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30 Ungeldste Probleme

ist glescch Null, dabei miissen die Radien auf die oben angegebene Weise als relative
Zahlen aufgefasst werden.

Betrachtet man die verldngerten Seiten des Dreiecks ABC als drei Kreise von un-
endlich grossem Radius und beachtet, dass vier Berithrungskreise dieser Kreise auch
unendlich gross sind, so geht dieser allgemeine Satz iiber in die bekannte Beziehung:
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91+92+93 e

ALFRED AEPPLI, Ziirich
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Nr.22. L.FejEs TOTH?) gab fiir eine heute noch nicht vollstindig bewiesene Aus-
sage die nachfolgend wiedergegebene Einkleidung:

a) Ist 4 eine Punktmenge in der Ebene E und befindet sich in E eine Kreis-
scheibe K in zufallsartig bestimmter Lage und ist W die Wahrscheinlichkeit dafiir,
dass K genau einen Punkt der Menge A bedeckt, so gilt

W<V48-6-=0928....

Eine anschaulich-geometrische Formulierung der gleichen Behauptung ist die
folgende:

b) Durch lauter kongruente Kreisbereiche lassen sich héchstens 92,89, der Ebene
einfach bedecken.

Endlich wollen wir die Aussage noch genauer formulieren:

c) In der Ebene E sei eine Menge M kongruenter Kreisbereiche K von positivem
Radius R > 0 vorgegeben. Es bezeichne T die Menge derjenigen Punkte in E, die
genau einem Kreis K der Kreismenge M angehoren. Ist S, ein Kreisbereich vom Radius
r um einen festen Ursprung Z der Ebene E als Zentrum, so gilt

limsup—P—l(—%;i:l)— <V48 -6,

7 —»00

wo F den Flicheninhalt und S, T den Durchschnitt des Kreisbereichs S, mit der
Punktmenge T bezeichnet. In der obenstehenden Ungleichung gilt dann das Gleich-
heitszeichen, wenn M aus abzdhlbar-unendlich vielen Kreisen vom Radius R besteht,
deren Mittelpunkte ein rhombisches Punktgitter bilden, wobei der Fundamental-

rhombus den spitzen Winkel @ = /3 und die Seitenlinge s=V2+V3R=1,931...R
aufweist.

Unsere Abbildung zeigt die erwihnte extremale Kreismenge M, wobei der un-
schraffierte Teil der Ebene E die Menge T darstellt, wihrend die Schraffur die
Menge der durch die Kreisbereiche von M keinfach oder zweifach iiberdeckten
Punkte andeutet.

1) L.Frjyes TotH, Lagerungen in der Ebene, auf der Kugel und im Raum (Springer -Verlag, Berlin, Got-
tingen und Heidelberg 1953), insbesondere S.97/98.



Ungeldste Probleme 31

Die Behauptung wurde von L. FEJES TOTH unter der zusitzlichen Voraussetzung
bewiesen, dass kein Punkt der Ebene mehr als zwei Kreisen K der Kreismenge M
angehort. Soeben hat J. BALAzs?) die Richtigkeit auch dann nachgewiesen, wenn
vorausgesetzt wird, dass die Kreise K von M gitterférmig angeordnet sind.

In voller Allgemeinheit ist das Problem noch ungelést. H. HADWIGER

Nachtrag zu Nr.7

L. DANZER (Oberwolfach)?) bejaht die gestellte Frage und zeigt, dass die Stich-
zahl & = 5 ausreicht. Es gilt also der folgende

Satz: Werden je fiinf Kreisbereiche einer endlichen, wenigstens fiinf Elemente ent-
haltenden Menge sich gegenseitig nicht iiberdeckender und kongruenter Kreise der Ebene
durch eine geeignete Gerade getroffen, so gibt es eine Gerade, die alle Kreise der Menge
trifft.

Von Interesse ist der von L. DANZER direkt bewiesene gleichwertige Satz: Haben
die Punkte einer ebenen, endlichen, wenigstens fiinf Punkte enthaltenden Punkt-
menge 4 paarweise Distanzen, die den Wert 4 =1 nicht unterschreiten, und gilt fiir
die Dicke D der konvexen Hiille von A die Ungleichung D > 1, so enthilt 4 eine
flinfpunktige Teilmenge A’ derart, dass fiir die Dicke D’ der konvexen Hiille von
A’ ebenfalls D' > 1 gilt. H. HADWIGER

%) J. Barhzs, Uber ein extremales Kreisgitter, Publ. Math, Debrecen (im Druck).

3) Der Beweis wurde am 11. Oktober 1957 an der Geometrietagung des Mathematischen Forschungs-
instituts in Oberwolfach vorgetragen. Mittlerweile wurde er verdffentlicht: L. DaNzer, Uber ein Problem
der kombinatorischen Geometirse, Arch. Math. 8, 347-351 (1957).
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