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Determinante den Wert

cos2^ (cos2^ - — cos2<pi - T cos29?2 - T cos2^ - — cos2<p4j

4 -Ter (cos2(fi cos29?3 4 cos29?2 cos2^4) —— cos^j cos^2 cos^3 cos9?4

hat. Benützt man die aus cpx 4 cp2 4 <pz 4 cp^ n folgende Relation

2 — cos2^ — cos29?2 — cos29?3 — cos2^4

2 cos cpx cos cp2 cos cpz cos cp± — 2 sin cpx sin cp2 sin cpz sin cp±,

so wird die Determinante gleich

f(<Pi, 9?2> 9V 9^) -J5- (C0S(Pi cos cpz 4 cos9?2 cos<p4)2 —— sin cp1 sincp2 sincpz sin^.

Ist für das Minimum dieser Funktion ein cpn 0 oder n\2, so bestätigt man leicht,
dass / ^ 0 ist. Sind aber für das Minimum alle cpn=¥ 0 und 4= n/2, so muss notwendig
dfjdcpi • • • dfldqpi sein. Eine kurze Rechnung ergibt dann wieder / ^ 0. Daher ist
die betrachtete quadratische Form stets positiv definit oder semidefinit und somit (3)
auch für n 4 richtig. Der entsprechende Beweis bei beliebigem n scheint jedoch
nicht einfach zu sein. A. Florian, Graz

Ungelöste Probleme

Nr. 23. H. Hopf1) hob als besonders erwähnenswerten Spezialfall eines sich auf
Überdeckungen «-dimensionaler geschlossener Riemannscher Mannigfaltigkeiten
beziehenden Satzes die folgende Aussage hervor:

A. Ist die n-dimensionale Sphäre Sn (Randfläche einer (n 4 l)-dimensionalen euklidischen

Kugel) von n + l abgeschlossenen Punktmengen Mt (i 0,1,..., n) überdeckt, so

lässt sich zu jeder (sphärischen) Distanz a des Intervalls 0 < a ^ n wenigstens eine

Menge M? (0 g / ^ n) finden, die ein Punktepaar p,qder Distanz d(p,q) a enthält.
Damit ist eine Erweiterung des Satzes von Lusternik-Schnirelmann-Borsuk

gegeben, der bekanntlich aussagt, dass von n + l abgeschlossenen Punktmengen, welche
die Sphäre Sn überdecken, wenigstens eine Menge ein antipodisches Punktepaar
aufweisen muss (Sonderfall der Aussage A für a ~ n)%).

Wie der Wortlaut von Aussage A andeutet, hängt die Menge Aj von der vorgegebenen

Distanz a ab, und man muss gewärtigen, dass man Aj auswechseln muss, wenn a

verändert wird. Man kann sich die Frage stellen, ob dies in geeigneten Fällen
tatsächlich unvermeidbar ist oder ob die folgende schärfere Aussage gilt:

B. Ist die n-dimensionale Sphäre Sn von n + l abgeschlossenen Punktmengen
M{ (i 0,1,..., n) überdeckt, so lässt sich wenigstens eine Menge Mj (0 5g / <£ n) fin-

1) H. Hopf, Eine Verallgemeinerung bekannter Abbildungs- und Überdeckungssätze, Portugaliae Math. 4,

129-139, insbesondere 138 (1944).
*) K. Borsuk, Drei Sötte über die n-dimensionale euklidische Sphäre, Fund. Math. 20, 177-190 (1933).
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den, die zu jeder Distanz a des Intervalls 0 <a <J tz ein Punktepaar p,q der Distanz
d(p,q) =a enthält.

Diese Verschärfung wäre eine noch einprägsamere Erweiterung des oben erwähnten
Antipodensatzes. Ihre Richtigkeit steht fest für n 1 und n 2; für n > 2 fehlt
unseres Wissens ein Beweis.

Instruktiv ist vielleicht der einfache Beweis für den Fall n — l. Die Kreislinie Sx sei
also durch die beiden abgeschlossenen Mengen Mt (i 0,1) überdeckt. Wäre Aussage
B falsch, so wäre anzunehmen, dass die Punktepaare von Mt die Distanz a% nicht
realisieren. Diese Annahme ist trivialerweise unrichtig, wenn eine der Mengen Mt leer
ist. Es sollen also beide nichtleer sein. Da S1 ein Kontinuum ist, müssen die beiden Mt
einen nichtleeren Durchschnitt aufweisen. Wir wählen nun einen Punkt p ^M^Mq,
und weiter — dem positiven Umlaufssinn folgend — einerseits die drei Punkte p,pf,q
und andererseits die drei Punkte p,q',q derart, dass d(p,p')=aQ, d(p',q) ax,
d(P> %') ai> &($'> <7) ao ist. Mit Rücksicht auf die Gegenannahme schhessen wir
der Reihe nach einerseits p €M0, also p''^M1, also q <fcM1} andererseits p €Mlt also
q'^Mq, also q$M0. Demnach wäre q nicht überdeckt, so dass der erzielte Widerspruch

unsere Gegenannahme zu Fall bringt.
Der zur Verfügung stehende Beweis im Falle n — 23) ist nicht besonders kurzweilig

und eignet sich nicht für die wünschbare Verallgemeinerung auf n > 2.

H. Hadwiger

Nachtrag zu Nr. 2. Nachdem bereits H. G. Eggleston die Borsuksche Vermutung

im Falle des gewöhnlichen Raumes, das heisst für n 3 bestätigte (vgl. den
ersten Nachtrag zu Nr. 2 in Band 10, S. 89)4), gelang es nun B. Grünbaum (Jerusalem)5),

einen einfachen Beweis nach der «Deckelmethode» aufzustellen. Der Borsuksche

Satz Dz < 1 wird damit durch Dz <^ 0,9887... verschärft.
Nachtrag zu Nr. 21. Von W. Wunderlich (Wien) und K. Strubecker (Karlsruhe)

sind uns in freundlicher Weise verschiedene Unterlagen und Literaturangaben
zugestellt worden, die belegen, dass über das in Nr. 21 aufgeworfene Problem und
über verwandte Fragen der Eiliniengeometrie mehr bekannt ist, als wir bei der
Verfassung unseres Beitrages annahmen8).

Insbesondere gibt uns Herr W. Wunderlich den folgenden interessanten Auf-
schluss7): «Es gibt vom Kreis verschiedene Kurven C, darunter auch konvexe, in
welchen sich ein reguläres «-Eck vollständig umwenden lässt. Das einfachste
einschlägige Beispiel kann etwa so erklärt werden: Rollt ein Kreis vom Radius « auf
einem umschlossenen festen Kreis vom Radius « — 1 oder in einem festen Kreis vom
Radius « 41, so durchlaufen die Ecken eines mit dem Rollkreis starr verbundenen

8) H. Hadwiger, Eine Bemerkung zum Borsukschen Antipodensatz, Vjschr. naturf. Ges. Zürich 89,
211-214 (1944).

*) Vgl. auch die ausfuhrliche Darstellung dieses ersten nach der «Abbildungsmethode» vollzogenen
Beweises in dem neu erschienenen Buch: H.G. Eggleston, Problems in Euclidean Space (Pergamon Press,
London, New York, Paris und Los Angeles 1957).

6) B. Grünbaum, A Simple Proof of Borsuk's Conjecture tn Three Dimensions, Proc. Cambridge Phil.
Soc. 53, 776-778 (1957).

6) H. J. Fischer, Kurven, tn denen ein Drei- oder Vieleck so herumgeführt werden kann, dass seine Ecken
du Kurve durchlaufen, Deutsche Math. 1, 485-498 (1936). - W. Wunderlich, Über eine Klasse
zwangsläufiger höherer Elementenpaare, Z. angew. Math. Mech. 19, 177-181 (1939). - K. Strubecker, Differentialgeometrie

des isotropen Raumes, V.: Zur Theorie der Eihmen, Math Z. 51, 525-573 (1949).
7) Auszug aus einem Brief an den Unterzeichneten vom 16. Januar 1958,
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konzentrischen «-Ecks dieselbe Bahnkurve, und zwar eine Epitrochoide mit (n — 1)-
zähliger Symmetrie bzw. eine Hypotrochoide mit (« 4 l)-zähliger Symmetrie, wie
unschwer zu erkennen ist (vgl. die Figuren für « 4). Diese Bahnkurve C fällt konvex

aus, wenn der Umkreisradius des «-Ecks R ^ «2 ist; sie ist im übrigen
rationalalgebraisch und hat die Ordnung 2«. So wie das ganze «-Eck ist natürlich auch jedes
von drei Eckpunkten aufgespannte Dreieck in C umwendbar. Ein solches Dreieck ist
aber durch die Eigenschaft gekennzeichnet, dass seine Winkel rationale Verhältnisse

aufweisen. - Allgemein lässt sich eine derartige Kurve C in der Gausschen Zahlenebene

durch die komplexe Darstellung

z=Z(nt)+Reu (*)

beschreiben, wobei Z(t) eine behebige komplexe, mod 2n periodische Funktion des

reellen Parameters t sein kann, die nur beschränkt zu sein braucht. Das oben genannte
Beispiel folgt aus der Annahme Z(t) exp (±it). Die Konvexität von C wird
vermutlich durch hinreichend grosse Wahl von R stets zu erzwingen sein.

Die vermutete Kennzeichnung des Kreises als Eilinie, in der sich ein nichtreguläres
Dreieck herumführen lässt, ist somit hinfällig. - Offen bleibt allerdings noch die

Frage, ob es eine vom Kreis verschiedene Eilinie gibt, in welcher sich ein Dreieck mit
nichtrationalen Winkelverhältnissen umwenden lässt. Für gleichschenklige Dreiecke

gibt es solche Eilinien tatsächlich nicht, wie Sie ja selbst ausgeführt haben; für
ungleichschenklige Dreiecke ist dies aber noch ungewiss.»

Abschliessend wollen wir noch auf die von W. Wunderlich angegebene einfache

Darstellung (*) einer allgemeinen Lösung unseres Problems insofern besonders
hinweisen, als diese nicht nur für Dreiecke Lösungen liefert, sondern für w-Ecke, die
sich regulären «-Ecken einbeschreiben lassen. H. Hadwiger


	Ungelöste Probleme

