ist der
Wochentag gegen w um 2 Tage voraus. Man addiert 599998, ein Vielfaches von 7, zu 2, und
bekommt damit 600000 oder 6 an die Hunderttausenderstelle, die Monatszahl des Juni.
Damit ist auch die Jahreszeiten-Methode erklart und bewiesen. Bei Daten vor Christus
zieht man das Jahr von 7001 ab und behandelt den Rest wie ein Jahr nach Christus. Der
Judenkalender beginnt mit Montag, dem 7. 10. 3761 v. Chr. (7001 — 3761 = 3240;
37932400:7, Rest 2.)

Rechenvorteile

Unangenehm sind die langen Zahlen, die durch 7 zu dividieren sind, aber da gibt es
Rechenvorteile. Man teilt die Zahl in die iiblichen Dreiergruppen ab und bestimmt von
jeder Gruppe den Rest. Bei den Tausendergruppen ist der Rest negativ zu nehmen. Zum
Beispiel 38300282:7, Rest 6, wird zu

38300282:7
oder _
(+3 —6 +2):7, Rest —1.

Aus dem negativen Rest —1 wird +6 durch Anfiigung von +7. Der Grund dieses Vor-
gehens ist, dass 999999 und 1001 Vielfache von 7 sind.

Auch fiir die dreistellige Zahl HZE (Hunderter, Zehner, Einer) gibt es einen Rechen-
vorteil. HZE : 7 gibt denselben Rest wie (2H + ZE) : 7. So gibt 327 : 7 denselben Rest
wie (2-3 + 27):7 oder 33:7, ndmlich 5. Der Grund ist, dass 100:7 den Rest 2 hat.

Beispiele

Karl der Grosse wurde am Weihnachtstag 800 zum Kaiser gekrént, an einem Freitag:
8000:7 oder (—1 40):7, Rest —1 oder +6. Die Sizilianische Vesper am Ostermontag
1282 war am 30. Mirz: 30312802:7 oder (+2—4+4):7, Rest 2. Die Schlacht bei
Sempach am 9. Juli 1386 war an einem Montag: 39613842:7 oder (+4—442):7,
Rest 2. JoacHim MAYR, Walchsee, Tirol

Aufgaben

Aufgabe 297. Man beweise: Jede natiirliche Zahl <! ldsst sich als Summe von
hochstens #n — 1 verschiedenen Teilern von »! darstellen. Lisst sich dieser Satz verschiarfen ?
P. ErpnOs, Birmingham

Losung: Ist 1 < N < n! und dividiert man N durch #»!/2!, den allfdlligen Rest durch
n!/3! und fahrt so mit den Divisoren »n!/4!, ..., n!/(n — 1)! weiter, so erhdlt man die Dar-

stellung
”

n! .
Nzi‘z;—a—% (0=¢;<7).

Fiir ¢;#+ 0 ist ¢;n!/¢! ein Teiler von »!, und alle solchen Teiler sind verschieden, denn

n! n! n!
STETTES o
Man hat also (vorausgesetzt natiirlich, dass » =2) die gesuchte Darstellung, da der Fall
N = n! trivial ist.
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