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Ein Partitionsproblem und seine funktionentheoretische Losung

Eine Klasse von kombinatorischen Problemstellungen lasst sich darauf zurückfuhren,

gewisse Figuren aufzuzahlen, die zu einer vorgegebenen naturhchen Zahl n
gehören Man spricht dann dementsprechend auch etwa vom Aufzahlen bestimmter
Figuren vom Index n1)

Ist allgemein Kn die Anzahl der betrachteten Figuren vom Index n, so wird

als die sogenannte abzahlende Potenzreihe dieser kombinatorischen Aufgabe bezeichnet

Die Verwendung abzahlender Potenzreihen zur Bestimmung von Kn geht auf
Euler zurück, in seiner Introductio in analysin infmitorum vom Jahre 17482)
behandelt er einige Partitionsprobleme auf diese Weise In neuerer Zeit ist diese Methode
verschiedenthch ausgebaut worden, wobei aber im Gegensatz zu Euler das Schwergewicht

auf die durch die abzahlende Potenzreihe dargestellte Funktion und deren
Verhalten verlegt worden ist In diesem Zusammenhang müssen besonders die beiden
enghschen Mathematiker Cayley und Sylvester genannt werden Die im folgenden
dargelegte Losung des sogenannten Geldwechselproblems ist ein weiterer Beitrag dieser
Art

G Polya und G Szego stellen ihrer Sammlung Aufgaben und Lehrsatze der
Analysis*) das folgende, auch unter dem Namen Geldwechselproblem bekannte
Partitionsproblem an die Spitze

Auf wieviele Arten lasst sich ein Franken in Kleingeld wechseln? Als Kleingeld
kommen (in der Schweiz) in Betracht 1-Rappen-, 2-Rappen-, 5-Rappen-, 10-Rappen-,
20-Rappen- und 50-Rappen-Stucke4)

Es ist hier gefragt nach der Anzahl der Partitionen der Zahl 100 in Summanden
der Grosse 1, 2, 5, 10, 20 und 50 Die gesuchte Anzahl ist identisch mit der Anzahl

A) Beispielsweise lassen sich etwa die Permutationen von 3 Elementen (das heisst vom Index 3) dar
stellen durch die 6 Figuren

ABC, ACB BAC, BCA, CAB, CBA

a) Vgl [1] des Literaturverzeichnisses am Schlüsse des Artikels
8) Vgl [2], Aufgabe 1

4) Zum Geldwechselproblem siehe auch bei Ähren« [6] und von Schaewen [7]



98 M. Jeger : Ein Partitionsproblem und seine funktionentheoretische Lösung

der Lösungen der diophantischen Gleichung

/*! -f 2 fi2 + 5 fi3 + 10 fa + 20 fa + 50 ^6 100

in nichtnegativen ganzen Zahlen //Ä.
Die Lösung der beiden Autoren wird in der darauffolgenden Aufgabe entwickelt.

Sie betrachten die diophantische Gleichung

i"i + 2 fa -b 5 fa + 10 //4 j- 20 /*5 + 50 fa n (1)

und bezeichnen die Anzahl ihrer Auflösungen in nichtnegativen ganzen Zahlen fa mit
An. Sie führen dann die abzählende Potenzreihe des vorhegenden kombinatorischen
Problems

CO

A0 + A^ + A2^+---=£Anr

mit der Veränderlichen £ ein. Wie man leicht feststellt, ist

1m (1 - 0 (1 - P) (1 - {•) (1 - fi«) (1 - p«) (1 - C»)

27C60"

(2)

_ yt yr yr y y yt fpx + 2p% + 5//, f 10/i4 + 20a<, + 60a«.

^=0 /_t=-0 ai,=0 /*«=0 ju, 0 //,= _

co

Unsere abzählende Potenzreihe ist die Taylor-Entwicklung der Funktion F(£) im
Punkte J 0. Aus der Gestalt des Nenners ergibt sich, dass die rationale Funktion
F(f) ihre sämtlichen Pole auf dem Einheitskreis der komplexen Zahlenebene hat. Die
vorhegende abzählende Potenzreihe konvergiert daher überall innerhalb des Einheitskreises

und stellt dort die rationale Funktion F(f) dar.
Für die Lösung der ursprünglich gestellten Geldwechselaufgabe handelt es sich nun

darum, den Koeffizienten _4100 zu bestimmen. G. Polya und G. Szegö schlagen vor,
für die numerische Rechnung die nötigen Glieder in den Entwicklungen

(1 - f*°) ' (l - C»°) (l - £*<>) ' (l - C*°) (1 - {*) (l - C10)
usw.

sukzessive tabellarisch zusammenzustellen5). Eine Formel für An scheint nicht
bekannt zu sein.

Das im folgenden beschriebene Lösungsverfahren stützt sich auf die Theorie der
Funktionen einer komplexen Veränderlichen und führt zu einer eigenartigen
Verflechtung zwischen Kombinatorik und Analysis. Es liefert gleichzeitig ein weiteres

Beispiel für die Kraft, die der Mähode der abzählenden Potenzreihen innewohnt.

8) Vgl. [2], S. 152.
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Beschreibung der Lösung

Wir bestimmen zunächst die Anzahl der Partitionen vom Index n mit Summanden
der Grösse 1, 2 und 5; ihre Anzahl sei mit Bn bezeichnet. Es entspricht dies einer
Vereinfachung der Geldwechselaufgabe, indem als Kleingeld nur 1-Rappen-, 2-Rappen-
und 5-Rappen-Stücke zugelassen werden. Für die aus diesem kombinatorischen
Problem hervorgehende abzählende Potenzreihe gilt

1 °°

m (l-O (i-C) (i-C) =5ß«c" (3)

Die Relation (3) besteht wiederum für jedes |f | < 1.

Für die Partitionszahlen Bn wird mit Hilfe funktionentheoretischer Methoden eine
Formel hergeleitet, so dass sich diese dann mühelos berechnen lassen.

Nun gilt für |C| <1

(4)

F(C) /(C) • /(C10) (£b, C') (JJBk C10*)

CO CO CO

j=0 Ä=0 n=0

Hieraus folgt durch Koeffizientenvergleich schliesslich

[n/10]

; + 10Ä=n Ä=0

so dass sich dann auch _4n berechnen lässt.

Berechnung der Partitionszahlen Bn

Die rationale Funktion /(C) besitzt 6 Pole auf dem Einheitskreis, und zwar einen
Pol 3. Ordnung in Ci +1 und je einen Pol 1. Ordnung in fa —1, £3 or, £4 o*2,

C5 o-3 und Ce ff4» wenn o die 5. Einheitswurzel bedeutet (Fig. 1).
Auf Grund der Integralformel von Cauchy gilt nun

c

c ist ein geschlossener doppelpunktfreier und positiv-orientierter Weg um den
Nullpunkt herum, der keinen Pol von /(C) einschliesst, der also etwa ganz im Innern des
Einheitskreises verläuft, c' sei ein analoger, jedoch negativ-orientierter Weg, der den
Einheitskreis umschliesst. Daneben betrachten wir jetzt noch den Weg c*, der sich
aus den Bogen c und c' und dem in beiden Richtungen durchlaufenen Stück PP'
zusammensetzt (Figur 2). Bezeichnen wir das Residuum der Funktion

{»+1 fn+l(!_f) (l-£2) (1-C6) VnW

6) [x] bedeutet die grosste ganze Zahl, die x nicht übertrifft.
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im Pol an der Stelle C £k mit Rn(£k), so gilt nach dem Residuensatze

sirrfa® dt; =-±-§<pM du + ^fvM di; - -£k{Q-
c* c c' *_1

Das negative Vorzeichen auf der rechten Seite rührt daher, dass das vom Weg c*
umschlossene Gebiet rechts von c* liegt.

Wie man leicht bestätigt, verschwindet das Integral längs c', so dass also

6

k=i
ß«=-2X(c*)-

Die Partitionszahl Bn ist damit auf die Berechnung der 6 Residuen der Funktion

f3

m
Is

Figur J Figur 2

9?n(C) auf dem Einheitskreis zurückgeführt. Gegenüber dem in (6) auftretenden einzigen

Residuum im Nullpunkt hat dies den Vorteil, dass die Ordnung der Pole jetzt
nicht mehr von n abhängt.

Zur Berechnung der 6 Residuen in (7) stützen wir uns auf zwei Formeln, die kurz
hergeleitet werden sollen.

Es seien a(C) und ß(Q zwei in der Umgebung von C0 reguläre analytische Funktionen
mit den folgenden Eigenschaften: ß(Q habe in C Co eine k-iache Nullstelle und es

sei <x(Co) 4= 0.

Dann ist
*(0 «(0

eine in der Umgebung von f0 ebenfalls reguläre analytische Funktion, die in f f0
einen Pol A-ter Ordnung aufweist. Wir können dann schreiben

_(fl*(ö mit y(C0) * 0.
(.-M»r(0

Für das Residuum von ä(£) an der Stelle £0 ergibt sich unter Benutzung der Integralformel

von Cauchy mit einem geeigneten Integrationsweg um £0 herum

«(0

c-c.
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Liegt speziell ein Pol 1. Ordnung vor, so gilt weiter

101

R «(C)

y(0
lim «(0 lim «O

c-c.
cTc. ______ cTc. ________«

c-c, c-c
Diese Umformung ist zulässig, denn nach Voraussetzung ist /?(£„) 0. In einem Pol
1. Ordnung hat man daher die weitere Beziehung

ß'(Z) >' (8b)

die für unsere Zwecke günstiger ist als die Formel (8 a).
Auf Grund von (8 a) und (8b) ergeben sich für die 6 Residuen folgende Rechnungen:

a) Pol 3. Ordnung in fi +1
Es ist

(n
1 1

t<PnW p+i (i _ f) (i - ca) (l - C6) C"+1 (C - l)s (l + C) (1 + C + C2 + C3 + C4)

Mit
a(C) -1 und 7(C) C*+1 (1 + 0 (1 + C + C2 + C3 + C4)

erhält man gemäss (8 a)

^n(Cl) y *

yl

Daraus entnimmt man nach einigen einfachen Rechnungen schliesslich den Wert

2 na + 16 n + 27

C-Ci

*•(« - 40 (9)

b) Pol 1. Ordnung in C2 — 1

Um die Differentiation möghchst zu vereinfachen, setzen wir

*,(0_.«J8. mit Ja(C)=?*MW)«(i-CV
«0

y(ö i + •

Dann folgt aus (8b)

*„(-*) C-+1 (i - o» (i - {•)
_l)«+i

{=-1
(10)

') Vgl. etwa [8], S. 177.
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c) Pole 1. Ordnung in C3 o, C4 er2, C5 cfi> Ce <**

Hier wird die in (8b) vorkommende Differentiation besonders einfach, wenn wir

mitVn(Q «O
0(0

w Cn+1 (l - C) (i - Ca) '

/*(.) 1 - Cs

setzen. Da der polerzeugende Faktor im Nenner von cpn(£) für sämtliche 4 genannten
Pole im Glied (1 — C6) steckt, hat dieser Ansatz zudem den Vorteil, dass wir für die
4 Residuen denselben algebraischen Ausdruck erhalten. Nach Formel (8b) ist

1

Kit*) - 5 fn+5 _ f) (1 - ft)

K(Ze) ~

C=o

5 CM+6 (i - C) (i - C2)

5 £«+' (i -C)(i- C2)
f=a»=_l/o«

£»+8

5(C-i)(C2-i)
C=o*

5 £«+• (1 - 0 (1 - C2)

J»+8

f__o4=l/a
5(C-i)(Ca-i)

C=<x

Die beiden letzten Beziehungen wurden noch umgeformt durch die Substitution
c->i/c

Da 0 und 1/cr sowie auch a2 und I/o*2 konjugiert-komplex sind, sind auch die
zugehörigen Residuen konjugiert-komplex. Dieser Sachverhalt legt eine paarweise
Zusammenfassung derselben nahe. So findet man etwa

^(C3) + ^n(C6) -|{ orn+6 _ <-.) (i __ a2)

1 1 + <t2*+18

+
an+B

(e-l)(o*-l) f
1 1 + (T2n+3

5 an+5 (x _ a) (i _ aij 5 or» (1 _ a) (1 - <x2) '

Beim letzten Schritt ist noch berücksichtigt worden, dass a5 1 ist. Für die auf der
rechten Seite stehende Funktion von a führen wir nun zur Abkürzung ein eigenes

Symbol ein und setzen
1 - 2w+8

~~ T" <X» (1 - (7) (1 - (72)
S(a)

Dieser Ausdruck wird mit dem konjugiert-komplexen Wert seines Nenners erweitert,
damit Zähler und Nenner reell werden. Mit der Substitution

or= e" wobei co
tn

folgt nach einigen leichten Umformungen

SM« _L aw(l + o*n+s) (1 -ä) (l-ä2)
5

"

(l-a) (1-ä) (1-a2) (1 -ä2)
1 cosw co — cos (n + 1) co — cos (n 4- 2) co -f cos (n + 3) a>

10 (1 —cosco) (1 — cos2co)
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und wir erhalten schliesslich

cosmöj — cos (n -f 1) co — cos (n -f 2) co 4- cos (n -f 3) co

103

*n(Ca) + «„(« S(a)

^n(C4)+^(C5) S(a2) -
mit

10 (1 — cosco) (1 — cos 2 co) *

2\ __
cos 2nct> — cos 2 (w + 1) co — cos 2 (w 4- 2) co 4- cos 2 (n + 3) co

10 (1 - cos2co) (1 -cos4co)

CO
Zn

S(a) und S(a2) lassen sich nun ohne weiteres berechnen, wenn man beachtet, dass

1 für £ 0 (mod 5)

cosk co-\ T^""1) für *s±l(mod5),8)

—-J- (j/5 — l) für &=±2(mod5).

Die Werte sind in der folgenden Tabelle zusammengestellt:

n S(a) -(er2) S((T) 4 S(a2)

n 0 (mod 5) -^(5-^) -i(5 + /F)
1

« 1 (mod 5) "^ +4-^ 0

w 2 (mod 5) -^(5-^) _-L(5 + ^, l
— T

n 3 (mod 5) i<5+^> -söI'-W +.
« 4 (mod 5) i<5+^) i<5-^) +i

(11)

Aus den Beziehungen (9), (10) und (11) erhält man jetzt die folgende Formel für
die Partitionszahlen _3„

B„
2 n2 + 16 n -f 27 4- 5 (-1)" + 8 Q(n)

40

wobei _3(w)

f 4 1 \
0

+ 1

— 1

i — 1 J

je nachdem

w 0

n= 1

n 2

n 3

l w 4 J

(mod 5)

(12)

Sylvester bezeichnet Bn in seinen Untersuchungen als den Denumeranten von n
zu den Summanden 1, 2 und 5. Nach seiner Theorie der Denumeranten9) ist zu erwar-

8) cosco 0_4, cos2co =.OB in Figur 1.
9) Vgl. [5]. Eine ausführliche Darstellung von Sylvesters Denumerantentheorie befindet sich in [3],

S.140-158.
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ten, dass Bn je ein Glied mit der Periode 2 und der Periode 5 enthalten muss; (—l)n
hat die Periode 2, Q(n) die Periode 5. Sylvester hat für diese periodischen Anteile
den Begriff Weilenfunktion geprägt.

Nach (5) ist nun etwa
10

^*100 ~2j k ^100-10*'
Ä 0

Berechnet man die hierin vorkommenden Bk auf Grund von (12), so findet man

A1Q0 1 541 4-1 • 442 + 2 • 353 4- 2 • 274 4- 3 • 205 4- 4 • 146

4- 5 • 97 + 6 • 58 4- 7 • 29 4- 8 • 10 4- 10 • 1 4562

in Übereinstimmung mit dem in (2) angegebenen Wert.
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M. Jeger, Luzern

Ungelöste Probleme

Nr. 25. Eine euklidische Punktmenge A weist die Dreipunktkonvexitätseigen-
schaft auf, wenn A mit drei Punkten P, Q, R£A stets wenigstens eine der drei
Verbindungsstrecken QR, RP, PQ ganz enthält. Diese schwächere Variante zu der
üblichen Konvexitätsbedingung wurde von F. A. Valentine1) eingehend untersucht.
Es ist naheliegend, eine erschöpfende direkte Charakterisierung derjenigen
Punktmengen zu suchen, welche die erwähnte Dreipunktforderung erfüllen. Diese Aufgabe

- übrigens eine typische Fragestellung kombinatorisch-geometrischer Art - ist aber
anscheinend nicht leicht zu lösen. Lediglich für ebene Punktmengen kann eine
Antwort gegeben werden.

F. A. Valentine bewies die folgende Aussage: Eine abgeschlossene Punktmenge A
der euklidischen Ebene mit der Dreipunktkonvexitätseigenschaft lässt sich als Vereini-

*) F. A. Valentine, A Three Point Convexity Property, ^acific J. Math. 7, 1227-1235 (1957).
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