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Kleine Mitteilungen

Über eine Extremaleigenschaft des fünf- und sechseckigen Sternes

Verbinden wir die Ecken eines regelmassigen »-Ecks (n > 4) so, dass wir in der
zyklischen Reihenfolge stets einen Eckpunkt auslassen, so entsteht ein n-ecktger Stern
(von der Dichtigkeit 2) Der fünfeckige Stern wurde von den Pythagoreern als ein Symbol

der Gesundheit benutzt Der sechseckige Stern ist em heiliges Zeichen der Juden
Wir wollen diese magischen Symbole des Altertums durch eine einfache

Extremaleigenschaft charakterisieren Zu diesem Zweck betrachten wir eine nicht negativ
gekrümmte geschlossene Kurve von der totalen Krümmung 4 n oder em (als eine Kurve

Figur 1

aufgefasstes) Eihmenpaar Besitzt eine derartige Kurve, die wir ein Doppeloval nennen
wollen, genau n Doppelpunkte, so entstehen n «Monde» Wir nennen Mondbogenuber-
schuss die Bogenlangendifferenz des äusseren und inneren Bogens eines Mondes Es
gilt der

Satz 1. Besitzt ein Doppeloval von der Bogenlänge A genau n (> 4) Doppelpunkte, so gilt

A^
X

; n ctg2

wo X den kleinsten Mondbogenexzess bedeutet Gleichheit besteht nur fur einen n-eckigen Stern
Bemerken wir, dass diese Ungleichung auch noch fur n 4 richtig ist. Gleichheit

besteht in diesem Falle fur ein in zwei kongruente konzentrische Strecken entartetes
Eihmenpaar.

Fassen wir den t-ten Mond ms Auge! Es bedeute Lt und l% die Bogenlänge des äusseren
und inneren Bogens, m% die totale Krümmung des äusseren Bogens und Xt — Lt —1%

den Exzess Wir können cot < n annehmen, da sonst der Mond mit einem umfangs- und
exzessgleichen Mond mit cot<n ersetzt werden kann Dann gilt die Ungleichung

lt^Ltcos^-

mit Gleichheit nur im Falle, wenn der Mond m ein gleichschenkliges Dreieck übergeht
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mit der Basis als innerem Bogen. Hieraus folgt

1 — cos ~-
das heisst

Lt+^Atctg2^i.

Bedenken wir nun, dass ctg2# für 0 <x<Lnf\ eine abnehmende, konvexe Funktion
n

ist, so haben wir mit Rücksicht auf £cx>%^L\n und auf die Jensensche Ungleichung

A=£(Lt + lt)^X]Tctg2^^Xnctg2^.

Figur 2

Gleichheit gilt in den beiden letzten Ungleichungen gleichzeitig nur, falls sämtliche
Monde gleichschenklige Dreiecke sind und cot 4ji/n, X% — X (i l,...,n) ausfällt.
Das ist aber eben der in Satz 1 genannte Fall.

Ähnliche Erwägungen ergeben den
Satz 2. Es seien zwei Eibereiche e und E vom Umfang l und L so vorgegeben, dass

e CE und dass e und E genau n (>2) gemeinsame Randpunkte aufweisen. Bedeutet X

den kleinsten Mondbogenüberschuss, so gelten die Ungleichungen

l ^ n n a n L n 9 n
X * T cos¥ cosec 2¥' T ^ Tcosec TiT-

Gleichheit gilt in beiden Ungleichungen nur für zwei reguläre, zueinander polare n-Ecke.
Hieraus ergibt sich für die Umfangssumme A L + l der Eibereiche

A ^ 9 n
xanctg«—.

Wir erwähnen jetzt den zu Satz 2 analogen
Satz 3. Enthält der Eibereich E vom Inhalt T den Eibereich e vom Inhalt t und besitzen

e und E genau n gemeinschaftliche Randpunkte, so bestehen die Ungleichungen

t ^ « n T 9 n
— :> n ctg2 —, — ^ n cosec1 —,t ° n x n

wo x den kleinsten Mondinhalt bedeutet. Gleichheit findet in beiden Ungleichungen nur für
zwei affin reguläre, konzentrische, zueinander polare n-Ecke statt.
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Die erste Ungleichung wurde fur ein Dreieckpaar von H Debrunner als Aufgabe 260
der Elemente der Mathematik gesetzt Fur Vierecke wurde sie von P Turan und
M Biernacki dargetan Fur n Ecke hat P Erdös diese Ungleichung als Vermutung
ausgesprochen mit der Bemerkung, dass es recht schwierig zu sein scheint, sie zu beweisen

Es sei hier gezeigt, dass beide Ungleichungen sich leicht aus einer (vom Verfasser
vermuteten und zum Teil bewiesenen) Ungleichung von D Lazar1) ergeben Diese Ungleichung

lautet folgendermassen Ist einem konvexen »-Eck vom Inhalt T ein »-Eck vom
Inhalt t so einbeschrieben, dass n inhaltsgleiche Randdreiecke entstehen, so gilt

-~ ^ cos2 —T n

Gleichheit gilt nur in dem in Satz 3 angedeuteten Fall
Es kommt nun darauf an, zu zeigen, dass man sich im Beweis von Satz 3 auf ein

»-Eck Paar mit inhaltsgleichen Randdreiecken beschranken kann
Wir ersetzen zunächst e durch die konvexe Hülle der n gemeinsamen Randpunkte

von e und E Nach dieser Operation können die Monde eher Randsegmente genannt
werden Sind diese nicht alle inhaltsgleich, so ersetzen wir auch E durch einen neuen
Eibereich, so dass die Randsegmente mit dem Randsegment vom kleinsten Flächeninhalt

inhaltsgleich werden Da bei diesen beiden Operationen weder t/r noch T/r
zunimmt, können wir uns auf den Fall beschranken, dass e ein »-Eck ist, dessen Seiten
von E inhaltsgleiche Segmente abschneiden Sind aber die Randsegmente inhaltsgleich,
so genügt es, im Hinblick auf T== t + » r den Quotienten t/x abzuschätzen

Wir halten das »-Eck e im folgenden fest Dann handelt es sich um das Maximum
von t Wir ersetzen E durch den Durchschnitt seiner », zu den Ecken von e gehörigen
Stutzhalbebenen Dadurch gehen die Randsegmente m «Randdreiseite» uber, von
denen eins sich ms Unendliche erstrecken kann Natürlich nimmt dabei x nicht ab, aber
der betrachtete Durchschnitt ist nicht mehr notwendigerweise ein Eibereich Wir
können aber das Maximum von x fur die Gesamtheit derjenigen «»-Seite» suchen, die
durch » Stutzgeraden von e begrenzt sind Da nun x eine stetige Funktion der
Stutzrichtungen ist, besitzt es em Maximum, und man sieht sehr leicht em, dass dieses
Maximum nur im Falle von inhaltsgleichen Randdreiseiten (also von Randdreiecken)
erreicht werden kann Folglich kann das «-Seit nur em gewöhnliches »-Eck sein

Damit ist die Zuruckfuhrung des Satzes 3 auf den Läzarschen Satz beendet
L Fejes Töth, Budapest

Zu einem Beispiel aus der Wahrscheinlichkeitsrechnung
Die Bedeutung der Wahrscheinlichkeitsrechnung hat in den letzten Jahrzehnten

ungemein zugenommen, und sie hat sich auch in der Schule eingebürgert Eine schone
und einfache Anwendung findet die Wahrscheinlichkeitstheorie in der Genetik Es
bedeuten etwa A und a die jeweils in doppelter Zahl vorhandenen Erbanlagen fur die
Blutenfarben Weiss und Rot In der Elterngeneration seien die Typen AA, Aa, aa mit
den Häufigkeiten u, 2v,w vertreten, wobei natürlich

u + 2v+w~l (1)

sem muss Da p u-\-v und q v-\-w die Wahrscheinlichkeiten fur das Auftreten
der Anlagen A und a sind, so ist die Häufigkeitsverteilung in der nächsten Generation
gegeben durch

ux^(u + v)2, 2vx^2(u + v) (v + w), wx=(v + w)2 (2)

l) D LazAr, Sur Vapproxxmatvon des courbes convexes par des polygones, Acta Umv Szeged, Acta Sei

Math 11, 129-132 (1947), vgl auch L Fejes Töth, Lagerungen %n der Ebene, auf der Kugel und im Raum
(Berlin, Gottingen und Heidelberg 1953), S 47
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Es zeigt sich nun, dass diese Verteilung bereits stabil geworden ist, das heisst, die
Häufigkeitsverteilung ändert sich in den folgenden Generationen nicht mehr

Geht man von einem beliebigen Zahlentripel u, 2 v, w aus, das (1) genügt, so gelangt
man durch die Operation (2) zu einem Tripel ult 2vlt wlt das bei beliebiger Wiederholung

der Operation (2) invariant bleibt Wie sind diese Zahltnpel unter den zulassigen

u, 2 v, w ausgezeichnet, wie findet man ihre Gesamtheit, und welche Tripel
fuhren zu demselben invarianten Tripel ">

Durch Elimination von v erhalt man sofort eine Parameterdarstellung der invarianten
Tripel

*1=(4 + ^^)=|(1 + *)2, 21^-2-lf!-, Wl=\(l-z)2, (3)

2V

wobei — 1 <£ z (u — w)/2 ^ 1 ist
Die Invarianz ergibt sich einfach, denn es ist

u2=(ul+vl)2=~(l + z)2, 2^=2^, w2=K + Wi)2-4(1~*)2'

In einer (u, w)-Ebene erfüllen die den zulassigen Tripeln u, 2v, w zugeordneten
Punkte P(u, w) das Dreieck OAB (siehe Figur) Alle Punkte, die mit P(u, w) auf
derselben Parallelen zur Winkelhalbierenden liegen, haben dieselbe Koordinatendifferenz
u — v z und fuhren deshalb zu demselben Punkte Q(ult w±) mit invarianten
Koordinaten Diese Punkte Q(ux, wx) erfüllen den Bogen einer Parabel zwischen den
Berührungspunkten A und B mit den Koordinatenachsen Den Punkten A(l, 0) und
#(0,1) entsprechen die reinrassigen Sorten AA und aa, dem Punkte O(0, 0) aber die
Bastardsorte Aa Züchtet man mit einer reinen Sorte weiter, so bleibt dieselbe
reinrassig Die Punkte A und B sind deshalb Parabelpunkte Züchtet man mit der Bastardsorte

weiter, so zeigt die nächste Generation die dem Parabelscheitel S(l/4, 1/4)
entsprechende Häufigkeitsverteilung 1/4, 1/2, 1/4 P Buchner

Zur Behandlung des Satzes von Bernoulli im Unterricht
1 Falls die elementare Wahrscheinlichkeitsrechnung in der Schule behandelt wird,

so durfte die Besprechung des Bernoulhschen Theorems den zweckmassigen,
zusammenfassenden Abschluss bilden und zugleich wertvolle Ausblicke auf Verallgemeinerun-
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gen gestatten [1, 2]1). - Der Weg über die Laplacesche Formel wird dabei im allgemeinen
zu schwierig sein, wenn auch für gewisse Schritte, zum Beispiel für die Herleitung der
Stirlingschen Formel, recht anschauliche Beweise existieren [3]. - Dagegen werden im
völlig exakten Beweis, den Jakob Bernoulli selbst in seiner Ars conjectandi [4, 5] gibt,
nur elementare Hilfsmittel verwendet. Doch setzt dieser Beweis mehrere Hilfssätze über
Potenzen eines Binoms voraus, zu deren Behandlung die Zeit fehlen wird. - Fasst man
nun aber das Bernoullische Theorem als Sonderfall der Streuungsungleichung von
P. L.Tschebyscheff auf, so benötigt man nur den Additions- und den Multiplikationssatz

mit der daraus folgenden Newtonschen Formel; vor einiger Zeit hat P. Buchner
einen Beweis in dieser Zeitschrift dargestellt [6, 7]. Will man die bei der Berechnung von
Erwartungswert und Streuung auftretenden Umformungen von Summen und
Bmomialkoeffizienten auch noch weitgehend vermeiden, so kann man die folgende Beweisanordnung

wählen. Die Streuung wird dabei durch Weiterführung eines von L. Bachelier
[8, 9] skizzierten Gedankens berechnet.

2. Aus einer Urne mit schwarzen und weissen Kugeln werde eine Kugel gezogen. Die
Wahrscheinlichkeit, eine schwarze zu ziehen, sei p, die Gegenwahrscheinlichkeit q — l — p.
Das Experiment werde bei gleichbleibendem p »-mal wiederholt; die Wahrscheinlichkeit
für k-maliges Auftreten einer schwarzen Kugel ist nach Newton

Pk (fyphqn-k (i)
mit

n

2>*-(* + fl"-l. (2)
*-o

Jetzt kann man fragen, mit welcher Wahrscheinlichkeit die Differenz

<e
k *

oder | k —»p | < e n sei, wo e eine beliebige positive Zahl ist. (Die Frage ist auch
sinnvoll, wenn der Erwartungswert E(k) nicht definiert und berechnet wurde.) Diese
Wahrscheinlichkeit werde mit

^=W|A_ J<fe.\ (3)

bezeichnet.

3. Nun definiert man in bekannter Weise die Varianz oder quadratische Streuung
a\ der durch (1) gegebenen binomischen Verteilung:

< Z(k-np)2pk
mit xk k — np wird

*n-Z*lPk. (4)

Zur Berechnung von a% führen wir die folgende Betrachtung durch, die zugleich
Entstehung und Aufbau dieses Wertes deutlich macht:

In » Versuchen sei A-mal eine schwarze Kugel erschienen; wir betrachten die
Abweichung xk k — » p. Führen wir nun einen weitern Versuch durch, so kann mit der
Wahrscheinlichkeit p eine schwarze Kugel erscheinen, was die neue Abweichung

(*+!)_ (* + l) 0,^ + 0 (5)

l) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 37.
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ergibt; anderseits kann mit der Wahrscheinlichkeit q eine weisse Kugel erscheinen, was
die neue Abweichung

k-(n + l)p xk~p (6)

ergibt. Nach (1) ist ferner pk die Wahrscheinlichkeit des Auftretens eines bestimmten xh,
somit ist pkp die Wahrscheinlichkeit von (5) und pkq jene von (6), so dass sich nun
die Varianz tr2+1 aus Summanden der folgenden Art zusammensetzt:

(*k+q)2PkP + (*k-P)2Pkq XkPk+PkPq- (7)

Summieren wir in (7) von h 0 bis k «, so erhalten wir unter Berücksichtigung von
(2) und (4)

*J + 1 =<£ + />?.

das heisst, mit jedem Versuch vermehrt sich die Varianz um pq. Da sie für » — 0 den
Wert 0 hat, so folgt

a% npq. (8)

4. Um nun zu einer Abschätzung der Wahrscheinlichkeit W zu kommen, summieren
wir in (4) nur über jene k, für die |xk\ ^ tn. Wir bezeichnen diese Summe mit Jf'. Es
folgt

npq^Z'xlPk^^^Z'Pk.
Nun ist aber mit (3)

also
£'pk-i-w,

pqW^l

Mit vorgegebenen, festen p, q und e geht also die Wahrscheinlichkeit dafür, dass die
Trefferzahl k der Bedingung |k/n — p\<e oder \k — np\ < en genügt, mit wachsendem

» gegen 1. Damit ist der Satz bewiesen.

5. Es sei noch angemerkt, dass man auch ohne die eben durchgeführte Abschätzung
mit L. Bachelier ([8], S. 18) bereits in (8) den Kern des Bernoullischen Satzes erkennen
kann, da sich aus (8) ohne neue Rechnung die Varianz für die relative Häufigkeit k/n
zu p q/n ergibt. R. Ineichen, Luzern
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Ein Satz über die stetige Differenzierbarkeit der Lösungen
von F(x, g, y) 0

Sei F(x, y, p) eine in einem Gebiet (5 des (x, y, /?)-Raums stetige Funktion mit
folgender zusätzlicher Eigenschaft:

Es gibt eine für alle Quadrupel (x, y, p, h) mit (x, y, />)€©, (x, y, £-f A)£(5
definierte Funktion M(x, y, p, h), welche für kein (x, y, p) aus (5 identisch in einer Umgebung

von h 0 verschwindet, derart, dass

F(x, y,p+h)= F(x, y, p) + M(x, y, p, h) h (1)
gilt.

Unter diesen Voraussetzungen ist jede (in (5 verlaufende) Lösung cp(x) der
Differentialgleichung

F(x, y, y') 0 (2)

im Inneren ihres Definitionsbereiches stetig differenzierbar.
Sei nämlich | eine im Inneren des Definitionsbereiches liegende Unstetigkeitsstelle

von cp'(x); es gelte ohne Beschränkung der Allgemeinheit limsup cp'(x) > $)'(£). Nun

kann man auf Grund des Zwischenwertsatzes für die Ableitung einer Funktion1) offen -
bar zu jedem n mit

limsup cp'(x) > fi > g/({) (3)

eine gegen £ konvergierende Folge ((x\fi)) angeben, derart, dass

lim ?'(*(/«>)=/« (4)
V->00

st. Da nun, wie leicht ersichtlich, M(x, y, p, h) an allen Stellen mit Ä4= 0 stetig ist, so
folgt, wegen (4), (3), (1) und der Stetigkeit von F(x, y,p), die Beziehung (y(x) ist bei £

gewiss stetig!):

F({, ?(£), u) JF({, y(f), ?'({)) + Af(£, y({), <p'[$)t ii - <p'{S)) {u~ cp'tf)}, (5)

und zwar für alle u mit (3).
Da wegen des vorausgesetzten Lösungscharakters von cp(x)

F(£, Vit). ?'(Ö) - 0, (6)

F(x{»K Vi*?)), <P'(*M)) 0 (v 1, 2, (7)

und mithin, wegen der Stetigkeit von q> und F und wegen (4),

F(Z,cp(£),u)~0 (8)

gilt, so muss - gemäss (3) und den soeben gewonnenen Aussagen (6), (8) -
M((, y({), ?'(£), ii - y'(f)) 0 (9)

sein, und zwar wieder für alle u mit (3). Das stellt aber einen Widerspruch zur Beschaffenheit

von M(x,y, p, h) dar, womit die behauptete Stetigkeit bewiesen ist.
Bemerkung: Dass es andererseits Differentialgleichungen der Form F(x, y, y') 0

gibt, bei denen F(x, y, p) sogar analytisch in x, y, p ist, welche Lösungen besitzen, die
nicht stetig differenzierbar sind, zeigt folgendes triviale Beispiel:

Man wähle
F(x, y, p) #*+ (4 x2- 5)p2+(2y- x2p)2.

x) Siehe zum Beispiel E. Landau, Einführung in die Differentialrechnung und Integralrechnung (Gro-
ningen-Batavia 1934), S. 112, Satz 194.
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Offenbar besitzt dann F(x, y, y') ~ 0 die Lösung

oo(x)
a:2 sin— (x*Ö),x

(x 0).

Helmut Pachale, Berlin

Zur Herleitung der Potenzreihendarstellungen für die
Winkel-, Hyperbel- und Exponentialfunktionen

Die Potenzreihen für die genannten Funktionen werden im allgemeinen mit Hilfe des
Taylorschen Lehrsatzes bewiesen. Ich möchte ein einfaches Verfahren angeben, das es
gestattet, die entsprechenden Reihen ohne Verwendung von Differential- oder
Integralrechnung herzuleiten.

Als Beispiel nehme ich die Funktion sin*. Bekanntlich gilt die durch vollständige
Induktion oder mit Hilfe des Moivreschen Lehrsatzes leicht beweisbare Beziehung

sin» a I sina cosw_1a — I
J sin3a cosn~3a + sin5a cosw~"5a h •••

(» 1,2,...).
Setzt man » a x, so ergibt sich

/»\ x „ x in\ „ x M x
sin* I sin— cosn_1 | „ sm3— cosM~3 1— •••

\1/ » » \3/ » »
Aus

sin xlim 1
x-+o x

folgt sofort

lim (fUin*— ~ (Ä-l, 3, 5,

und somit für »-> oo bei festem k und x

sin* * - TT + - ''• ± I0i)\ +ÄÄ(w'k)
mit

R(n,k) ±(f!\ sin* — cos«-*- =F * 0) sm*+2 - cos«-*"2 — ± ••..v ' \k) n n \k-\-2) n «
Wegen

x
sin —

gilt für k>\x\2-2:
»

|Ä(w>Ä)l<Jrkl*+_i_yTkl*+. + ...<-L|,|
k + 2

also geht lim R(n, k) für k -> oo und festes x gegen 0.
n —>oo

Die Potenzreihenentwicklung für sin* ist damit gewonnen. Da analoge Beziehungen
wie für sinna auch für cos»a, sinh»oc und cosh» oc gelten, kann man die
Reihenentwicklungen dieser Funktionen ganz entsprechend herleiten. Die Potenzreihe für e*
findet man entweder auf Grund von e* sinh* + cosh* oder durch direkte Anwendung
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des obigen Verfahrens auf

-so sinh* * coshn ~ * *.
H. Grömer, Wien

Anmerkung der Redaktion: Ähnliche Herleitungen findet man in dem Buche von
Th. Vahlen, Konstruktionen und Approximationen (Verlag Teubner, 1911), S. 256f.

Aufgaben

Aufgabe 283. Wir betrachten einen ebenen Bereich B, begrenzt durch die geschlossene

Kurve C. Eine Linie ohne Doppelpunkte, welche zwei Punkte von C verbindet
und innerhalb B verläuft, heisst ein Bisektor von B, wenn sie B in zwei inhaltsgleiche
Teile teilt. Ein Bisektor heisst kürzester Bisektor von B, wenn es keinen Bisektor von
geringerer Länge in B gibt (vgl. des Aufgabenstellers Mathematics and Plausible Rea-
soning, Bd. 1, S. 185-186, Aufgaben 27-33). Man beweise:

Bei gegebenem Flächeninhalt wird der kürzeste Bisektor Maximum (also ein «maximum

minimorum» oder «Maximin»):.
1. für das gleichseitige Dreieck unter allen Dreiecken,
2. für das Quadrat unter allen Parallelogrammen,
3. nicht für das Quadrat unter allen Vierecken,
4. für den Kreis unter allen zentralsymmetrischen Bereichen. (Ob der Satz unter 4.
richtig bleibt, wenn das Wort «zentralsymmetrisch» gestrichen wird, ist eine offene
Frage.) G. Pölya, Palo Alto, California, USA

Lösung (nach Angaben des Aufgabenstellers): Es bedeute F den Flächeninhalt von
B und k die Länge des kürzesten Bisektors.

1. Ist ein Winkel XOY < 180° gegeben und soll ein Punkt X des einen Schenkels mit
einem Punkt Y des anderen Schenkels durch eine Linie so verbunden werden, dass die
Fläche des Bereiches XOY einen vorgeschriebenen Wert W hat und gleichzeitig die
Verbindungslinie XY möglichst kurz ist, so muss XY ein Kreisbogen mit dem Mittelpunkt

O sein (vgl. Mathematics and Plausible Reasoning, Band 1 (MPR), S. 269,
Nr. 16-19). Der Beweis beruht darauf, dass der Umfang eines Kreises kürzer ist als
derjenige irgendeiner andern geschlossenen Kurve mit demselben Flächeninhalt. Somit
kann die kürzeste Verbindungslinie XY nur ein Kreisbogen sein. Dass das Zentrum
in 0 liegen muss, erkennt man durch Spiegelung von OX bzw. OY an OY bzw. OX.
Die die Fläche 2 W abgrenzende, aus zwei Kreisbogen bestehende Linie muss im Fall
der minimalen Verbindung XY selbst ein Kreisbogen sein, so dass der Kreisbogen XY
die Schenkel des Winkels in X und Y rechtwinklig schneidet.

Hieraus folgt für ein Dreieck mit den Winkeln a, ß, y (Bogenmass!)

k2 FMm(<t,ß,y)<Z~F,

wobei das Gleichheitszeichen nur für das gleichseitige Dreieck gilt.
2. Hat B ein Symmetriezentrum Z, so ist der kürzeste Bisektor eine Strecke (vgl.

MPR, S. 272, Nr. 33). Aus einem bogenförmigen Bisektor XY ergibt sich nämlich durch
Spiegelung an Z der Bisektor X'Y'. XY und X'Y' schneiden sich in den symmetrischen

Punkten P, P'. (Zwei Bisektoren eines Bereichs müssen notwendig einen gemeinsamen

Punkt haben!) Ist XPP'Y die Reihenfolge der Punkte auf XY und PY'^PX,
so gilt Y'Y < YfPY < XY. Der « Durchmesser» YYf ist also ein kürzerer Bisektor als XY.

Im Parallelogramm mit den Seiten a, b und den entsprechenden Höhen ha, hb sei

hb£ha, a^b, so dass k — hb. Wegen hb£b ergibt sich

k*£bhb~F.
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