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und daraus

au — a22 und a21 a12.

Diese beiden Beziehungen zwischen den Koeffizienten hätten an die Stelle der durch
(12) ausgedrückten Relationen zu treten.

Ansonsten würde die Durchführung der Aufgabe völlig analog jener verlaufen, die
sich bei gleichsinniger Kongruenz der beiden Strahlenbüschel ergibt.

L. Hofmann, Wien

Ungelöste Probleme

Nr. 24. P. Erdös hat gelegentlich die Frage aufgeworfen, ob eine in der Ebene
überall dicht hegende, abzahlbar-unendliche Punktmenge existiert, für die je zwei
Punkte eine rationale Distanz aufweisen. Dass es auf der Geraden dicht liegende
Punktmengen dieser Eigenschaft gibt, ist trivial; es genügt, die Menge der Punkte
zu bilden, die von einem fest gewählten Punkt der Geraden rationale Entfernungen
besitzen.

Weniger plausibel und interessant ist die Tatsache, dass es möglich ist, auf der
Kreislinie abzählbar-unendlich viele Punkte überall dicht so zu verteilen, dass alle
Distanzen rational ausfallen. Anschliessend an eine Fragestellung von E. Trost1)
hat A. Müller2) ein einfaches Verfahren angegeben, das auch die Konstruktion
einer derartigen Punktmenge auf der Kreislinie erlaubt. In der Tat: Man wähle den
Winkel cp so, dass cos cp 4/5 und sin cp 3/5 wird. Es ist dann cp mit n inkommensurabel,

so dass cp\n irrational ausfällt. Die abzählbar-unendlich vielen Punkte
Pn(n l,2, der Ebene mit den Polarkoordinaten rn 1; 6n 2ncp hegen auf
der Peripherie des Einheitskreises um den Ursprung überall dicht und sind dort
sogar gleichverteilt. Für die euklidische Distanz D=D(Pw,Pm) zweier Punkte Pw

und Pm resultiert D 2 | sin (n — m) cp | und, wie man mit Verwendung der geläufigen

trigonometrischen Formeln leicht bestätigt, D wird rational. - Auf die eingangs
erwähnte Frage zurückkommend, müssen wir einräumen, dass es recht schwer fällt,
an die Existenz einer in der ganzen Ebene dicht liegenden Punktmenge der betrachteten

Eigenschaft zu glauben, jedoch wird man nach den vielen Erfahrungen mit
«Paradoxien» der Punktmengenlehre auch zur Vorsicht neigen. Unser Problem:
Gibt es eine in der Ebene überall dicht hegende, abzahlbar-unendliche Punktmenge,
deren Punktepaare alle rationale Distanzen aufweisen H. Hadwiger

Nachtrag zu Nr. 12. J. J. Schäffer (Montevideo) teilte uns eine einfache
Konstruktion8) mit, die zeigt, dass das reguläre w-Eck sicher nicht den grösstmöglichen
Flächeninhalt unter allen konvexen n-Ecken gleichen Durchmessers aufweist, falls

x) E.Trost, Bemerkung zu einem Satz uber Mengen von Punkten mit ganzzahhger Entfernung, El. Math. 6,
59 (1951).

*) A. Müller, Auf einem Kreis hegende Punktmengen ganzzahhger Entfernungen, El. Math. 8, 37-38
(1953). Weitere Beitrage zu dieser Frage lieferten M. Altwegg [El. Math. 7, 56-58 (1952)] und F. Steiger
[El. Math. 8, 66-67 (1953)].

8) Brief vom 13. Januar 1957 an den Unterzeichneten.
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n > 4 und n gerade ist. In der Tat: Es sei n 2 m > 4,

zk (j+eku\cknllm (*=|^T, * 1, 2m),

u ^ 0, g* 1 (ä 1, m), ek -1 (£ m + 1, 2 m).

Deutet man die komplexen Zahlen zk als Punkte in der Gaußschen Zahlenebene, so

erzeugen diese für u 0 ein reguläres 2 w-Eck vom Durchmesser 1. Aus Stetigkeitsgründen

bleibt das 2 m-Eck für ausreichend kleine u ^ 0 konvex und, wie man mühelos

bestätigt, bleibt \zp — zq\ ^ 1 (/>, q 1, 2 w), so dass der Durchmesser 1

bleibt. Für den Flächeninhalt des erzeugten konvexen 2 ra-Ecks ergibt sich dagegen

F=[£ + (m-2)««}si_.-£

so dass abgelesen werden kann, dass wegen m > 2 für zulässige w > 0 ein grösserer
Wert resultiert als für u 0, der dem regulären 2 w-Eck gleichen Durchmessers
entspricht. Im Falle rn 2 ist F von w unabhängig, was mit der bekannten elementaren

Tatsache zusammenhängt, dass das Quadrat nicht das einzige flächengrösste
Viereck festen Durchmessers ist. H. Hadwiger

Nachtrag zu Nr. 21. Von J. J. Schäffer (Montevideo) wurde uns mitgeteilt4),
dass G. Lumer (Chicago) in einer kürzlich veröffentlichten Note5), die uns vom
Verfasser auch zugestellt worden ist, die folgenden Ergebnisse erzielte:

1. Wenn ein Polygon in einer Eilinie umgewendet werden kann, so ist dieses einem
Kreis einbeschrieben.

2. Jedes reguläre Polygon lässt sich in unendhch vielen verschiedenen Eihnien
umwenden. Unter diesen Eilinien gibt es solche, deren Flächeninhalt grösser, und
andere, deren Flächeninhalt kleiner ist als derjenige des Umkreises des Polygons.

H. Hadwiger

Aufgaben

Aufgabe 292. Sur un diametre AB d'un cercle (O), on marque un point C, entre A
et B, et l'on d6crit sur CB le demi-cercle (O'), au-dessus de AB, puis les cercles (co^,
(coa), (oDn) tangents au demi-cercle (O), ä la demi-corde CD perpendiculaire ä AB et,
de proche en proche, aux cercles (O'), (coi), (cjo2), (con_t), au-dessus de AB. Exprimer
le rayon rn du cercle (con), d'indice donn6 n. Pour quelle position de C sur AB le cercle
(a>3), d'indice 3, est-il le plus grand V. Th__bault, Tennie (Sarthe, France)

Solution: Soit CB <AC. Designons par x *=0'B le rayon du cercle (0') et par yn
l'ordonn^e de mn. Le lieu g6orn6trique des centres con est la parabole

yl~4(R-x)(x-rn)
de foyer O, de sommet O' et de parametre p 2 (R — x). La condition de tangence des
cercles (con) et (^..i) est

4) Brief vom 5. März 1958 an den Unterzeichneten.
8) G. Lumer, Poligonos inscriptibles en curvas convexas, Rev. Un. mat. argent. 17, 97-102 (1955).
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