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Kleine Mitteilungen

Zur Definition 0°=1 = o0?
Herrn Frank Libell zu seinem 65. Geburtstag in Verehrung gewidmet

1. Lehrbiicher der Mathematik schliessen bei der Definition 2°=1 fiir rationale, reelle
oder komplexe z meist den Wert z =0 aus (erwdhnen aber hierbei z = 4- co oder oo
nicht). Nicht so FALCKENBERG, Elementare Reihenlehve (Berlin 1926), S. 19, und
PERRON, Irrationalzahlen, 2. Aufl. (Berlin 1939), S. 60, die fiir endliche reelle Basen a
die Definition a®=1, also 0°=1 aufstellen. Fiir manche Zwecke empfiehlt sich die

wegen hrno.z0 == =zlnréo 2% naheliegende strengstmaégliche Definition
—

00=1 =000, (1)

Dann gilt zum Beispiel der einfache Satz: Die Funktion f(z) =2°ist in der unberandeten
komplexen z-Ebene, das heisst auf der unpunktierten Zahlenkugel analytisch und hat
dort iiberall den Wert 1. Denn 1 —f(z) =f(2) =f"(2) =---=0 ist fiir alle z richtig.
(1) ermoglicht die folgenden bequemen Schreibweisen:

1. Aus f(2) = 2 a,z* folgt f(0) =a,-0°=a,. Bei Verzicht auf d1e Definition 0°=1
wire f(0) mcht deﬁmert es sei denn, man schriebe f(z) —ao+ Z‘ a, z* (vgl. FALCKEN-

BERG und PERRON). Einfache Beispiele ergeben sich bei folgender Spezialisierung der
a,: Fir £=0,1, 2,... lassen sich die in unbestimmten ¢, z homogenen Polynome
k-ten Grades (t+z)" und (t+1—zk+1): (t —z) zum Beispiel nach fallenden Potenzen
von ¢, das heisst nach steigenden Potenzen von z ordnen. An der Stelle z = 0 sieht das,
zusammenfassend geschrieben, so aus (Punkte ... im Inneren der Summen deuten

Glieder a,, t# z* mit 2 verschiedenen Sorten von Koeffizienten a,, an):

0= (t+0)0=(f1—0Y): (£ — 0) = 10 00
fA=(t+0)t=(2—0%:(—0)= £ 0°4 700!
2= (£ 4+ 0)2= (18— 0%): (£ — 0) =200+ ... 4 £0 02

2. Aus fl1/2) = Z'a,/z’ folgt f(1/0) =agf/o0®=a,. Bei Verzicht auf die Deflmtlon
=0

00%=1 wire f(1 /oo) f(0) nicht definiert, es sei denn, man schriebe f(1/2) =a,+ Za,/z’
3. Eine n-reihige oder unendliche Einheitsmatrix

1 00
010
0 0 1

schreibt sich in formaler Anlehnung an (1)

(01¢=%l) = (1 —sgn|i —k|)1) = (co~l¥-kl) (5,k=1,...,m oder 1,23,...). (2

1) nganntlich ist sgn1,2,3,... =1 und sgn 0 =0 festgesetzt (sgn = Signum = Vorzeichen). Von
Oip = ( ,',) (f) und zahlreichen anderen Darstellungen sehen wir in diesem Rahmen ab,
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Bei der Anwendung des hier benutzten Steuerwald-Symbols 0!¢-#! ergeben sich die fol-
genden 2 Moglichkeiten:
a) Man ersetzt die 19lettrige Definition des Kronecker-Symbols

0 fur 1%k
6,-;,: .
1 fiiri==%

durch die 10lettrige d;; = 0!¢—*! und schreibt weiterhin wie bisher iiberall §;;.

b) Man unterdriickt 6;; (also auch seine Definition) und schreibt nur 0! -*!, was wegen
(1) nicht gesondert definiert zu werden braucht.

Die Méglichkeit b) erscheint bequemer, obwohl d;; nur 3 Lettern benutzt, 0'¢~*! jedoch 6.
Denn im Falle b) unterbleiben Sitze wie «wobei wie iiblich d;;, =0!¢-* das Kronecker-
Steuerwald-Symbol isty.

4. Fourier-Reihe f( %) = 2 (@, cosv x + b, sinv x)/(1 4 0%). Merkwiirdigerweise schreibt

=o

R.RoTHE f(x) = ao+ 2’(a cosvx + by sinv x), was aber doch = 2‘ ist [Hohere Mathematik,
=0
II, 2. Aufl. (Leipzig 1931) S.120]. ’

2. Die Definition 0°=1 empfiehlt sich zum Beispiel nicht iiberall in der Theorie der von
der Unbestimmten » abhidngigen Bernoullischen Polynome Sy(n), S,(n), Sy(n), Ss(n),
ve.=n, n(n+1)/2, n(n+1) (2n+1)/6, n2(n+1)%2/4,... (Potenzsummen natiirlicher
Zahlen). Hier wird man, mit ganzem Argument » = 0, die Definition

Sp(n) = Ok 1% 4 ... 4 b (n,k=0,1,2,..), (3)

aus der sich die Polynomdarstellung gewinnen ldsst, der Einfachheit halber etwa durch

Sp(0) =0°=0 (4)
vervollstindigen. Dann gelten namlich, wie sich beweisen lidsst, neben S;(0) = ( n)—n=0
(das heisst, n ist stets Faktor) auch andere Formeln ausnahmslos, bei S¢(0) = 0°=1 jedoch
nicht; zum Beispiel:

A. Definiert man fiir unbestimmte #» statt der iiblichen
: d
Ableitung ——nk+tl=(k 4+ 1) n*
an
. . D
eine ¢Ableitung» m—n"“ = (k +sgnk) nk, 3 k=01, 2.
. D
so ist 'ﬁ'ﬁ*Sk*_l(’n) = (k -+ 1) Sk(n).

Hiernach kénnen S,, S;, S,, ... sukzessive durch wiederholte s«Integration» von Sy(n) =2
bestimmt werden. Die «Integrationskonstante», nimlich das Glied mit »!, wird dabei aus
Si(1) =1 oder Sp(—1) =0 berechnet (ein Glied mit %° tritt ja niemals auf); erstere
Formel ist hier nur bei der Potenzsummendarstellung (3), letztere nur bei gewissen
Polynomdarstellungen von S;, zum Beispiel der aus (6), evident. So hat man, mit gewohn-
licher Integration,

” [ 1
So(m) =m, Sim)=Fk [ Sp_w)dv+n|l1—Fk | S,_,0) dv}
e )

” 3 —1
=k [ Sp_ydv+n|k [ Se_ @) adv (k=1,2,3,...). (5
[sesnls [osne]
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Die 2. Formel stammt von AppELL, Nouv. Ann. Math. 7887, 312 {f., sie ist bequemer als
die erste. Jede der beiden eckigen Klammern bezeichnet man auch mit (—1)* B,, wo
B;, die k-te Bernoullische Zahl ist:

1 1 1 1
Bl .82 B4 Bs...:*"—-z-—é- _—.-3—6 _4—2‘ ey
By By B, ... = 0 0 0

Diese Zahlen berechnet man auch unabhingig von (5), zum Beispiel aus der symbolischen
binomischen Entwicklung von

(B+1)k—BkF=4,,=0t"1=1—-sgn(k —1) mit BfF=B, (k=1,2,3,...).

Hier kehrt man also zweckmadssig wieder zur Definition 0°=1 aus (1), (2) zuriick, so dass
0°=0 nur im Rahmen von (4) gilt.

B. Fir n+1, k=1, 2, 3, ... ist die k-reihige linke obere Eckdeterminante der unend-
lichen Matrix

nt 1

—n® 1 2

n 1 3 3 (6)
—nt 1 4 6 4

gleich k! S;_,(n) = k!(0F—141%-1 4 ...  nk—1); die Matrix (6) entsteht dabei aus der
bekannten Stifel-Pascalschen

e
SwWw N =
A W
B
—

wenn in letzterer, fiir alle 2, in Zeile £ das Element (i) vor (g) tritt und dort durch —(—n)*
ersetzt wird. Man liest an (6) ab, indem man # = 0 und n = —1 einsetzt:

Alle Sy, S;, S;, S, ... sind durch # teilbar.
Alle S,,S,,Ss, ... sind durch # +1 teilbar.

{Vgl. Jber. dtsch. Math.-Ver. 67 (1958).]

3. Seien x(>0) und a endliche reelle Zahlen. Mittels der de I'Hospitalschen Regel kann
man dem Symbol 0° zum Beispiel wie folgt jeden endlichen Wert ¢4> 0 beilegen:

— (s 1 i = 1i g
f(#) = (sinx)am*  mit (Def.) f(0) lxmo =),
falls der Limes existiert. Dann hat man

; . . alnsinx . cosx[sinx
In/(0) = n i, 5) = B (s) = lim, < S5 — o fim ST

, x
= g lim cosx — =aq-1.-1=a.
x>0 simnx
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Der obige Limes existiert also. Das Ergebnis schreiben wir kurz f(0) = 0°=e%. Die reelle
Zahl a = 0 braucht dabei nicht ausgeschlossen zu werden. — Analoges gilt von oo?®:

f(X)=(Sir11x)aﬂ” mit  f(0) = c0®—¢~4>0

(¥ > 0 und a beide endlich und reell). — Zum Schluss sei noch an die bekannte unbestimmte
Integration

. k
/xk‘idx=—%—+C

erinnert, die fiir alle ganzen % gilt, wenn man, wiederum ad hoc, #°/0 = 0/0 = Inx setzt.
1. PaascHE, Miinchen

Aufgaben

Aufgabe 288. Sei % ein Kegelschnitt und %’ ein ihn doppelt beriihrender Kreis, P ein
laufender Punkt von %2 und P’ einer der beiden Schnittpunkte der zugehérigen Kegel-
schnittstangente mit dem Kreis £’. Man zeige, dass ein bestimmter Brennstrahl durch
P mit dem Kreisdurchmesser durch P’ éinen Winkel unverinderlicher Grésse bildet.

W. WuNDERLICH, Wien

Lésung des Aufgabenstellers: Seien U, V die Berithrungspunkte von £ und 2" und W
der Pol der Verbindungssehne. Wir betrachten jene ebene Kollineation U (X - X’), die
U, V, W einzeln festlidsst und P nach P’ bringt. % transformiert % in 2’, und man sieht
leicht, dass auch jeder weitere Punkt Q’ von %’ auf der Tangente seines entsprechenden
Punktes Q liegt. Zu diesem Zwecke ziehe man jene zweite Kollineation 8 mit den Fix-
punkten U, V, W heran, die P in Q iiberfithrt: 8B transformiert 2 und daher auch %’ in
sich. Auf Grund der Vertauschbarkeit von Kollineationen mit demselben Doppeldreieck
gilt fiir den auf der Tangente von Q liegenden Kreispunkt B.-P = B8UA-P=UAB- P
=U.Q =(Q’. Das Angabepunktpaar P, P’ ist demnach unter den Paaren zugeordneter
Punkte von % und &’ in keiner Weise ausgezeichnet?).

Seien nun I, J’ die absoluten Punkte von &’ und I, J die ihnen entsprechenden Punkte
auf %, deren Tangenten ¢, j, wie wir nun wissen, durch I’, J’ gehen, also isotrop sind.
Ihr Schnittpunkt F ist mithin ein Brennpunkt von 2, und der ihm entsprechende Punkt
F’ ist als Schnitt der Kreistangenten 4’, 7’ in I’, J’ der Mittelpunkt von 2. Dem Brenn-
strahlbiischel F von % ist mithin vermoége der Kollineation % das Durchmesserbiischel
F’ von %k’ zugeordnet, und zwar nicht bloss projektiv, sondern wegen der Zuordnung der
isotropen Strahlenpaare ¢, j und ¢/, j* sogar gleichsinnig-kongruent. Das bedeutet, dass
fiir beliebige Punktepaare X, X’ der Kollineation % die Strahlen FX und F’X’ einen
festen Winkel « einschliessen, womit fiir X auf 2 die Behauptung erwiesen ist. — Der Ort
der Winkelscheitel ist als Erzeugnis der kongruenten Biischel F, F’ ein Kreis, der die
Fixpunkte U, V, W enthilt, ferner die Biischelscheitel F, F’ und aus Symmetriegriinden
auch den zweiten Brennpunkt von %. Fasst man insbesondere diesen als Scheitel von «
auf, so folgert man, dass die Hauptachse von %2 gegen die Gerade FF’ unter dem Win-
kel a geneigt ist.

Der vorliegende Kegelschnittsatz spielt in der Theorie der «Hundekurven mit festem
Schielwinkel» eine entscheidende Rolle?).

2. Losung: Les coniques & et &’ étant bitangentes, la tangente en P A &k découpe sur %’
des divisions homographiques qui, de plus forment une involution (2, 2) se décomposant
en deux homographies inverses I'une de I'autre. De telle sorte qu’'a chaque point P’ sur &’

1) Der Sachverhalt wird anschaulich besonders klar, wenn man sich die Fixpunkte U, V in die absoluten
Kreispunkte verlegt denkt: # und &’ sind dann konzentrische Kreise, und % wird eine Drehstreckung um
den gemeinsamen Mittelpunkt W.

%) W. WunpERLIcH, Uber die Hundekurven mit konstantem Schielwinkel, Mh. Math. 61, 277-311 (1957).
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