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Das axonometrische Prinzip im Lichte
moderner Begriffsbildungen

1. Einleitung

Bei den sogenannten linearen (das heisst geradentreuen) Abbildungsverfahren der
darstellenden Geometrie findet sich ein Gedanke entwickelt, der unter der Bezeich-
nung axonometrisches Prinzip bekannt ist. Er besteht im wesentlichen darin, die
Raumpunkte durch die Koordinaten in bezug auf ein kartesisches Koordinatensystem
festzulegen und die Abbildung der Punkte auf eine Ebene auf Grund dieser Koordi-
naten” zu konstruieren. Die Durchfiihrung dieses Abbildungsverfahrens setzt die
Kenntnis des ebenen Abbildes des rdumlichen Koordinatensystems voraus; man
nennt dieses Geriist der Abbildung das axonometrische Achsenkreuz?).

Das axonometrische Abbildungsverfahren soll zunidchst am bekanntesten Beispiel
kurz erldutert werden. Einer Abbildung U des Raumes auf eine Ebene a sei das
folgende axonometrische Achsenkreuz zugrunde gelegt: die Geraden %, ¥ und Z mit
dem gemeinsamen Schnittpunkt O seien Abbild eines rdumlichen kartesischen Koor-
dinatensystems mit den Achsen x, ¥ und z und dem Ursprung O. Den drei reguliren
Skalen auf x, y und z mit dem Nullpunkt in O sollen wiederum drei regulidre Skalen
auf %, 5 und Z je mit dem Nullpunkt in O entsprechen. Die Einheitspunkte der
Skalen seien mit X, Y, Z bzw. X, Y, Z bezeichnet. Das ebene Bild eines Raumpunktes
P(§, n, {) wird mit Hilfe des sogenannten Koordinatenquaders konstruiert. Die drei
Koordinaten &, 7, { legen auf %, ¥ und % die drei Punkte P,, P, und P, fest. Durch
Erginzen des Koordinatenquaders geht daraus das Bild P hervor. In der Figur 1 ist
als Beispiel der Punkte P(3/2, 2, 4/3) abgebildet.

Durch die stillschweigend gemachte Voraussetzung, dass U die drei Biindel von
Parallelen zu %, y und z wieder in Geraden, und zwar (infolge der speziellen Struktur
der Skalen auf dem axonometrischen Achsenkreuz in &) in die drei Biischel von
Parallelen zu %, ¥ und Z iiberfithrt, wird der Abbildung ein affines Element aufge-
prigt. Inwieweit dadurch die ganze Abbildung affinen Charakter erhilt, bringt etwa
das bekannte Pohlkesche Theorem zum Ausdruck. Es besagt, dass bei jeder ver-

1) Als wesentliche Beitrige zum Begriff des axonometrischen Prinzips seien hier erwdhnt die Arbeiten
von E. Krupra [8], E. MOLLER [9] und E. StiereL [10]. Die Ziffern in eckigen Klammern verweisen auf
das Literaturverzeichnis, Seite 12.
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niinftigen Wahl?) des axonometrischen Achsenkreuzes die Abbildung U stets auch
erzeugt werden kann durch Parallelprojektion des Raumes auf eine geeignete Ebene
und eine nachfolgende dhnliche Abbildung von z auf die Ebene «. Hieraus ergibt sich,
dass U eine geradentreue Abbildung des Raumes auf die Ebene « ist, mit gleichzei-
tiger Invarianz der Parallelitit. Die Kenntnis dieser Eigenschaften verbiirgt die
Anwendbarkeit der Gesetze der Parallelprojektion bei der Konstruktion axonometri-
scher Bilder. Dazu geniigt aber auch schon die Tatsache, dass die aus unserem
Achsenkreuz hervorgehende Abbildung U dquivalent ist mit einer Parallelprojektion

Xo=Xo \ B'

Figur 1 Figur 2

des Raumes auf eine beliebige Ebene n (welche die Projektionsrichtung nicht enthilt)
und eine nachfolgende affine Abbildung von s auf . Bei diesem Sachverhalt schwindet
die Bedeutung des Pohlkeschen Satzes fiir die darstellende Geometrie ganz erheb-
lich3). Die letztere, in bezug auf den Satz von POHLKE schwichere Aussage ist
wesentlich leichter zu beweisen. Es sei hier ein Beweis nach einer Idee von E. STIE-
FEL4Y) wiedergegeben.

Da das axonometrische Achsenkreuz zu ¥ den Rang 2 hat, gibt es zwei Koordi-
natenachsen, deren Bilder nicht in derselben Geraden liegen; es seien dies etwa ¥
und z. Es existiert nun stets eine affine Abbildung von a auf eine Ebene #”, bei der
das axonometrische Achsenkreuz die spezielle Gestalt der Figur 2 annimmt: y” und
z" sind orthogonal und 0"Y”=0"Z"=1. Der Geraden % entspricht eine bestimmte
Gerade x” durch 0”; X" sei das Bild des Einheitspunktes X. Das spezielle Achsen-
kreuz in " ist nun aber Parallelprojektion eines ridumlichen Dreibeins. Man erkennt
dies so, indem man die beiden Geraden y”" =y und z” =z in &” durch eine dritte,

%) Als verniinftig gilt jedes axonometrische Achsenkreuz O(%, 7, 3), fiir welches das Bild des Raumes die
ganze Ebene a bedeckt. Dies bedeutet, dass z, ¥ und 2 nicht in eine einzige Gerade zusammenfallen diirfen.
Man spricht in diesem Falle von einem Achsenkreuz mit dem Rang 2.

3) Dieser Standpunkt wird unseres Wissens erstmals vertreten von E. STIEFEL in [10]. Man vergleiche
auch [11].

4) Vergleiche [10], Seite 131.
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zur Zeichenebene normale Gerade x, zu einem ridumlichen System erginzt. In der
Zeichnung wird diese Ergdnzung deutlicher, wenn wir dem Aufriss z” noch einen
Grundriss beifiigen. Aus der derart erweiterten Figur 2 entnimmt man jetzt sofort,
dass O"(x", y", z") Parallelprojektion des riumlichen Achsensystems O(x,, ¥, z) ist;
der Vektor § gibt die Projektionsrichtung an. In der Formulierung der den Pohl-
keschen Satz umgehenden Aussage iiber unsere Abbildung % war von einer mehr
oder weniger beliebigen Ebene z die Rede. Dass man anstelle von " eine beliebige
andere, die Projektionsrichtung $ nicht enthaltende Ebene zz nehmen kann, folgt aus
der Bemerkung, dass die Parallelprojektionen des Raumes auf # und n” untereinander
affin sind.

Definiert man die axonometrische -Abbildung des Raumes auf eine Ebene « als
Abbildung mit dem Geriist O(%, ¥, 2), so stellt sich zunichst eine Schwierigkeit ein,
auf die wir bis jetzt noch gar nicht hingewiesen haben. Es ist ndmlich gar nicht so
selbstverstidndlich, dass sich die Koordinatenquader-Figur in « ohne weiteres schliesst.
Damit soll der folgende Sachverhalt zum Ausdruck gebracht werden: Durch die
Koordinaten von P sind die Punkte P,, I_’V und P, festgelegt (Figur 1). Diese wie-
derum bestimmen die Punkte P’, P” und P”, die man durch Ziehen von Parallelen
erhilt. Wir haben nun bis jetzt stillschweigend angenommen, dass sich die Parallelen
zu z durch P’, zu % durch P” und zu ¥ durch P” sich in einem Punkte P treffen.
Durch den Nachweis, dass O(%, ¥, z) durch affine Deformation einer Parallelprojek-
tion des kartesischen Systems O(x, y, z) auf die Ebene & erhalten werden kann, ist
aber gleichzeitig auch die Schliessung der Koordinatenquaderfigur mit bewiesen. Die
Schliessung der Quaderfigur iiber dem Achsenkreuz O(%, ¥, 2) ist eine Inzidenzfrage
in der Ebene &, die wir erledigt haben durch ein Aufsteigen in den dreidimensionalen
Raum. Wir werden im folgenden noch unter etwas andern Gesichtspunkten an dieses
Problem herantreten.

Eine Abbildung des Raumes auf eine Ebene « kann infolge des Verlustes einer
Dimension niemals eindeutig sein; es gibt getrennte Punkte im Raum, die dasselbe
Bild ergeben. In der Figur 3a ist ein Punkt P gezeichnet, dessen Bild P mit O zu-
sammenfillt.

Samtliche Punkte P, die das gleiche Bild P aufweisen, liegen auf einer Raum-
kurve p. Betrachtet man zu allen Punkten der Bildebene die zugehorigen Raum-
kurven p, so erhilt man die sogenannte projizierende Kurvenkongruenz der Abbildung.
Es ist dies eine zweiparametrige Kurvenschar®),

Nach unsern Feststellungen gehért zum axonometrischen Achsenkreuz der Figur 1
eine Abbildung 2, deren projizierende Kongruenz ein Parallelenbiindel ist.

Nachdem die aus der Figur 1 hervorgehende Abbildung als Parallelprojektion
erkannt ist®8), ldsst sich aus dem axonometrischen Achsenkreuz nun auch die Pro-
jektionsrichtung entnehmen. Fiir den Punkt P der Figur 3a ist P = 0. Seine Koor-
dinaten lassen sich auf den Skalen %, ¥ und z ablesen: P hat die Koordinaten (3, 4, 2),
der Vektor OP = 7 mithin die Komponenten (3, 4, 2). Die Projektionsrichtung ist
parallel zum Vektor 7 = (3, 4, 2).

5) Zum Begriff der Kurven-Kongruenz vergleiche etwa [1], § 49.
%) Wir fassen den Begriff Parallelprojektion etwas allgemeiner, als es sonst iiblich ist; jede Abbildung,
deren projizierende Kongruenz ein Parallelenbiindel ist, soll eine Parallelprojektion genannt werden.
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Dass es sich um eine Parallelprojektion handeln muss, ldsst sich auch ohne ein
Aufsteigen in den dreidimensionalen Raum direkt aus der Ebene & entnehmen.
Zwei Punkte mit gleichen Bildern, wie etwa A und B der Figur 3b, haben stets einen
zu 7 parallelen Verbindungsvektor ¢. Hieraus folgt aber, dass die projizierende
Kongruenz ein Parallelenbiindel mit der Richtung # ist. Der Figur 3b liegt dasselbe
axonometrische Achsenkreuz zugrunde wie der Figur 3a; fiir die beiden gezeichneten
Punkte 4 und B ist speziell ¥ = ¥. Der vollstindige Vergleich der beiden Figuren 3a
und 3b sei dem Leser iiberlassen.

Wir schliessen unsere Ausfiihrungen iiber die Parallelprojektionen mit einem
Hinweis auf den folgenden

Satz 1: Zwei axonometrische Abbildungen vom Typus der Figur 1 auf zwei Ebenen
& und B, deren projizierende Kongruenzen iibereinstimmen, sind affin-dquivalent?).

~<it

Figur 3a

Dieser Sachverhalt lisst sich ohne weiteres aus den vorstehenden Uberlegungen
tiber die Ebenen « und & entnehmen. Man kann ihn aber auch einsehen, ohne den
dreidimensionalen Raum beizuziehen. Haben nimlich zwei axonometrische Abbil-
dungen % und B dieselbe projizierende Kongruenz, so bedeutet dies, dass die zuge-
hérigen Sechsecke der Figur 3a auf den drei Skalen von %, ¥ und Z in & und g propor-
tionale Koordinatenwerte festlegen. Es gibt daher in & und B Sechsecke, die gleiche
Koordinatenwerte bestimmen, und man erkennt leicht, dass zwei derartige Figuren
in ihrer Gesamterstreckung affin-dquivalent sind.

Die nichstliegende Verallgemeinerung des axonometrischen Achsenkreuzes fiihrt
auf drei mit einem Punkte O inzidente Geraden %, ¥ und Z, die je eine projektive Skala®)
mit dem Nullpunkt O tragen. Eine projektive Skala ist durch drei ihrer Punkte
bestimmt ; dementsprechend geben wir neben O noch die Einheitspunkte X,Y und
Z und die Fluchtpunkte U,, U, und U, (Bilder der unendlichfernen Punkte auf
%, y und z) vor. In Analogie zur Axonometrie der Parallelprojektion setzen wir jetzt
voraus, dass die 3 Biindel von Parallelen zu #, y und z in drei Geradenbiischel mit

7) Das heisst, die Figuren in & und B gehen durch eine Affinitat auseinander hervor.
8) Unter einer projektiven Skala versteht man das projektive Bild einer reguliren Skala.
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den Trigern U,, U, und U, iibergehen sollen. Die Abbildung eines Raumpunktes
P(&,n, {) vollzieht sich wiederum auf Grund der durch seine Koordinaten &, %, { auf
den Skalen von #, y und z festgelegten Punkte P,, 13,, und P, und der daraus hervor-
gehenden Quaderfigur in «. Dass sich diese Konfiguration bei jeder verniinftigen
Annahme?) des axonometrischen Achsenkreuzes!?) schliesst, ist jetzt nicht mehr so
naheliegend wie bei der Parallelprojektion (Figur 1). E. STIEFEL gibt dafiir in [10]1)
einen rein planimetrischen Beweis unter Verwendung des Desarguesschen Dreiecks-
satzes der projektiven Geometrie sowie einen weitern Beweis, der den Charakter der
Abbildung % vollstindig aufdeckt. Beim letztern handelt es sich um den Beweis, der

lusT

Figur 4 Figurb

uns im Falle der Parallelprojektion auf die Figur 2 gefiihrt hat; er sei im Hinblick
auf die nachfolgenden Ausfithrungen hier kurz wiederholt.

Eine projektive Abbildung von & auf eine Ebene #” ist durch vier Punkte in allge-
meiner Lage und deren Bilder bestimmt. Es existiert demnach stets eine Projektivi-
tdt, die das axonometrische Achsenkreuz der Figur 4 auf die spezielle Gestalt der
Figur 5 abbildet. In #” sind die Achsen y” und z” orthogonal, 0"Y" =0"Z" =1 und
es sind U, und U, unendlichferne Punkte. Die Projektivitit zwischen & und " lisst
sich namlich durch Y, Z, U,, U, und die Bilder Y”, Z", U, U, festlegen. Die pro-
jektiven Skalen auf ¥ und z werden dabei reguldr. Die Skala auf ¥ hingegen bleibt
im allgemeinen projektiv. X" sei das Bild ihres Einheitspunktes, U, dasjenige ihres
Fluchtpunktes.

Aus der Figur 5 ergibt sich leicht, dass das axonometrische Achsenkreuz
O"(x", y", 2") Zentralprojektion des riumlichen Achsensystems O(x,, y, 2) von S aus
auf die Aufrissebene n” ist. Mit dieser Erkenntnis ist jetzt die Schliessung der Quader-

%) Verniinftig bedeutet hier wiederum, dass das Achsenkreuz den Rang 2 aufweist.
10) B, STiereL spricht in diesem Falle von einem perspektivischen Achsenkreuz. Vergleiche [10], Seite 124.
11) Vergleiche [10], Seiten 125 und 131.
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figur in & sichergestellt. Gleichzeitig entnehmen wir aber noch, dass unsere Abbildung
A des Raumes auf die Ebene & mit dem Geriist O(%, , z) dquivalent ist mit einem
projektiven Abbild der Zentralprojektion des Raumes auf die Ebene &. Projiziert
man den Raum von S aus auf eine beliebige andere (mit S nicht inzidente) Ebene 7,
so sind die Bilder in 7z und #" projektiv-dquivalent. Jede axonometrische Abbildung ¥,
die aus einem Achsenkreuz vom Typus der Figur 4 hervorgeht, kann daher auch
erzeugt werden durch Zentralprojektion des Raumes auf eine mit dem Projektions-
zentrum nicht inzidente Ebene n und eine nachfolgende projektive Abbildung von
n auf die Ebene a. Die projizierende Kongruenz der Abbildung U ist ein Geraden-
biindel. Speziell liegt ein Parallelenbiindel vor, wenn der Punkt S und damit auch der

Figur 6

Punkt U; der Figur 5 unendlichferne Punkte sind. Dies trifft nur dann zu, wenn die
drei Fluchtpunkte U,, U, und T, kollinear sind.

Nennen wir eine geradentreue Abbildung des Raumes auf die Ebene in etwas verall-
gemeinertem Sinne eine Zentralprojektion!2?), wenn die projizierende Kongruenz ein
Geradenbiindel ist, so ergibt sich

Satz 2: [ede axonometrische Abbildung vom Typus der Figur 413) ist eine Zentral-
projektion. Insbesondere liegt eine Parallelprojektion vor, wenn die 3 Fluchtpunkte
U,, Uy und U, auf einer Geraden liegen.

In gleicher Weise, wie sich bei der Parallelprojektion die Projektionsrichtung aus
dem axonometrischen Achsenkreuz entnehmen lisst, kann auch bei der eigentlichen
Zentralprojektion4) die Lage des Projektionszentrums S aus dem axonometrischen
Achsenkreuz herausgelesen werden. S ist als Raumpunkt dadurch gekennzeichnet,
dass er kein ebenes Bild besitzt, das heisst, die Quaderfigur in & degeneriert fiir S.
Dies trifft zu, wenn die Punkte S,, S, und S, so liegen wie in der Figur 6. Auf den
projektiven Skalen von ¥, ¥ und Z lassen sich die Koordinaten von S ablesen; im
gezeichneten Beispiel ist S(—2, — 3, + 3).

13) UUblicherweise spricht man nur dann von einer Zentralprojektion, wenn sich die Ebene & so in den
Raum legen lisst, dass die Verbindungsgeraden entsprechender Punkte P und P durch einen festen Punkt
laufen.

13) E. STierFEL nennt diese Axonometrie eine Perspektive. Vergleiche [10], Seite 124.

14) Wir wollen dann von einer eigentlichen Zentralprojektion sprechen, wenn das Projektionszentrum
im Endlichen liegt, das heisst, wenn die projizierende Kongruenz ein eigentliches Geradenbiindel ist.
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In Analogie zu Satz 1 besteht fiir die Zentralprojektion der

Satz 3: Sind fiir zwei Zentralprojektionen auf die Bildebenen & und B die projizie-
renden Kongruenzen identisch, so sind die ebenen Bilder in & und B projektiv-dquivalent.

Der Beweis steckt in den festgestellten Zusammenhingen zwischen den Ebenen a
und 7. Es sei aber erwidhnt, dass man auch hier wiederum das Dreidimensionale voll-
stindig umgehen kann, das heisst, dass man sich ganz auf die Betrachtung der ebenen
Bilder in & und 8 verlegen kann. Insbesondere hat man die Figur 6 in & und f zu be-
achten.

Projektiv-dquivalente Abbilder des Raumes erhidlt man etwa, wenn eine Photo-
graphie a nochmals photographiert und damit auf eine zweite Bildebene g bezogen
wird. Die projizierende Kongruenz im Raume bleibt dabei bestehen, das heisst, man
erhilt durch Photographieren einer Photographie niemals eine Ansicht von einer

andern Stelle aus. Zu diesem Thema sei auf einige bemerkenswerte Arbeiten von
U. GRAF hingewiesen!5).

2. Topologische Verallgemeinerungen

E. STIEFEL machte in einem Anhang seines bereits zitierten Lehrbuches der dar-
stellenden Geometrie [11] darauf aufmerksam, dass die Theorie der axonometrischen
Abbildungen zahlreiche Berithrungspunkte mit einem Zweige der modernen Geo-
metrie — der sogenannten Gewebegeometrie — aufweist. Man versteht darunter, etwas
summarisch ausgedriickt, eine Topologie von mehreren gleichzeitig nebeneinander
bestehenden Kurven- bzw. Flichenscharen in beliebigen Dimensionen?$).

Den beiden in Abschnitt 1 auseinandergesetzten axonometrischen Abbildungs-

typen liegt gemeinsam die Annahme zugrunde, dass die drei Biindel von Parallelen
zu den Koordinatenachsen #, ¥ und z als ebene Bilder in

« drei voneinander verschiedene Geradenbiischel aufwei-
sen. Innerhalb eines Gebietes &, das die Biischeltriger
(das sind die Punkte U,, U, und U,) nicht enthilt, bilden
diese drei einparametrigen Kurvenscharen ein ebenes
Kurven-3-Gewebe (Figur 7). Drei miteinander inzidente
Geraden aus verschiedenen Scharen sind dabei ausge-
zeichnet als Triger von projektiven Skalen; diese drei
Geraden (man kénnte sie etwa als Null-Linien bezeichnen)
machen zusammen das axonometrische Achsenkreuz aus. Figur 7
Wie man sofort einsieht, hingt die fiir die Konstruktion

der Abbildung so wichtige Quaderfigur nicht von den genannten drei Skalen ab.
Die Existenz dieser Figur ist eine Eigenschaft des Gewebes allein. In der Gewebe-
geometrie ist sie unter dem Namen Reidemeister-Konfiguration bekannt!?). Wir

18) Vergleiche U. Grar (3, 4].

16) Die erste zusammenfassende Darstellung der Gewebegeometrie ist das grosse Gewebebuch (3] von
Brascuke und BoL. Es sei auch auf die kiirzlich erschienene Schrift [1] von W. BLASCHKE hingewiesen,
die bedeutend weniger umfangreich und dementsprechend leichter verdaulich ist. Zum Verstandnis der
nachfolgenden Ausfiihrungen diirfte aber auch schon der vor einiger Zeit in dieser Zeitschrift erschienene
Aufsatz [6] des Verfassers geniigen.

17) Die Reidemeister-Konfiguration spielt bei gruppentheoretischen Fragen der Gewebegeometrie eine
wichtige Rolle. Vergleiche etwa [2].
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bezeichnen sie im folgenden kurz als Konfiguration R. Die Figur 8a zeigt sie in
einem krummlinigen Gewebe.

Existiert in einem 3-Gewebe die Konfiguration R an jeder Stelle und in jeder
Grosse, so muss auch die in Figur 8b wiedergegebene Sechseckkonfiguration (Kon-
figuration S) an jeder Stelle und in jeder Grosse bestehen. Es geht nidmlich S aus
R hervor, wenn wir die Punkte A und B zusammenfallen lassen. In Anlehnung an
die Figur 8b bezeichnet man derartige Kurven-3-Gewebe als Sechseckgewebe.

Ein wichtiges Ergebnis der Gewebegeometrie besagt, dass die Sechseckkonfigura-
tion notwendig und hinreichend dafiir ist, dass sich das betreffende Gewebe auf drei
Parallelenbiischel topologisch abbilden lidsst!®). Hieraus schliessen wir sofort, dass die
beiden Konfigurationen R und S geometrisch dquivalent sind; die Existenz der einen
in einem Gewebe zieht die Existenz der andern nach sich. Unsere Quader-Figur bei
der axonometrischen Abbildung kennzeichnet die Topologie des auftretenden Kur-
ven-3-Gewebes; dieses ist stets ein Sechseckgewebel®).

Schliesslich sollen auch noch die Verhiltnisse im Raum kurz unter den neuen
Gesichtspunkten gewiirdigt werden. Die axonometrische Abbildung zeichnet dort
vier Kurvenscharen aus, ndmlich die drei Biindel von Parallelen zu den Achsen x, y
und z und die projizierende Kongruenz. Die letztere ist entweder ebenfalls ein
Parallelenbiindel (Fall der Parallelprojektion) oder dann ein eigentliches Geraden-
biindel (Fall der Zentralprojektion). In beiden Fillen hat man vier zweiparametrige
Kurvenscharen, die topologisch dadurch ausgezeichnet sind, dass je zwei Kurven-
scharen unter sich an jeder Stelle und in jeder Grdsse ebene Vierecke aufspannen,
das heisst also nicht windschief sind. Es ldsst sich im Raume ein in bezug auf alle
vier Kurvenscharen konvexes Gebiet $2°) angeben, innerhalb von dem keine Drei-
ecke aus Geraden unseres 4-Gewebes vorkommen. Im Gebiete & bilden die vier ge-
nannten Kurvenscharen ein sogenanntes Vierseit-4-Gewebe?!). Das ebene Bild von &
ist ein Gebiet ®, innerhalb von dem die drei Geradenbiischel durch U,, U, und T,
ein Sechseckgewebe ausmachen.

Nach der Idee von E. STIEFEL®?) ldsst sich das axonometrische Prinzip unter Ver-
wendung gewebegeometrischer Begriffsbildungen stark verallgemeinern. Als Geriist
der Abbildung belassen wir im Raume das kartesische Koordinatensystem mit den
Achsen x, ¥ und z. Das ebene Bild der drei Parallelenbiindel zu x, y und z sei jetzt
aber ein beliebiges Kurven-3-Gewebe, von dem wir allerdings — soll die Konstruktion
der Bildpunkte in & wie bisher vor sich gehen — verlangen miissen, dass sich in ihm
die Quaderfigur schliesst. Wir miissen somit ein Sechseckgewebe voraussetzen. In

18) Diese Aussage ist bekannt als Satz von BLASCHKE-THOMSEN.

19) Fiir die Gewebegeometrie lisst sich aus den Darlegungen des Abschnittes 1 die Tatsache entnehmen,
dass jedes Gewebe aus drei Geradenbiischeln ein Sechseckgewebe ist. Dies ist ein Spezialfall eines viel um-
fassenderen Theorems. Nach einem Satz von GRAF-SAUER ist nimlich jedes Tangentengewebe an eine
Kurve 3. Klasse ein Sechseckgewebe. In dem fiir die Axonometrie interessanten Falle ist die Kurve 3. Klasse
ausgeartet; ihr Hiillgebilde besteht aus drei Punkten.

29) Durch die Forderung der Konvexitat wird vermieden, dass einzelne Gewebekurven durch den Rand
des Gebietes zerschnitten werden,

1) Vergleiche [3], erster Abschnitt, § 6.

Es sei noch darauf hingewiesen, dass die Vierseit-4-Gewebe den Sechseck-Geweben in der Ebene topo-
logisch sehr nahe stehen. Jedes Vierseit-4-Gewebe ist nimlich 4 Biindeln von parallelen Geraden topo-
logisch dquivalent.

33) Vergleiche [11], Seite 166.
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jeder Kurvenschar ist dabei eine Linie als Bild der Achsen #, y und z ausgezeichnet.
Die Linien %, ¥ und z tragen je eine monotone Skala (die Bilder der reguldren Skalen
von x, ¥ und z), deren Nullpunkt im gemeinsamen Schnittpunkt O der drei Linien
liegt. Dieses Sechseckgewebe mit drei ausgezeichneten Nullinien als Skalentrager tritt
jetzt an die Stelle des axonometrischen Achsenkreuzes (Figur 9).

STIEFEL bezeichnet die aus einem solchen Geriist hervorgehende Abbildung des
Raumes auf eine Ebene & als eine stetige Perspektive.

'Zu unserem Sechseckgewebe in x ldsst sich stets ein Gebiet ® im Raume finden,
innerhalb von dem die projizierende Kongruenz der Abbildung zusammen mit den
drei Parallelenbiindeln zu x, y und z ein Vierseit-4-Gewebe aufspannt. Wahlt man ®

Konfiguration R Honfiquration S
Figur 8a Figur 8b Figur 9

konvex in bezug auf simtliche vier Kurvenscharen, so ist sein Bild ein Gebiet ® in
der Ebene «, und unsere axonometrische Abbildung bildet die Kurven der projizie-
renden Kongruenz eineindeutig auf die Punkte in ® ab. Diese Einschrinkung der
Abbildung zwischen Raum und Ebene miissen wir bei unserer Verallgemeinerung in
Kauf nehmen; wir kénnen im allgemeinen nur noch von einer Abbildung eines
Gebietes G des Raumes auf ein Gebiet ® der Ebene & sprechen.

Es sei noch bemerkt, dass nicht jede Abbildung Raum-Ebene als eine stetige
Perspektive aufgezogen werden kann; dieses Abbildungsverfahren funktioniert nur,
wenn die projizierende Kongruenz mit den drei Parallelenbiindeln zu #, ¥ und z ein
Vierseit-4-Gewebe erzeugt.

In Verallgemeinerung der beiden Sitze 1 und 3 schliesst man aus den vorstehenden
Bemerkungen ohne weiteres auf den

Satz 4: Zwei stetige Perspektiven mit den Bildebenen & und B, deren projizierende
Kongruenzen in einem in bezug auf sie konvexen Gebiet ® iibereinstimmen, sind in den
beiden zusammengehorigen Bildgebieten topologisch dquivalent.

3. Lineare Abbildungen im erweiterten Sinne

Wir betrachten jetzt eine stetige und eindeutige Abbildung des Raumes auf die
Ebene «, die jede Raumgerade entweder auf eine Gerade oder auf einen Punkt ab-
bildet. Wir sprechen in diesem Falle von einer geradentreuen Abbildung des Raumes
auf die Ebene a.

Satz 5: Die projizierende Kongruenz einer geradentreuen Abbildung des Raumes auf
etne Ebene ist stets ein Geradenbiindel.
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Wir fithren den Beweis in zwei Schritten und zeigen zunichst, dass die projizierende
Kongruenz eine Geradenschar ist. Es sei p eine Kurve aus der projizierenden Kon-
gruenz; g, und g, seien zwei inzidente Raumgeraden durch zwei verschiedene Punkte
von p. Das ebene Abbild einer Transversalen ¢ von g, und g, fillt ebenfalls auf g, = g,.
Legt man diese Transversale so, wie in Figur 10 gezeichnet, so liegt zwischen R und
S ein Punkt, dessen Bild mit P, = P, zusammenfillt, das heisst aber, dass $ mit ¢
inzident sein muss. Wir schliessen daraus, dass die Kurve $ in der Ebene w = (g, g)
liegt. Da die Geraden g, und g, beliebig sind, folgt nun aber sofort, dass $ auch noch
in andern Ebenen liegen muss, was aber nur méglich ist, wenn sie eine Gerade ist.

Figur 10 Figur 11

Die projizierende Kongruenz ist also eine Geradenschar. Es seien nun p, und p, zwei
projizierende Geraden, ferner sei #, eine beliebige Transversale. Durch den Punkt P
von ¢, sei eine Gerade £, gelegt, die $; im Punkte Q, schneidet (Figur 11). ¢ und 4,
haben dasselbe ebene Bild; hieraus folgt nun aber, dass ¢, auch mit p, inzident ist. p,
und p, liegen daher in einer Ebene, das heisst, sie schneiden sich. Wenn aber jedes
Paar von projizierenden Geraden inzident ist, so ist die projizierende Kongruenz not-
wendigerweise ein Geradenbiindel.

Die Forderung der Geradentreue ist fiir die darstellende Geometrie eine Frage der
Zweckmissigkeit ; wir stellen fest, dass unter dieser Annahme die Parallelprojektion
und die Zentralprojektion die einzigen verniinftigen Abbildungen Raum-Ebene sind.
Abgesehen von den projizierenden Geraden ist eine solche Abbildung auch doppel-
verhdltnistreu. Man spricht daher auch von einer projektiven Abbildung des Raumes
auf die Ebene.

Die topologische Verallgemeinerung der geradentreuen Abbildung fiihrt auf die
sogenannte geoddtische Abbildung. Bei dieser werden die Geraden des Raumes (geo-
ditische Linien) auf ein guasigeoddtisches Kurvensystem in der Ebene a abgebildet.
Man versteht darunter ein zweiparametriges Kurvensystem in a«, das etwa bei Zu-
grundelegung eines kartesischen Koordinatensystems mit den Achsen % und v durch
eine Differentialgleichung vom Typus

du du\8 du\? d
-5 T4, ) (7&‘1) + B(u, v) (Tig) + C(u, v) 3% + D(u,v) =0
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beschrieben wird. Wie sich leicht zeigen lisst, bilden die Gleichungen dieser Art eine
gegeniiber topologischen Abbildungen invariante Klasse von Differentialgleichungen
2. Ordnung??). Sie sind geometrisch durch die folgenden beiden Eigenschaften aus-
gezeichnet:

Von jedem Punkte aus gibt es in jeder Richtung eine Systemkurve (Integralkurve);

Im Kleinen geht durch zwei Punkte stets genau eine Systemkurve.

Die geoditischen Linien auf einer Fliche sind von dieser Art, was die Bezeich-
nungsweise quasigeoddtische Systeme nahelegt.

Ist speziel A =B =C =D =0, so erhilt man die Differentialgleichung der Ge-

raden in a:

2 _o

dv? )
Ein quasigeoditisches System, das mit den Geraden der Ebene topologisch dqui-
valent ist (das heisst auf diese topologisch abbildbar ist), wird projektiv-euklidisch
genannt. "

Es ist leicht einzusehen, dass jede geoditische Abbildung die Raumgeraden inner-
halb eines Gebietes G auf ein projektiv-euklidisches quasigeoditisches System inner-
halb eines Gebietes ® abbildet. Ist nimlich etwa ¢ eine Ebene des Raumes, die
innerhalb eines Gebietes ®* C ® die projizierende Kongruenz nicht tangiert, so
werden die Geraden von ¢ in * auf die Linien des quasigeoditischen Systems inner-
halb eines bestimmten ebenen Gebietes G* bezogen, das heisst, die letzteren sind
topologisch dquivalent mit den Geraden von &. Daraus ergibt sich nun

Satz 6: Jede geoditische Abbildung des Raumes auf eine Ebene & ist dquivalent mit
ewner topologischen Verzerrung eines geradentreuen (projektiven) Bildes auf eine Ebene a.

Die projizierende Kongruenz einer geoditischen Abbildung ist stets ein Geraden-
biindel.

Satz 6 berechtigt uns, die geoditischen Abbildungen als lineare Abbildungen in
erweitertem Sinne zu bezeichnen.

Prinzipiell sind zwei Typen von geoditischen Abbildungen auseinanderzuhalten,
ndmlich Zentralprojektionen und Parallelprojektionen, je nachdem die projizierende
Kongruenz ein eigentliches oder ein uneigentliches Biindel ist. Es sei nun noch kurz
auf eine topologische Unterscheidungsmoglichkeit der beiden zugehdrigen axono-
metrischen Abbildungen hingewiesen.

Bei der axonometrischen Darstellung einer geoditischen Abbildung gehen die
drei Parallelenbiindel zu den Achsen x, y und z in ein Sechseckgewebe iiber. Die
Bilder aller Raumgeraden spannen ein quasigeoditisches Kurvensystem auf, das
dieses Sechseckgewebe vollstindig enthilt. Liegt nun eine Parallelprojektion vor, so
lasst sich die Figur in der Bildebene a durch topologische Abbildung auf eine andere
Ebene « stets so vereinfachen, dass das Sechseckgewebe ein regelmissiges wird und
dass das quasigeoditische System das System der Geraden in « ist (isometrische
Axonometrie, vergleiche Figur 12). In bezug auf das Sechseckgewebe ist eine einzelne

) Zum Begriff quasigeoditisches System vergleiche etwa [3], § 29. Vielfach spricht man auch von
einem projekitven Zusammenhang.

Wenn hier im letzten Teile von topologischen Abbildungen die Rede ist, so ist dabei — wie dies aus
unsern Betrachtungen sich zwangsliufig ergibt — die Differenzierbarkeit der Abbildungsfunktionen voraus-
zusetzen. Es handelt sich also genau genommen stets um differenzierbare topologische Abbildungen.
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Gerade g’ der Ebene a dadurch ausgezeichnet, dass sie in jedem ihrer Punkte mit den
drei Kurven des Gewebes ein festes Doppelverhiltnis bildet. Das quasigeoditische
System ist identisch mit dem sogenannten Doppelverhilinis-System?s) iiber dem
Abbildungsgewebe. Die Doppelverhiltnis-Eigenschaft ist invariant gegeniiber topolo-
gischen Abbildungen, das heisst, sie besteht auch im urspriinglichen Bild in &. Bei
Zentralprojektion besteht diese Doppelverhiltniseigenschaft offensichtlich nicht; der
Leser moége sich dies etwa anhand der Figur 4 selbst iiberlegen.

Satz 7: Bei der axonometrischen Darstellung der geoddtischen Abbildungen sind die
Payallelprojektionen dadurch ausgezeichnet, dass das durch die Raumgeraden in der
Bildebene erzeugte quasigeoditische System stets das Doppelverhilinis-System zum

Abbildungsgewebe ist.
¥4 ® Bemerkenswert ist an Satz 7, dass darin
die Form der Skalen auf den Koordinaten-
achsen gar nicht erscheint. _

Im Lichte unserer neuen Begriffsbil-
dungen ldsst sich das bekannte Pohlkesche
Theorem folgendermassen aussprechen:

Besitzt eine axonometrische Abbildung
des Raumes auf eine Ebene a ein Grund-
gewebe aus 3 Parallelenscharen und sind
p y' die 3 Skalen auf den Nullinien regulir, so
A ‘ N ist & dhnlich zu einer Parallelprojektion

7 ~ des Raumes auf eine Ebene a.

Daneben schliessen wir auf Grund von
Satz 7 leicht auf

Satz 8: Gehen bei einer stetigen Perspektive die Geraden des Raumes in das Doppel-
verhdlinis-System zum Abbildungsgewebe diber, so ist a topologisch dquivalent zu einer
Parallelprojektion des Raumes auf eine Ebene o.

Ein Vergleich der beiden Aussagen zeigt, dass Satz 8 in gewissem Sinne eine
topologische Verallgemeinerung des Theorems von PoHLKE darstellt.

M. JEGER, Luzern

Figur 12
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Ungeloste Probleme

Nr.21. In der Ebene sei ein Dreieck D vorgelegt. Wir fragen, ob sich diesem D eine
von seinem Umkreis K verschiedene Eilinie E so umschreiben lisst, dass D in E derart
stetig herumgefithrt werden kann, dass D nach einer vollen Umdrehung in der Ebene
wieder mit sich zur Deckung kommt und hierbei dauernd der festen Eilinie E ein-
beschrieben bleibt.

1. Erstens sei angemerkt, dass das reguldre Dreieck die oben geschilderte Eigen-
schaft tatsdchlich aufweistl). Sind ndmlich D’ und D" zwei verschiedene, mit dem
reguldren Dreieck D kongruente Dreiecke, die eine Seite gemeinsam haben, und ist
E das dem durch D' und D" gebildeten Rhombus umschriebene Kreisbogenzweieck
(vgl. Figur 1), so ldsst sich D, das der Eilinie E einbeschrieben vorausgesetzt werden

Figur 1 Figur 2

darf, in der Tat in der vorgeschriebenen Weise in E herumfiihren; die beiden Scheitel
der Kreisbogen von E spielen bei diesem Drehvorgang abwechselnd die Rolle des
Drehzentrums. Im iibrigen scheint das hier beschriebene Beispiel das einzige dieser
Art zu sein.

2. Zweitens wollen wir feststellen, dass es beliebig viele Dreiecke D gibt, die unsere
Eigenschaft sicher nicht aufweisen. Es sei D ein gleichschenkliges Dreieck. Der beim
Mittelpunkt Z des Umkreises K von D gemessene Zentriwinkel des einem Schenkel
zugeordneten Umkreisbogens sei 4, und wir wollen voraussetzen, dass 4 mit & inkom-
mensurabel ist. D kann dann unsere Eigenschaft nicht haben. In der Tat: Nehmen
wir an, E sei eine D umschriebene von K verschiedene Eilinie der verlangten Art.
Wir drehen nun D um den Umkreismittelpunkt Z der Reihe nach im positiven Sinn
um die Winkel a, 24, 3a, ... und bezeichnen die Drehbilder von D in gleicher Reihen-

1) Das nachfolgend angegebene Beispiel findet sich bei L. M.JacLom und W. G. BoLTJANSKI, Konvexe
Figuren (Berlin 1956), S, 82.
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