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Ein Partitionsproblem und seine funktionentheoretische Losung

Eine Klasse von kombinatorischen Problemstellungen lisst sich darauf zuriick-
filhren, gewisse Figuren aufzuzihlen, die zu einer vorgegebenen natiirlichen Zahl »
gehoren. Man spricht dann dementsprechend auch etwa vom Aufzdhlen bestimmter
Figuren vom Index n!).

Ist allgemein K,, die Anzahl der betrachteten Figuren vom Index #, so wird

2 K.
n=0

als die sogenannte abzihlende Potenzreihe dieser kombinatorischen Aufgabe bezeich-
net. Die Verwendung abzdhlender Potenzreihen zur Bestimmung von K, geht auf
EULER zuriick; in seiner Infroductio in analysin infinitorum vom Jahre 17482%) be-
handelt er einige Partitionsprobleme auf diese Weise. In neuerer Zeit ist diese Methode
verschiedentlich ausgebaut worden, wobei aber im Gegensatz zu EULER das Schwer-
gewicht auf die durch die abzihlende Potenzreihe dargestellte Funktion und deren
Verhalten verlegt worden ist. In diesem Zusammenhang miissen besonders die beiden
englischen Mathematiker CAYLEY und SYLVESTER genannt werden. Die im folgenden
dargelegte Losung des sogenannten Geldwechselproblems ist ein weiterer Beitrag dieser
Art.

G. PoLva und G. SzeGo stellen ihrer Sammlung Aufgaben und Lehrsdtze der Ana-
lysis®) das folgende, auch unter dem Namen Geldwechselproblem bekannte Parti-
tionsproblem an die Spitze:

Auf wieviele Arten lisst sich ein Franken in Kleingeld wechseln? Als Kleingeld
kommen (in der Schweiz) in Betracht: 1-Rappen-, 2-Rappen-, 5-Rappen-, 10-Rappen-,
20-Rappen- und 50-Rappen-Stiicket).

Es ist hier gefragt nach der Anzahl der Partitionen der Zahl 100 in Summanden
der Grésse 1, 2, 5, 10, 20 und 50. Die gesuchte Anzahl ist identisch mit der Anzahl

1) Beispielsweise lassen sich etwa die Permutationen von 3 Elementen (das heisst vom Index 3) dar-
stellen durch die 6 Figuren

ABC, ACB, BAC, BCA, CAB, CBA.

%) Vgl. [1] des Literaturverzeichnisses am Schlusse des Artikels.
3) Vel. [2], Aufgabe 1.
4) Zum Geldwechselproblem siehe auch bei AHRENS [6] und vON SCHAEWEN [7].
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der Losungen der diophantischen Gleichung

in nichtnegativen ganzen Zahlen y;.
Die Losung der beiden Autoren wird in der darauffolgenden Aufgabe entwickelt.
Sie betrachten die diophantische Gleichung

#y+ 2 pg+ 5 pg+ 10 piy i 20 pg + 50 pg=mn (1)

und bezeichnen die Anzahl ihrer Auflésungen in nichtnegativen ganzen Zahlen y, mit
4,. Sie fithren dann die abzdhlende Potenzreihe des vorliegenden kombinatorischen
Problems

Ag+ A L+ A2+ - =34, 0"
n=0

mit der Verdanderlichen { ein. Wie man leicht feststellt, ist

1
F(C) = (1—=0) (x—2%) (1 -5 (1 —C19) (1 —C20) (1— Co9)

= (Zoo' ><2C2m> (fcm,‘,>
a =0 tia=0

0 pe=0

Unsere abzidhlende Potenzreihe ist die Taylor-Entwicklung der Funktion F({) im
Punkte { =0. Aus der Gestalt des Nenners ergibt sich, dass die rationale Funktion
F({) ihre simtlichen Pole auf dem Einheitskreis der komplexen Zahlenebene hat. Die
vorliegende abzihlende Potenzreihe konvergiert daher iiberall innerhalb des Einheits-
kreises und stellt dort die rationale Funktion F({) dar.

Fiir die L6sung der urspriinglich gestellten Geldwechselaufgabe handelt es sich nun
darum, den Koeffizienten A4, zu bestimmen. G. PoLyA und G. Sze6 schlagen vor,
fiir die numerische Rechnung die nétigen Glieder in den Entwicklungen

1 . 1 . 1
=19 = a-—° [0 0-) (@)

usw.

sukzessive tabellarisch zusammenzustellen®). Eine Formel fiir 4, scheint nicht be-
kannt zu sein.

Das im folgenden beschriebene Losungsverfahren stiitzt sich auf die Theorie der
Funktionen einer komplexen Verinderlichen und fiihrt zu einer eigenartigen Ver-
flechtung zwischen Kombinatorik und Analysis. Es liefert gleichzeitig ein weiteres
Beispiel fiir die Kraft, die der Methode der abzihlenden Potenzrethen innewohnt.

5) Vgl [2], S.152.
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Beschreibung der Lésung

Wir bestimmen zunéchst die Anzahl der Partitionen vom Index #» mit Summanden
der Grosse 1, 2 und 5; ihre Anzahl sei mit B,, bezeichnet. Es entspricht dies einer Ver-
einfachung der Geldwechselaufgabe, indem als Kleingeld nur 1-Rappen-, 2-Rappen-
und 5-Rappen-Stiicke zugelassen werden. Fiir die aus diesem kombinatorischen Pro-
blem hervorgehende abzihlende Potenzreihe gilt

1) = e & B 3)

Die Relation (3) besteht wiederum fiir jedes || < 1.
Fiir die Partitionszahlen B, wird mit Hilfe funktionentheoretischer Methoden eine

Formel hergeleitet, so dass sich diese dann miihelos berechnen lassen.
Nun gilt fiirr [{| <1

=116 ) e

. o 4)
ZZ 231 Bk Ci+10k =2A” ",
i=0 £=0 n=0
Hieraus folgt durch Koeffizientenvergleich schliesslich
[n/10]
An= 2 BBk—ZB 10k) (5)

i+10k=n

so dass sich dann auch A4, berechnen lisst.

Berechnung der Partitionszahlen B,

Die rationale Funktion f({) besitzt 6 Pole auf dem Einheitskreis, und zwar einen
Pol 3. Ordnung in {; = +1 und je einen Pol 1. Ordnung in {, = —1, {3 =0, {, = 0%,
{s=0% und {4= 0%, wenn o die 5. Einheitswurzel bedeutet (Fig. 1).

Auf Grund der Integralformel von CAucHY gilt nun

1 1
B,= o ) = gy $ Lok at. ©)
c

c ist ein geschlossener doppelpunktfreier und positiv-orientierter Weg um den Null-
punkt herum, der keinen Pol von f({) einschliesst, der also etwa ganz im Innern des
Einheitskreises verliuft. ¢’ sei ein analoger, jedoch negativ-orientierter Weg, der den
Einheitskreis umschliesst. Daneben betrachten wir jetzt noch den Weg c¢*, der sich
aus den Bogen ¢ und ¢’ und dem in beiden Richtungen durchlaufenen Stiick PP’ zu-
sammensetzt (Figur 2). Bezeichnen wir das Residuum der Funktion

£(8) 1 -
th+l T a1 A=0) (1-2% (1-259) = @,(C)

%) [x] bedeutet die grisste ganze Zahl, die # nicht ibertrifft.
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im Pol an der Stelle { = {; mit R,({;), so gilt nach dem Residuensatze

1 1

77 PP A = G0 A+ oy Pal0) dE = — SR,

k=1

Das negative Vorzeichen auf der rechten Seite rithrt daher, dass das vom Weg c* um-
schlossene Gebiet rechts von c* liegt.
Wie man leicht bestitigt, verschwindet das Integral lings ¢’, so dass also
6
B,=—2 R,(Ly). (7)

k=1

Die Partitionszahl B, ist damit auf die Berechnung der 6 Residuen der Funktion

Figur 1 Figur 2

() auf dem Einheitskreis zuriickgefithrt. Gegeniiber dem in (6) auftretenden einzi-
gen Residuum im Nullpunkt hat dies den Vorteil, dass die Ordnung der Pole jetzt
nicht mehr von # abhingt.

Zur Berechnung der 6 Residuen in (7) stiitzen wir uns auf zwei Formeln, die kurz
hergeleitet werden sollen.

Es seien «(¢) und () zwei in der Umgebung von {, reguldre analytische Funktionen
mit den folgenden Eigenschaften: g({) habe in { = {, eine k-fache Nullstelle und es
sei (o) + 0.

Dann ist %(£)

eine in der Umgebung von {, ebenfalls regulire analytische Funktion, die in { = (,
einen Pol k-ter Ordnung aufweist. Wir konnen dann schreiben

_ () s
MO =Tz it () + 0.

Fiir das Residuum von () an der Stelle ¢, ergibt sich unter Benutzung der Integral-
formel von CAUCHY mit einem geeigneten Integrationsweg um {, herum

«(¢)
1

1 7(8) 1 d*=1 (a(2)
2ot PMO A= o =y dc"’l{?(t)ll; o

R =
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Liegt speziell ein Pol 1. Ordnung vor, so gilt weiter

_a@ |y a@ o a(d)
R=%@ | = o =1 g s -
i £— 2% t—73

Diese Umformung ist zuldssig, denn nach Voraussetzung ist ({,) = 0. In einem Pol
1. Ordnung hat man daher die weitere Beziehung

R= ) - ,
PO (&)
die fiir unsere Zwecke giinstiger ist als die Formel (8a).
Auf Grund von (8a) und (8b) ergeben sich fiir die 6 Residuen folgende Rechnungen:

a) Pol 3.Ordnung in §; = +1
Esist
(C _ 1 _ 1
Palt) = PHA— (1= (1-0) PHE-1PA+A+C+E+ B+
Mit

awl)=—1 und pO)=0"QA+A+HL+ 242+
erhilt man gemiss (8a)

1 yy' =297
R,(Ly) = z T
=0

Daraus entnimmt man nach einigen einfachen Rechnungen schliesslich den Wert

2n% 4 16 n 4 27
Ry(fy) = - 25— (9)

b) Pol 1. Ordnung i fy=—1

Um die Differentiation moglichst zu vereinfachen, setzen wir

“(0) = 1
wll) = S mit R -T2
Y =1+¢.
Dann folgt aus (8b)
1 (— 1)+
R,(Cs) = (1 —0)8 (1 — Cs)c == " (10)

-1

) Vgl. etwa [8)], S.177.
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c) Pole 1. Ordnung in {g=0,{,= 0% (s =03, {3 = o*

Hier wird die in (8b) vorkommende Differentiation besonders einfach, wenn wir
1
|0 =z
B(l)=1-10°

setzen. Da der polerzeugende Faktor im Nenner von ¢,({) fiir simtliche 4 genannten
Pole im Glied (1 — {5) steckt, hat dieser Ansatz zudem den Vorteil, dass wir fiir die
4 Residuen denselben algebraischen Ausdruck erhalten. Nach Formel (8Db) ist

_w
@,(8) = 30 mit

1
Rl = —spma—p0 —wcl '

1
R,(Cy) = — 50048 (1 —¢) (1 — SN
1 gnie
Bl = —spma—pu—p S|
{=a=1/c* {=a®
_ 1 _ {nis
Rn(CG) T s (1) (1209 } - 5(—-1)(¢2—1) t )
{=0d'=1/c {=0

Die beiden letzten Beziehungen wurden noch umgeformt durch die Substitution
§->1/C.

Da ¢ und 1/a sowie auch ¢2 und 1/¢2 konjugiert-komplex sind, sind auch die zuge-
horigen Residuen konjugiert-komplex. Dieser Sachverhalt legt eine paarweise Zu-
sammenfassung derselben nahe. So findet man etwa

1 1 orn+8
R,(Cs) + R,(Ce) = -——5-{ o"t8 (1 — o) (1 — o?) + (6 —1) (62 —1) }
_ 1 1 4 g2n+1s _ 1 1 + g2n+3
"5 o (1—0)(1—-0) 5 o"(l—o0)(l—0a? "

Beim letzten Schritt ist noch beriicksichtigt worden, dass ¢® =1 ist. Fiir die auf der
rechten Seite stehende Funktion von ¢ fithren wir nun zur Abkiirzung ein eigenes

Symbol ein und setzen 1 1 4 gan+s

T 5 o (1 —0) (1 — oY

= S(0) .

Dieser Ausdruck wird mit dem konjugiert-komplexen Wert seines Nenners erweitert,
damit Zihler und Nenner reell werden. Mit der Substitution

; . 2n
o=2¢%, wobei 0=—,

folgt nach einigen leichten Umformungen

1 (1 + o3 (1 —3) (1 — o7
5 M=o (1—=9) (1—0% (I =09
1

S(o) = —

1 cosmw—cos(n+ 1) w—cos(n + 2) w+ cos(n + 3) w

0 (1 —cosw) (1 —cos2 w) ’
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und wir erhalten schliesslich

. _ cosnw—cos(n+ 1)w —cos(n+ 2)w +cos(n+ 3)w
Ry(Cs) + R, (Cg) = S(o) = — 10 (1 —cosw) (1 —cos2 w) !

. __cos2nw—cos2(n+1)w—cos2(n+ 2) w+cos2(n4 3)w
R,(Ca) + R,(C5) = S(0®) = 10 (1 — cos2w) (1 — cos4 w)

mit

w=—§—.

S(o) und S(o?) lassen sich nun ohne weiteres berechnen, wenn man beachtet, dass

1 fir 2=0 (mod3j),
cosk w = 1}{ (‘/5-_ 1) fir %2 =41 (mod5), 8)
~3(/5-1) fir k=42(mods).

Die Werte sind in der folgenden Tabelle zusammengestellt:

n S(o) S(o?) S(o) + S(o?)
n=0(mods) | — = (5—3) | — 5 (5+15) -+
=1 (mod 5) ~.2?5_V5“ +_223_V3‘ 0 )
n=2(mods) | — o= (5-Y5) | — o= (5+V5) —
n = 3 (mod 5) -5}6-(54.1/5“) ?16-(5—;/5“) +.;_
n = 4 (mod 5) -5%(54-;/5‘) —5%(5_;/5') +%_

Aus den Beziehungen (9), (10) und (11) erhélt man jetzt die folgende Formel fiir
die Partitionszahlen B,

202 +16n + 27 + 5 (—1)* 4 8 Q(n)
B, - ,
" 40
+1 n=0
o] | n=1] (12)
wobei 2(n) = +1 |, jenachdem! n=2 | (mod 5) .
l-—l \n§3
-1 n=4

SYLVESTER bezeichnet B, in seinen Untersuchungen als den Denumeranten von »
zu den Summanden 1, 2 und 5. Nach seiner Theorie der Denumeranten?®) ist zu erwar-

8) cosw = OA, cos2w =O0B in Figurl:
%) Vgl.[5]. Eine ausfiihrliche Darstellung von SyLvEsTERs Denumerantentheorie befindet sich in [3],
S. 140-158,
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ten, dass B, je ein Glied mit der Periode 2 und der Periode 5 enthalten muss; (—1)*
hat die Periode 2, 2(n) die Periode 5. SYLVESTER hat fiir diese periodischen Anteile
den Begriff Wellenfunktion geprigt.

Nach (5) ist nun etwa

10
Awo 2231: BlOO~10k'
k=0

Berechnet man die hierin vorkommenden B, auf Grund von (12), so findet man
Ago=1-541+1-442+2.353 42274 + 3 - 205 + 4 -146

+5-974+6-58+4+7-29+8-10+4 10 -1 = 4562

in Ubereinstimmung mit dem in (2) angegebenen Wert.
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Ungel6ste Probleme

Nr. 25. Eine euklidische Punktmenge A weist die Dreipunktkonvexitdtseigen-
schaft auf, wenn A mit drei Punkten P, , R€ A stets wenigstens eine der drei Ver-
bindungsstrecken QR, RP, PQ ganz enthilt. Diese schwichere Variante zu der iib-
lichen Konvexititsbedingung wurde von F. A. VALENTINE!) eingehend untersucht.
Es ist naheliegend, eine erschépfende direkte Charakterisierung derjenigen Punkt-
mengen zu suchen, welche die erwidhnte Dreipunktforderung erfiillen. Diese Aufgabe
— iibrigens eine typische Fragestellung kombinatorisch-geometrischer Art — ist aber
anscheinend nicht leicht zu 16sen. Lediglich fiir ebene Punktmengen kann eine Ant-
wort gegeben werden.

F. A. VALENTINE bewies die folgende Aussage: Eine abgeschlossene Punktmenge A
der euklidischen Ebene mit der Drespunkikonvexititseigenschaft lisst sich als Vereini-

1) F. A. VALENTINE, A Three Point Convexity Property, Pacific J. Math. 7, 1227-1235 (1957).
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