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Punkten P, F,, P, von ¢ bzw. korrelativ entsprechenden Geraden p;, p,, p; von ¢’
durch den dieser Ebene angehorenden singuliren Punkt der Korrelation hindurch-
gehen. Dieser Punkt muss demnach jedem der beiden Kegelschnitte / und & angeho-
ren und daher in einen der drei von F, verschiedenen Schnittpunkte dieser beiden
Kegelschnitte fallen.

Ist umgekehrt S’ einer dieser drei Schnittpunkte, so ist in der entsprechenden Kor-
relation zwischen den Ebenen ¢ und ¢’ dem Punkt S’ von ¢’ jeder der drei Punkte
P, B, P,, die der Voraussetzung nach nicht in einer Geraden liegen, in ¢ konjugiert.
Die Korrelation ist also ausgeartet, und S’ ist der der Ebene ¢’ angehorende singulire
Punkt.

Zu sieben Paaren konjugierter Punkte gibt es also dres ausgeartete Korrelationen,
und durch sie sind in der bereits angegebenen Weise die drei Lisungen des Problems der
Projektivitit gegeben. (Schluss folgt im nichsten Heft.) L. HorFMANN, Wien

Zu einem Satz von P. Erdos

R;, Ry, Ry und r,, 74, 7, seien die Abstinde der Ecken bzw. Seiten eines Dreiecks
von einem beliebigen inneren Punkt O des Dreiecks. Von P. ERDOS stammt die Un-
gleichung?) (S. 12)

Ri+ Ry+ Ry=2(ri+ 73+ 73), (1)

in der Gleichheit nur fiir ein reguldres Dreieck mit dem Mittelpunkt O gilt.
Hier wird allgemeiner fiir beliebiges £ bewiesen (M} = k-tes Potenzmittel):

My (R,, Ry, Ry)
My (71,72, 73)

=2 fir [k <1,

(2)
> 22Uk fiar k| > 1.

Diese Schranken sind genau; Gleichheit kann nur im ersten Fall bestehen und auch
dann nur fiir ein gleichseitiges Dreieck mit dem Mittelpunkt O.

Offenbar geniigt es, den Beweis fiir 2 > 0 zu liefern. Fiir negative % ergibt sich das
Resultat durch Anwendung der Polaritdt beziiglich des Einheitskreises um O auf
das Dreieck. Fiir £ =0 (M, = geometrisches Mittel) erhdlt man einen Spezialfall
eines fiir beliebige konvexe Polygone bewiesenen Satzes?) (S. 33).

Wir verwenden den von FEJEs T6tH?) (S. 13) dargestellten, von MORDELL her-
rithrenden Beweis des Satzes von ErpOs. Dort wird gezeigt

R = 7, Sin y'—{- 73 sinf .
= sina

Daraus folgt aber wegen der Konkavitit von f(x) = x* fir 0 <k <1

k-1
Es 2 ki k ki k
Rl gm (7’2 sin-y +73 sin ﬂ)

1) L.FejEs ToTH, Lagerungen in der Ebene, auf der Kugel und im Raum (Springer -Verlag, Berlin 1953)
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und analog fiir R, Ry. Daher ist
R} + R} + R}

ink ink in® ink ink ink
< k=1 [ & (SID B sin®y x [ sinfy sin®a & [ Sinfa sin*g
= 2 ['1 (sinky t sinkg) T2 \sinbe T SRy ) T \Simip T sinke )|

Da fiir x > 0 stets x + 1/x = 2 gilt, ergibt sich
R+ R+ REZ2F(rE 41} + 1),

und Gleichheit besteht nur fiir ein gleichseitiges Dreieck mit dem Mittelpunkt O.
Dies ist der erste Teil von (2).

Es sei nun £ > 1. Dann hat man fiir beliebige x,, 23 > 0

(%, + xz)k > xlk + xzkr
also ist
7} sinky 4 +% sink g
sink o

R}>

und analog fiir Ry, Ry; daraus folgt, dhnlich wie oben,
RE+R}+RE> 20k + 12+ 1d),

womit die Behauptung bewiesen ist. Um einzusehen, dass die Schranke auch in
diesem Falle genau ist, braucht man nur die Basis eines gleichschenkligen Dreiecks
bei konstanter Schenkellinge gegen Null und gleichzeitig O gegen die Spitze des
Dreiecks konvergieren zu lassen.

Wir geben nun einen weiteren Beweis von (1), der auch (2) liefert und einen Ansatz
zum Beweis der folgenden Vermutung darstellt®): In Verallgemeinerung von (1) gilt
fiir jedes konvexe n-Eck und jeden inneren Punkt O, wenn R; die Abstinde von den
Ecken, 7; die von den Seiten bezeichnen,

1

R+ +R = — (r 4o +1,). 3

COS —
”

3) L.FEjEs TOTH, Inequalities Concerning Polygons and Polyhedra, Duke math. J. 15, 817 (1948).
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Der allgemeine Beweis hiefiir ist mir nicht gelungen, jedoch werden wir die Vermu-
tung im Falle » = 4 bestitigt finden.

Die Verbindungsstrecken R;, R; ., von O zu zwei aufeinanderfolgenden Eckpunk-
ten des Polygons sollen den Winkel 2 ¢; einschliessen. Dann findet man fiir den
Abstand 7; der zugehdorigen Polygonseite von O

R;R; ,sIn2 ¢;
_ <VR.R. .
7 V(R;—R; 1)+ 2R,R; ., (1—cos2¢;) i ] “)
o S oenc) |
io1
Der Ausdruck

COS%:— (Ry+ - +R) =D VRR,,, cosg,
n=1

stellt eine quadratische Form in VR—I, ..., VR, dar. Kann man zeigen, dass sie positiv
definit oder semidefinit ist, so ist damit wegen (4) auch (3) bewiesen. Gleichheit kann
darin nur dann bestehen, wenn R, =R, = --- =R, ist und die betrachtete Form
verschwindet. Letzteres tritt aber wegen der strengen Konkavitit von cosx in
(0, #/2) nur fiir ¢, = -.- = g, ein, das heisst, man hat in (3) Gleichheit nur fiir ein
reguldres #n-Eck mit dem Mittelpunkt O.

Fiir n = 3 lautet die Koeffizientenmatrix der quadratischen Form

1 1
— — —-Cosg, —

1
p 2 7 59s
1 1 1
-— "2— COS(pl —é“ s -2— COS g
1 1 1
—_ ‘E‘ COS ¢3 —_ 7 COS(Pz —‘2“

Die Hauptminoren erster und zweiter Ordnung sind ersichtlich positiv. Die ganze
Determinante verschwindet unter Beriicksichtigung von ¢, + @ + @; = # identisch,
wie eine kleine Rechnung zeigt. Daher ist die Form positiv semidefinit, und damit ist
(1) bereits gezeigt. Auf ganz dhnliche Art ldsst sich auch (2) beweisen.

Fiir n = 4 sind in der Koeffizientenmatrix der Form

7 1 1
cos — — — €OS@, 0 — — COS@,
1 n 1
— 5 COsS@y COS — - COS@y 0
1 7 1
0 — & COSQy cos — - COS @y
1 1 n
-3 COS @, 0 -7 COS @3 COST

die Hauptminoren bis zur dritten Ordnung positiv, wie man sofort sieht, wihrend die
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Determinante den Wert

4 1

2 1 2 1 2 1 2
7y 7 Cos?py — o cos?g, — - cosPp; — - cosPe,

Tt
cos? ) (cos2

1 1
+ ¢ (cos?@, cos?y + cos?g, cos?p,) — - COS @, COS P, COS Py COS @,

hat. Beniitzt man die aus ¢, + @, + @; + ¢, = 7 folgende Relation
2 — cos?p; — cos?g, — cos2p; — cos?g,
= 2 CoS @, COS @, COS @3 COS @, — 2 sin @, Sin @, sin @, sin g,,

so wird die Determinante gleich

1 1 . . . .
HP1, @2, @3, @) = 6 (COS@y COS@; + cosp, COSpy)? — & SHL Py Sl Py 5111 Py SIL P, .

Ist fiir das Minimum dieser Funktion ein ¢, = 0 oder = z/2, so bestitigt man leicht,
dass f = 0 ist. Sind aber fiir das Minimum alle ¢, + 0 und # 7/2, so muss notwendig
0f[d@; = --- = 0f/d¢, sein. Eine kurze Rechnung ergibt dann wieder f = 0. Daher ist
die betrachtete quadratische Form stets positiv definit oder semidefinit und somit (3)
auch fiir » = 4 richtig. Der entsprechende Beweis bei beliebigem # scheint jedoch
nicht einfach zu sein. A.FLORIAN, Graz

Ungeloste Probleme

Nr.23. H. Horr?!) hob als besonders erwihnenswerten Spezialfall eines sich auf
Uberdeckungen #-dimensionaler geschlossener Riemannscher Mannigfaltigkeiten be-
ziehenden Satzes die folgende Aussage hervor:

A. Ist die n-dimensionale Sphire S, (Randfliche einer (n + 1)-dimensionalen euklidi-
schen Kugel) von n +1 abgeschlossenen Punktmengen M, (1=0,1, ..., n) sberdeckt, so
lisst sich zu jeder (sphdrischen) Distanz a des Intervalls 0 < a < m wenigstens eine
Menge M; (0 <7 <) finden, die ein Punktepaar p,q der Distanz d(p,q) = a enthdlt.

Damit ist eine Erweiterung des Satzes von LUSTERNIK-SCHNIRELMANN-BORSUK ge-
geben, der bekanntlich aussagt, dass von # + 1 abgeschlossenen Punktmengen, welche
die Sphire S, iiberdecken, wenigstens eine Menge ein antipodisches Punktepaar auf-
weisen muss (Sonderfall der Aussage A fiir a = 7)%).

Wie der Wortlaut von Aussage A andeutet, hingt die Menge 4; von der vorgegebe-
nen Distanz a ab, und man muss gewirtigen, dass man A; auswechseln muss, wenn a
verdndert wird. Man kann sich die Frage stellen, ob dies in geeigneten Fillen tat-
sdchlich unvermeidbar ist oder ob die folgende schirfere Aussage gilt:

B. Ist die n-dimensionale Sphire S, von n + 1 abgeschiossenen Punktmengen
M; (=0, ..., n) iberdeckt, so lisst sich wenigstens eine Menge M; (0 < < n) fin-

1) H. Horr, Eine Verallgemeinerung bekannter Abbildungs- und Uberdeckungssitze, Portugaliae Math. 4,
129-139, insbesondere 138 (1944).
2) K. BoRsuk, Drei Sdtze iber die n-dimensionale euklidische Sphire, Fund. Math. 20, 177-190 (1933).
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