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Kleine Mitteilungen

Uber eine Extremaleigenschaft des fiinf- und sechseckigen Sternes

Verbinden wir die Ecken eines regelmaissigen n-Ecks (» >4) so, dass wir in der
zyklischen Reihenfolge stets einen Eckpunkt auslassen, so entsteht ein n-eckiger Stern
(von der Dichtigkeit 2). Der fiinfeckige Stern wurde von den Pythagoreern als ein Sym-
bol der Gesundheit beniitzt. Der sechseckige Stern ist ein heiliges Zeichen der Juden.

Wir wollen diese magischen Symbole des Altertums durch eine einfache Extremal-
eigenschaft charakterisieren. Zu diesem Zweck betrachten wir eine nicht negativ ge-
kriimmte geschlossene Kurve von der totalen Kriimmung 4 = oder ‘ein (als eine Kurve

A\ A\
\/

Figur 1

aufgefasstes) Eilinienpaar. Besitzt eine derartige Kurve, die wir ein Doppeloval nennen
wollen, genau » Doppelpunkte, so entstehen » « Monde». Wir nennen Mondbogeniiber-
schuss die Bogenldngendifferenz des dusseren und inneren Bogens eines Mondes. Es
gilt der

Satz 1. Besitzt ein Doppeloval von der Bogenlinge A genau n (> 4) Doppelpunkte, so gilt

T
'f;."‘ g n Ctg’ ‘1? 5
wo A den kleinsten Mondbogenexzess bedeutet. Gleichheit besteht nur fiir einen n-eckigen Stern.

Bemerken wir, dass diese Ungleichung auch noch fiir #» = 4 richtig ist. Gleichheit
besteht in diesem Falle fiir ein in zwei kongruente konzentrische Strecken entartetes
Eilinienpaar.

Fassen wir den i-ten Mond ins Auge! Es bedeute L, und /; die Bogenldnge des dusseren
und inneren Bogens, w; die totale Kriimmung des dusseren Bogens und A;=L;—/;

den Exzess. Wir konnen w; < 7 annehmen, da sonst der Mond mit einem umfangs- und
exzessgleichen Mond mit w; < = ersetzt werden kann. Dann gilt die Ungleichung

@9

l,' = L,' COs 2

mit Gleichheit nur im Falle, wenn der Mond in ein gleichschenkliges Dreieck iibergeht
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mit der Basis als innerem Bogen. Hieraus folgt

w.

14 cos

Livg _ T3
I,i—l,' = w; ’
1— a1

cos 3

das heisst
L‘~+ II—Z— l,‘Ctgz‘(':-i ¥

Bedenken wir nun, dass ctg?x fiir 0 < ¥ < n/4 eine abnehmende, konvexe Funktipn

”
ist, so haben wir mit Riicksicht auf Y w;< 4z und auf die Jensensche Ungleichung
w1

”n n
w; JT
= 2' A E' 2% > 2 "
4 pa (L,+l,)_}.£=1ctg 7 = A nctg .

“

a—

Figur 2

Gleichheit gilt in den beiden letzten Ungleichungen gleichzeitig nur, falls simtliche
Monde gleichschenklige Dreiecke sind und w;=4an/n, 4, =14 (i=1,...,n) ausfillt.
Das ist aber eben der in Satz 1 genannte Fall.

Ahnliche Erwigungen ergeben den

Satz 2. Es seien zwei Eibereiche ¢ und E vom Umfang | und L so vorgegeben, dass
e CE und dass e und E genau n (> 2) gemeinsame Randpunkie aufweisen. Bedeutet A
den kleinsten Mondbogeniiberschuss, so gelten die Ungleichungen

l n n - 1 L n n
—_— = 2. —— = —cosec?—,
l__zcosncosec 2n’ AT 2 2n

Gleichheit gilt in beiden Ungleichungen nur fir zwei regulire, zueinander polare n-Ecke.
Hieraus ergibt sich fiir die Umfangssumme A = L + ! der Eibereiche

Wir erwidhnen jetzt den zu Satz 2 analogen
Satz 3. Enthilt der Eiberveich E vom Inhalt T den Eibereich e vom Inhalt t und besitzen
e und E genau n gemeinschaftliche Randpunkte, so bestehen die Ungleichungen

4

T T
— = nctg?—, = n cosect —
T n n

T
wo t den kleinsten Mondinhalt bedeutet. Gleichheit findet in beiden Ungleichungen nur fiir
2wei affin regulire, konzentrische, zueinander polare n-Ecke statt.
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Die erste Ungleichung wurde fiir ein Dreieckpaar von H. DEBRUNNER als Aufgabe 260
der Elemente der Mathematik gesetzt. Fiir Vierecke wurde sie von P. TURAN und
M. Biernackl dargetan. Fiir n-Ecke hat P. ERDOs diese Ungleichung als Vermutung aus-
gesprochen mit der Bemerkung, dass es recht schwierig zu sein scheint, sie zu beweisen.

Es sei hier gezeigt, dass beide Ungleichungen sich leicht aus einer (vom Verfasser ver-
muteten und zum Teil bewiesenen) Ungleichung von D. LAzAR?) ergeben. Diese Unglei-
chung lautet folgendermassen: Ist einem konvexen n-Eck vom Inhalt T ein #-Eck vom
Inhalt ¢ so einbeschrieben, dass » inhaltsgleiche Randdreiecke entstehen, so gilt

t 7
— = C0S2 —,
T — n

Gleichheit gilt nur in dem in Satz 3 angedeuteten Fall.

Es kommt nun darauf an, zu zeigen, dass man sich im Beweis von Satz 3 auf ein
n-Eck-Paar mit inhaltsgleichen Randdreiecken beschrinken kann.

Wir ersetzen zundchst e durch die konvexe Hiille der » gemeinsamen Randpunkte
von ¢ und E. Nach dieser Operation kénnen die Monde eher Randsegmente genannt
werden. Sind diese nicht alle inhaltsgleich, so ersetzen wir auch E durch einen neuen
Eibereich, so dass die Randsegmente mit dem Randsegment vom kleinsten Flichen-
inhalt inhaltsgleich werden. Da bei diesen beiden Operationen weder {/tr noch T/t zu-
nimmt, kénnen wir uns auf den Fall beschrinken, dass e ein n-Eck ist, dessen Seiten
von E inhaltsgleiche Segmente abschneiden. Sind aber die Randsegmente inhaltsgleich,
so geniigt es, im Hinblick auf T= ¢ + » v den Quotienten #/r abzuschidtzen.

Wir halten das #-Eck ¢ im folgenden fest. Dann handelt es sich um das Maximum
von 7. Wir ersetzen E durch den Durchschnitt seiner #, zu den Ecken von e gehorigen
Stiitzhalbebenen. Dadurch gehen die Randsegmente in « Randdreiseite» iiber, von
denen eins sich ins Unendliche erstrecken kann. Natiirlich nimmt dabei t nicht ab, aber
der betrachtete Durchschnitt ist nicht mehr notwendigerweise ein Eibereich. Wir
konnen aber das Maximum von 7 fiir die Gesamtheit derjenigen « n-Seite» suchen, die
durch »n Stiitzgeraden von e begrenzt sind. Da nun 7 eine stetige Funktion der Stiitz-
richtungen ist, besitzt es ein Maximum, und man sieht sehr leicht ein, dass dieses
Maximum nur im Falle von inhaltsgleichen Randdreiseiten (also von Randdreiecken)
erreicht werden kann. Folglich kann das #n-Seit nur ein gewdhnliches n-Eck sein.

Damit ist die Zuriickfithrung des Satzes 3 auf den Lizarschen Satz beendet.

L.FejEs ToTH, Budapest

Zu einem Beispiel aus der Wahrscheinlichkeitsrechnung

Die Bedeutung der Wahrscheinlichkeitsrechnung hat in den letzten Jahrzehnten
ungemein zugenommen, und sie hat sich auch in der Schule eingebiirgert. Eine schone
und einfache Anwendung findet die Wahrscheinlichkeitstheorie in der Genetik. Es
bedeuten etwa A und a die jeweils in doppelter Zahl vorhandenen Erbanlagen fiir die
Bliitenfarben Weiss und Rot. In der Elterngeneration seien die Typen AA, Aa, aa mit
den Hdiufigkeiten #, 2 v, w vertreten, wobei natiirlich

u42v4w=1 (1)

sein muss. Da p =« + v und ¢ =v + w die Wahrscheinlichkeiten fiir das Auftreten
der Anlagen A und a sind, so ist die Haufigkeitsverteilung in der ndchsten Generation
gegeben durch

u,=(u+v)2 2v,=2(u+v)(v+w), w=v+w? (2)

1) D. LAzAR, Sur Papproximation des courbes convexes par des polygones, Acta Univ. Szeged, Acta Sci.
Math. 11, 129-132 (1947); vgl. auch L. Fejes TOtH, Lagerungen in der Ebene, auf der Kugel und im Raum
(Berlin, G6ttingen und Heidelberg 1953), S. 47.
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Es zeigt sich nun, dass diese Verteilung bereits stabil geworden ist, das heisst, die
Hiufigkeitsverteilung dndert sich in den folgenden Generationen nicht mehr.

Geht man von einem beliebigen Zahlentripel #, 2v, w aus, das (1) geniigt, so gelangt
man durch die Operation (2) zu einem Tripel %,, 2v,, w,, das bei beliebiger Wieder-
holung der Operation (2) invariant bleibt. Wie sind diese Zahltripel unter den zulds-
sigen u, 2v, w ausgezeichnet, wie findet man ihre Gesamtheit, und welche Tripel
filhren zu demselben invarianten Tripel?

Durch Elimination von v erhidlt man sofort eine Parameterdarstellung derinvarianten
Tripel

1 % — w\?2 1 1—22 1
ul=<__2_+ 3 )zT(1+Z)2, 2'Ul= 2 3 w1=T(1~z)2’ (3)

/

wobei -1 2= (u—w)/2<1 ist.
Die Invarianz ergibt sich einfach, denn es ist

[y

1
(14 2)3 2vy=2v,, wy= (v, +wy)t= ‘:{(1“3)2'

In einer (u, w)-Ebene erfiillen die den zulidssigen Tripeln u%, 2 v, w zugeordneten
Punkte P(u, w) das Dreieck OA4B (siehe Figur). Alle Punkte, die mit P(u, w) auf der-
selben Parallelen zur Winkelhalbierenden liegen, haben dieselbe Koordinatendifferenz
# — v =z und fiihren deshalb zu demselben Punkte Q(%,, w,) mit invarianten Koor-
dinaten. Diese Punkte Q(u,, w,) erfiillen den Bogen einer Parabel zwischen den Be-
rithrungspunkten 4 und B mit den Koordinatenachsen. Den Punkten A4(1, 0) und
B(0,1) entsprechen die reinrassigen Sorten AA und aa, dem Punkte O(0, 0) aber die
Bastardsorte Aa. Ziichtet man mit einer reinen Sorte weiter, so bleibt dieselbe rein-
rassig. Die Punkte 4 und B sind deshalb Parabelpunkte. Ziichtet man mit der Bastard-
sorte weiter, so zeigt die nichste Generation die dem Parabelscheitel S(1/4, 1/4) ent-
sprechende Hiufigkeitsverteilung 1/4, 1/2, 1/4. P. BUCHNER

Zur Behandlung des Satzes von Bernoulli im Unterricht

1. Falls die elementare Wahrscheinlichkeitsrechnung in der Schule behandelt wird,
8o diirfte die Besprechung des Bernoullischen Theorems den zweckmdssigen, zusam-
menfassenden Abschluss bilden und zugleich wertvolle Ausblicke auf Verallgemeinerun-



36 Kleine Mitteilungen

gen gestatten [1, 2]1). — Der Weg iiber die Laplacesche Formel wird dabei im allgemeinen
zu schwierig sein, wenn auch fiir gewisse Schritte, zum Beispiel fiir die Herleitung der
Stirlingschen Formel, recht anschauliche Beweise existieren [3]. — Dagegen werden im
vollig exakten Beweis, den JaAkoB BERNOULLI selbst in seiner Ars conjectandi [4, 5] gibt,
nur elementare Hilfsmittel verwendet. Doch setzt dieser Beweis mehrere Hilfssidtze iiber
Potenzen eines Binoms voraus, zu deren Behandlung die Zeit fehlen wird. — Fasst man
nun aber das Bernoullische Theorem als Sonderfall der Streuungsungleichung von
P. L.TscHEBYSCHEFF auf, so bendtigt man nur den Additions- und den Multiplikations-
satz mit der daraus folgenden Newtonschen Formel; vor einiger Zeit hat P. BUCHNER
einen Beweis in dieser Zeitschrift dargestellt [6, 7]. Will man die bei der Berechnung von
Erwartungswert und Streuung auftretenden Umformungen von Summen und Binomial-
koeffizienten auch noch weitgehend vermeiden, so kann man die folgende Beweisanord-
nung wihlen. Die Streuung wird dabei durch Weiterfiihrung eines von L. BACHELIER
[8, 9] skizzierten Gedankens berechnet.

2. Aus einer Urne mit schwarzen und weissen Kugeln werde eine Kugel gezogen. Die
Wahrscheinlichkeit, eine schwarze zu ziehen, sei p, die Gegenwahrscheinlichkeit g=1—.
Das Experiment werde bei gleichbleibendem p n-mal wiederholt; die Wahrscheinlichkeit
fiir A-maliges Auftreten einer schwarzen Kugel ist nach NEwToN

p=(7) W
mit
D tu=(+4gr=1. (2)
k=0

Jetzt kann man fragen, mit welcher Wahrscheinlichkeit die Differenz

<e¢

o~

oder |k —np| <en sei, wo ¢ eine beliebige positive Zahl ist. (Die Frage ist auch
sinnvoll, wenn der Erwartungswert E(k) nicht definiert und berechnet wurde.) Diese
Wahrscheinlichkeit werde mit

W=W(|—i——pl<e) (3)
bezeichnet.

3. Nun definiert man in bekannter Weise die Varianz oder quadratische Streuung
o2 der durch (1) gegebenen binomischen Verteilung:

o= (k—np)p,
K=o

mit ¥, =k —np wird

=3 s 0
k=0

Zur Berechnung von o2 fiihren wir die folgende Betrachtung durch, die zugleich Ent-
stehung und Aufbau dieses Wertes deutlich macht:

In % Versuchen sei k-mal eine schwarze Kugel erschienen; wir betrachten die Ab-
weichung #x, =k — n p. Fiihren wir nun einen weitern Versuch durch, so kann mit der
Wabhrscheinlichkeit p eine schwarze Kugel erscheinen, was die neue Abweichung

(h+1) = (n+1) p=23-+¢ (5)

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 37.
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ergibt; anderseits kann mit der Wahrscheinlichkeit ¢ eine weisse Kugel erscheinen, was
die neue Abweichung

k—(n+1)p=x—p (6)

ergibt. Nach (1) ist ferner p, die Wahrscheinlichkeit des Auftretens eines bestimmten x,,
somit ist p, p die Wahrscheinlichkeit von (5) und p; ¢ jene von (6), so dass sich nun
die Varianz o},  , aus Summanden der folgenden Art zusammensetzt:

(e + @) orp + (xa— PV Prg=2ibr+PrP q. (7)
Summieren wir in (7) von 2 =0 bis 2 =#, so erhalten wir unter Beriicksichtigung von
(2) und (4)
G?H-l = 0‘,2, +74q,
das heisst, mit jedem Versuch vermehrt sich die Varianz um pg¢. Da sie fiir # = 0 den
Wert 0 hat, so folgt
oi=mnpgq. (8)

4. Um nun zu einer Abschidtzung der Wahrscheinlichkeit W zu kommen, summieren

wir in (4) nur iiber jene %, fiir die | x;| = ¢ ». Wir bezeichnen diese Summe mit J’. Es
folgt

npg2y hprzetnt )y
Nun ist aber mit (3)
D tr=1-W,
also
wz1- 29
E°n

Mit vorgegebenen, festen p, ¢ und ¢ geht also die Wahrscheinlichkeit dafiir, dass die
Trefferzahl 2 der Bedingung |k/n —p| < e oder |k —np| < ¢n geniigt, mit wachsen-
dem 7n gegen 1. Damit ist der Satz bewiesen.

5. Es-sei noch angemerkt. dass man auch ohne die eben durchgefiihrte Abschitzung
mit L. BACHELIER ([8], S.18) bereits in (8) den Kern des Bernoullischen Satzes erkennen
kann, da sich aus (8) ohne neue Rechnung die Varianz fiir die relative Haufigkeit k/n
zu p q/n ergibt. R.INEICHEN, Luzern
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Ein Satz iiber die stetige Differenzierbarkeit der Losungen
von F(x,y,y) =0

Sei F(x, y, p) eine in einem Gebiet ® des (#, y, p)-Raums stetige Funktion mit fol-
gender zusitzlicher Eigenschaft:

Es gibt eine fiir alle Quadrupel (x, y, p, #) mit (x, y, p)€®, (x,9, P+ k) €EG defi-
nierte Funktion M(x, y, p, ), welche fiir kein (x, y, p) aus @ identisch in einer Umge-
bung von % = 0 verschwindet, derart, dass

i1t F(x,y,p-}—h):F(x,y,p)+M(x,y,p,h)h (1)
gilt.

Unter diesen Voraussetzungen ist jede (in ® verlaufende) Losung ¢(x) der Differen-
tialgleichung

F(x,y,9)=0 (2)
im Inneren ihres Definitionsbereiches stetig differenzierbar.

Sei ndmlich § eine im Inneren des Definitionsbereiches liegende Unstetigkeitsstelle
von ¢’(x); es gelte ohne Beschrinkung der Allgemeinheit limsup ¢’(%) > ¢’(§). Nun

x>
kann man auf Grund des Zwischenwertsatzes fiir die Ableitung einer Funktion!) offen-
bar zu jedem u mit

limsup ¢'(2) > pu > ¢'(£) (3)
xr—>§
eine gegen £ konvergierende Folge ((#)) angeben, derart, dass
lim ¢’ (%) = u 4)
¥ —>00

st. Da nun, wie leicht ersichtlich, M(x, y, p, #) an allen Stellen mit %+ 0 stetig ist, so
folgt, wegen (4), (3), (1) und der Stetigkeit von F(x, y, p), die Beziehung (¢(x) ist bei &
gewiss stetig!):

F(& @(&), u) =F(&, @(&), ¢'(&)) + M(&, (&), ¢"(&), u — ¢"(&) {u— ¢’ (&)}, (5)

und zwar fiir alle 4 mit (3).
Da wegen des vorausgesetzten Losungscharakters von ¢(x)

F(& 98, ¢'(9) =0, (6)
F(z», (x), ' (xM) =0 (»v=1,2,..) (7)

und mithin, wegen der Stetigkeit von ¢ und F und wegen (4),

F(& @), p)=0 (8)
gilt, so muss — gemadss (3) und den soeben gewonnenen Aussagen (6), (8) —
M 9, @' (), n—¢'(§) =0 (9)

sein, und zwar wieder fiir alle 4 mit (3). Das stellt aber einen Widerspruch zur Beschaf-
fenheit von M (%, y, p, k) dar, womit die behauptete Stetigkeit bewiesen ist.
Bemerkung: Dass es andererseits Differentialgleichungen der Form F(x,y,y’) =0
gibt, bei denen F(x, y, p) sogar analytisch in #, y, p ist, welche Losungen besitzen, die
nicht stetig differenzierbar sind, zeigt folgendes triviale Beispiel:
Man wihle

F(%,9,$) =44+ (4 21— 5) p4 (29 — 2 )1,

1) Siehe zum Beispiel E. LANDAvU, Einfihrung in die Differentialrechnung und Integralyechnung (Gro-
ningen-Batavia 1934), S. 112, Sais 164.



Kleine Mitteilungen 39

Offenbar besitzt dann F(x, y, ¥’) = 0 die Losung

Msint  (x+0),
p(x) = *
0 (x=0).

HeLmuT PacHALE, Berlin

Zur Herleitung der Potenzreihendarstellungen fiir die
Winkel-, Hyperbel- und Exponentialfunktionen

Die Potenzreihen fiir die genannten Funktionen werden im allgemeinen mit Hilfe des
Taylorschen Lehrsatzes bewiesen. Ich moéchte ein einfaches Verfahren angeben, das es
gestattet, die entsprechenden Reihen ohne Verwendung von Differential- oder Integral-
rechnung herzuleiten.

Als Beispiel nehme ich die Funktion sin ». Bekanntlich gilt die durch vollstindige
Induktion oder mit Hilfe des Moivreschen Lehrsatzes leicht beweisbare Beziehung

. n\ . n\ . AN
sinn o = (1> sino cos® 1o — (3) sinda cos® 3o 4 (5) sina cos® %0 — 4 .-

(mn=1,2,...).

Setzt man » « = x, so ergibt sich

. n\ . x x n\ . . X x
siny = sin — cos®*~1 - — — sin3 — cos®* =3 — 4 — ...
1 n n 3 n n
Aus
. sinx
lim =1
x—0 X

folgt sofort

k
. n\ g X A ~135
lim (k) sin® e (k=1,3,5,...)

f?—> 00 k!

und somit fiir » > oo bei festem &2 und x

%3 k-2

)

SINXY =X — ?!— + - $E e :t (—k—:—z—j"!“ +"1meR(n, k)
mit
= L™ qink ¥ soan-2 % ( L ) ink+2 % cosn-k-2 % 4 ...
R(n, k) :t(k) sin”— cos " F ) sin w 08 " +
Wegen

sin_f.‘ g-‘_f_l_
n n

gilt fiir £ > |x|2— 2:
1 -
[#]*
T k+2

1
[ |x|k+a+...<§_!.|x|k

|R(n, k)| <—,}l—ix1k+-(g-£—2)—-

also geht ”limmR(n, k) fiir £ - oo und festes » gegen 0.

Die Potenzreihenentwicklung fiir sin » ist damit gewonnen. Da analoge Beziehungen
wie fiir sinn « auch fiir cos#n «, sinh#n a und cosh# « gelten, kann man die Reihenent-
wicklungen dieser Funktionen ganz entsprechend herleiten. Die Potenzreihe fiir e*
findet man entweder auf Grund von e* = sinh ¥ + cosh ¥ oder durch direkte Anwendung
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des obigen Verfahrens auf
n

ent = 2(:) sinh® ¥ cosh*—* x.
k=0

H. GROMER, Wien

Anmerkung der Redaktion: Ahnliche Herleitungen findet man in dem Buche von
TH. VAHLEN, Konstruktionen und Approximationen (Verlag Teubner, 1911), S. 2561.

Aufgaben

Aufgabe 283. Wir betrachten einen ebenen Bereich B, begrenzt durch die geschlos-
sene Kurve C. Eine Linie ohne Doppelpunkte, welche zwei Punkte von C verbindet
und innerhalb B verlduft, heisst ein Bisektor von B, wenn sie B in zwei inhaltsgleiche
Teile teilt. Ein Bisektor heisst kiirzester Bisektor von B, wenn es keinen Bisektor von
geringerer Linge in B gibt (vgl. des Aufgabenstellers Mathematics and Plausible Rea-
soming, Bd. 1, S. 185-186, Aufgaben 27-33). Man beweise:

Bei gegebenem Fliacheninbalt wird der kiirzeste Bisektor Maximum (also ein «maxi-
mum minimorum» oder «Maximinny):,

1. fiir das gleichseitige Dreieck unter allen Dreiecken,

2. fiir das Quadrat unter allen Parallelogrammen,

3. micht fiir das Quadrat unter allen Vierecken,

4. fiir den Kreis unter allen zentralsymmetrischen Bereichen. (Ob der Satz unter 4.
richtig bleibt, wenn das Wort «zentralsymmetrisch» gestrichen wird, ist eine offene
Frage.) G. P6Lva, Palo Alto, California, USA

Lésung (nach Angaben des Aufgabenstellers): Es bedeute F den Flicheninhalt von
B und % die Linge des kiirzesten Bisektors.

1. Ist ein Winkel XOY < 180° gegeben und soll ein Punkt X des einen Schenkels mit
einem Punkt Y des anderen Schenkels durch eine Linie so verbunden werden, dass die
Fliche des Bereiches XOY einen vorgeschriebenen Wert W hat und gleichzeitig die Ver-
bindungslinie XY moglichst kurz ist, so muss XY ein Kreisbogen mit dem Mittel-
punkt O sein (vgl. Mathematics and Plausible Reasoning, Band 1 (MPR), S. 269,
Nr.16-19). Der Beweis beruht darauf, dass der Umfang eines Kreises kiirzer ist als der-
ienige irgendeiner andern geschlossenen Kurve mit demselben Flicheninhalt. Somit
kann die kiirzeste Verbindungslinie XY nur ein Kreisbogen sein. Dass das Zentrum
in O liegen muss, erkennt man durch Spiegelung von OX bzw. OY an OY bzw. OX.
Die die Fliche 2 W abgrenzende, aus zwei Kreisbogen bestehende Linie muss im Fall
der minimalen Verbindung XY selbst ein Kreisbogen sein, so dass der Kreisbogen XY
die Schenkel des Winkels in X und Y rechtwinklig schneidet.

Hieraus folgt fiir ein Dreieck mit den Winkeln «, 8, y (Bogenmass!)

k’=FMin(a,ﬂ,y)§_%F,

wobei das Gleichheitszeichen nur fiir das gleichseitige Dreieck gilt.

2. Hat B ein Symmetriezentrum Z, so ist der kiirzeste Bisektor eine Strecke (vgl.
MPR, S. 272, Nr. 33). Aus einem bogenférmigen Bisektor XY ergibt sich nimlich durch
Spiegelung an Z der Bisektor X’Y’. XY und X'Y’ schneiden sich in den symmetri-
schen Punkten P, P’. (Zwei Bisektoren eines Bereichs miissen notwendig einen gemein-
samen Punkt haben!) Ist XPP'Y die Reihenfolge der Punkte auf XY und PY’'< PX,
sogilt Y'Y < Y’'PY < XY. Der « Durchmesser» YY" ist also ein kiirzerer Bisektor als XY

Im Parallelogramm mit den Seiten a, b und den entsprechenden Hé6hen #,, A, sei
hy<h,, a<b, so dass k =h,. Wegen h,< b ergibt sich

k3<bhy=F.



	Kleine Mitteilungen

