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Das axonomctrische Prinzip im Lichte
moderner Begriffsbildungen

1. Einleitung

Bei den sogenannten linearen (das heisst geradentreuen) AbbildungsVerfahren der
darstellenden Geometrie findet sich ein Gedanke entwickelt, der unter der Bezeichnung

axonometrisches Prinzip bekannt ist. Er besteht im wesentlichen darin, die
Raumpunkte durch die Koordinaten in bezug auf ein kartesisches Koordinatensystem
festzulegen und die Abbildung der Punkte auf eine Ebene auf Grund dieser Koordinaten"

zu konstruieren. Die Durchführung dieses Abbildungsverfahrens setzt die
Kenntnis des ebenen Abbildes des räumlichen Koordinatensystems voraus; man
nennt dieses Gerüst der Abbildung das axonomctrische Achsenkreuz1).

Das axonometrische Abbildungsverfahren soll zunächst am bekanntesten Beispiel
kurz erläutert werden. Einer Abbildung % des Raumes auf eine Ebene a sei das

folgende axonometrische Achsenkreuz zugrunde gelegt: die Geraden x, y und z mit
dem gemeinsamen Schnittpunkt 0 seien Abbild eines räumlichen kartesischen
Koordinatensystems mit den Achsen x, y und z und dem Ursprung 0. Den drei regulären
Skalen auf x, y und z mit dem Nullpunkt in 0 sollen wiederum drei reguläre Skalen

auf x, y und z je mit dem Nullpunkt in Ö entsprechen. Die Einheitspunkte der
Skalen seien mit X, Y, Z bzw. X, Y, Z bezeichnet. Das ebene Bild eines Raumpunktes
-P(!» f), C) wird mit Hilfe des sogenannten Koordinatenquaders konstruiert. Die drei
Koordinaten £, r\, f legen auf x, y und z die drei Punkte Px, Py und Px fest. Durch
Ergänzen des Koordinatenquaders geht daraus das Bild P hervor. In der Figur 1 ist
als Beispiel der Punkte P(3/2, 2, 4/3) abgebildet.

Durch die stillschweigend gemachte Voraussetzung, dass 31 die drei Bündel von
Parallelen zu x, y und z wieder in Geraden, und zwar (infolge der speziellen Struktur
der Skalen auf dem axonometrischen Achsenkreuz in a) in die drei Büschel von
Parallelen zu x, y und z überführt, wird der Abbildung ein affines Element aufgeprägt.

Inwieweit dadurch die ganze Abbildung affinen Charakter erhält, bringt etwa
das bekannte Pohlkesche Theorem zum Ausdruck. Es besagt, dass bei jeder ver-

l) Als wesentliche Beiträge zum Begriff des axonometrischen Prinzips seien hier erwähnt die Arbeiten
von E. Kruppa [8], E. Müller [9] und E. Stiefel [10], Die Ziffern in eckigen Klammern verweisen auf
das Literaturverzeichnis, Seite 12.
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2 M.Jeger: Das axonometrische Prinzip im Lichte moderner Begriffsbildungen

nünftigen Wahl2) des axonometrischen Achsenkreuzes die Abbildung 91 stets auch
erzeugt werden kann durch Parallelprojektion des Raumes auf eine geeignete Ebene n
und eine nachfolgende ähnliche Abbildung von tz auf die Ebene £. Hieraus ergibt sich,
dass 91 eine geradentreue Abbildung des Raumes auf die Ebene £ ist, mit gleichzeitiger

Invarianz der Parallelität. Die Kenntnis dieser Eigenschaften verbürgt die
Anwendbarkeit der Gesetze der Parallelprojektion bei der Konstruktion axonometri-
scher Bilder. Dazu genügt aber auch schon die Tatsache, dass die aus unserem
Achsenkreuz hervorgehende Abbildung % äquivalent ist mit einer Parallelprojektion

fi&, ZW
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Figur 1 Figur 2

des Raumes auf eine beliebige Ebene n (welche die Projektionsrichtung nicht enthält)
und eine nachfolgende affine Abbildung von n auf £. Bei diesem Sachverhalt schwindet
die Bedeutung des Pohlkeschen Satzes für die darstellende Geometrie ganz erheblich3).

Die letztere, in bezug auf den Satz von Pohlke schwächere Aussage ist
wesentlich leichter zu beweisen. Es sei hier ein Beweis nach einer Idee von E. Stiefel4)

wiedergegeben.
Da das axonometrische Achsenkreuz zu 91 den Rang 2 hat, gibt es zwei

Koordinatenachsen, deren Bilder nicht in derselben Geraden liegen; es seien dies etwa y
und z. Es existiert nun stets eine affine Abbildung von £ auf eine Ebene n", bei der
das axonometrische Achsenkreuz die spezielle Gestalt der Figur 2 annimmt: y" und
z" sind orthogonal und 0"Y" Ö"Z"=1. Der Geraden x entspricht eine bestimmte
Gerade x" durch 0"; Xn sei das Bild des Einheitspunktes X. Das spezielle Achsenkreuz

in n" ist nun aber Parallelprojektion eines räumlichen Dreibeins. Man erkennt
dies so, indem man die beiden Geraden y" y und z" z in n" durch eine dritte,

2) Als vernünftig gilt jedes axonometrische Achsenkreuz 0{x, y, z), für welches das Bild des Raumes die
ganze Ebene ä bedeckt. Dies bedeutet, dass x, y und I nicht in eine einzige Gerade zusammenfallen dürfen.
Man spricht in diesem Falle von einem Achsenkreuz mit dem Rang 2.

*) Dieser Standpunkt wird unseres Wissens erstmals vertreten von E. Stiefel in [10]. Man vergleiche
auch [11].

*) Vergleiche [10], Seite 131.
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znr Zeichenebene normale Gerade x0 zu einem räumlichen System ergänzt. In der
Zeichnung wird diese Ergänzung deutlicher, wenn wir dem Aufriss n" noch einen
Grundriss beifügen. Aus der derart erweiterten Figur 2 entnimmt man jetzt sofort,
dass 0"(x", y", z") Parallelprojektion des räumlichen Achsensystems 0(x0, y, z) ist;
der Vektor f gibt die Projektionsrichtung an. In der Formulierung der den Pohl-
keschen Satz umgehenden Aussage über unsere Abbildung 91 war von einer mehr
oder weniger beliebigen Ebene n die Rede. Dass man anstelle von n" eine beliebige
andere, die Projektionsrichtung f nicht enthaltende Ebene n nehmen kann, folgt aus
der Bemerkung, dass die Parallelprojektionen des Raumes auf n und n" untereinander
affin sind.

Definiert man die axonometrische -Abbildung des Raumes auf eine Ebene £ als

Abbildung mit dem Gerüst 0(x, y, z), so stellt sich zunächst eine Schwierigkeit ein,
auf die wir bis jetzt noch gar nicht hingewiesen haben. Es ist nämlich gar nicht so
selbstverständlich, dass sich die Koordinatenquader-Figur in £ ohne weiteres schhesst.
Damit soll der folgende Sachverhalt zum Ausdruck gebracht werden: Durch die
Koordinaten von P sind die Punkte Px, Py und Pz festgelegt (Figur 1). Diese
wiederum bestimmen die Punkte P', P" und P'", die man durch Ziehen von Parallelen
erhält. Wir haben nun bis jetzt stillschweigend angenommen, dass sich die Parallelen
zu z durch P', zu y durch P" und zu x durch P'" sich in einem Punkte P treffen.
Durch den Nachweis, dass 0(x, y, z) durch affine Deformation einer Parallelprojektion

des kartesischen Systems 0(x, y, z) auf die Ebene n erhalten werden kann, ist
aber gleichzeitig auch die Schliessung der Koordinatenquaderfigur mit bewiesen. Die
Schliessung der Quaderfigur über dem Achsenkreuz 0(x, y, z) ist eine Inzidenzfrage
in der Ebene £, die wir erledigt haben durch ein Aufsteigen in den dreidimensionalen
Raum. Wir werden im folgenden noch unter etwas andern Gesichtspunkten an dieses
Problem herantreten.

Eine Abbildung des Raumes auf eine Ebene £ kann infolge des Verlustes einer
Dimension niemals eindeutig sein; es gibt getrennte Punkte im Raum, die dasselbe

Bild ergeben. In der Figur 3 a ist ein Punkt P gezeichnet, dessen Bild P mit 0 zu-
sammenfällt.

Sämtliche Punkte P, die das gleiche Bild P aufweisen, liegen auf einer Raumkurve

p. Betrachtet man zu allen Punkten der Bildebene die zugehörigen
Raumkurven p, so erhält man die sogenannte projizierende Kurvenkongruenz der Abbildung.
Es ist dies eine zweiparametrige Kurvenschar5).

Nach unsern Feststellungen gehört zum axonometrischen Achsenkreuz der Figur 1

eine Abbildung 91, deren projizierende Kongruenz ein Parallelenbündel ist.
Nachdem die aus der Figur 1 hervorgehende Abbildung als Parallelprojektion

erkannt ist6), lässt sich aus dem axonometrischen Achsenkreuz nun auch die
Projektionsrichtung entnehmen. Für den Punkt P der Figur 3 a ist P 0. Seine
Koordinaten lassen sich auf den Skalen x, y und z ablesen: P hat die Koordinaten (3,4,2),
der Vektor OP f mithin die Komponenten (3, 4, 2). Die Projektionsrichtung i§t
parallel zum Vektor r (3, 4, 2).

5) Zum Begriff der Kurven-Kongruenz vergleiche etwa [1], § 49.
•) Wir fassen den Begriff Parallelprojektion etwas allgemeiner, als es sonst üblich ist; jede Abbildung,

deren projizierende Kongruenz ein Parallelenbündel ist, soll eine Parallelprojektion genannt werden.
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Dass es sich um eine Parallelprojektion handeln muss, lässt sich auch ohne ein
Aufsteigen in den dreidimensionalen Raum direkt aus der Ebene £ entnehmen.
Zwei Punkte mit gleichen Bildern, wie etwa A und B der Figur 3b, haben stets einen
zu r parallelen Verbindungsvektor v. Hieraus folgt aber, dass die projizierende
Kongruenz ein Parallelenbündel mit der Richtung r ist. Der Figur 3b liegt dasselbe
axonometrische Achsenkreuz zugrunde wie der Figur 3a; für die beiden gezeichneten
Punkte A und B ist speziell v r. Der vollständige Vergleich der beiden Figuren 3 a
und 3b sei dem Leser überlassen.

Wir schhessen unsere Ausführungen über die Parallelprojektionen mit einem
Hinweis auf den folgenden

Satz 1: Zwei axonometrische Abbildungen vom Typus der Figur 1 auf zwei Ebenen

£ und ß, deren projizierende Kongruenzen übereinstimmen, sind affin-äquivalent1).

7*

%-ßr P"
P

* -S

P(s',*,*)
A(2 1.2

0(5,5,4)

Figur 3a Figur 3b

Dieser Sachverhalt lässt sich ohne weiteres aus den vorstehenden Überlegungen
über die Ebenen n und £ entnehmen. Man kann ihn aber auch einsehen, ohne den
dreidimensionalen Raum beizuziehen. Haben nämlich zwei axonometrische
Abbildungen 91 und 58 dieselbe projizierende Kongruenz, so bedeutet dies, dass <$ie

zugehörigen Sechsecke der Figur 3a auf den drei Skalen von x, y und z in £ und /? proportionale

Koordinatenwerte festlegen. Es gibt daher in £ und ß Sechsecke, die gleiche
Koordinatenwerte bestimmen, und man erkennt leicht, dass zwei derartige Figuren
in ihrer Gesamterstreckung affin-äquivalent sind.

Die nächstliegende Verallgemeinerung des axonometrischen Achsenkreuzes führt
auf drei mit einem Punkte 0 inzidente Geraden x, y und z, die je eine projektive Skala9)

mit dem Nullpunkt Ö tragen. Eine projektive Skala ist durch drei ihrer^ Punkte

bestimmt; dementsprechend geben wir neben 0 noch die Einheitspunkte X, Y und
2 und die Fluchtpunkte Üxt Üy und Üg (Bilder der unendlichfernen Punkte auf
x> y und z) vor. In Analogie zur Axonometrie der Parallelprojektion setzen wir jetzt
voraus, dass die 3 Bündel von Parallelen zu x, y und z in drei Geradenbüschel mit

7) Das heisst, die Figuren in öc und ß gehen-durch eine Affinität auseinander hervor.
8) Unter einer projektiven Skala versteht man das projektive Bild einer regulären Skala.
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den Trägern Ux, Uy und Ux übergehen sollen. Die Abbildung eines Raumpunktes
P(g, rj, C) vollzieht sich wiederum auf Grund der durch seine Koordinaten f, rj, £ auf
den Skalen von x, y und z festgelegten Punkte Px, Py und Px und der daraus
hervorgehenden Quaderfigur in £. Dass sich diese Konfiguration bei jeder vernünftigen
Annahme9) des axonometrischen Achsenkreuzes10) schliesst, ist jetzt nicht mehr so

naheliegend wie bei der Parallelprojektion (Figur 1). E. Stiefel gibt dafür in [10]n)
einen rein planimetrischen Beweis unter Verwendung des Desarguesschen Dreieckssatzes

der projektiven Geometrie sowie einen weitern Beweis, der den Charakter der
Abbildung 91 vollständig aufdeckt. Beim letztern handelt es sich um den Beweis, der

u;
z*z
Z"

Uz
* ~HUk'S

V*Y
X'

UyUy

P7<

Xo

Xo

Figur 4 Figur 5

uns im Falle der Parallelprojektion auf die Figur 2 geführt hat; er sei im Hinblick
auf die nachfolgenden Ausführungen hier kurz wiederholt.

Eine projektive Abbildung von £ auf eine Ebene n" ist durch vier Punkte in
allgemeiner Lage und deren Bilder bestimmt. Es existiert demnach stets eine Projektivität,

die das axonometrische Achsenkreuz der Figur 4 auf die spezielle Gestalt der

Figur 5 abbildeten n" sind die Achsen y" und z" orthogonal, 0*7* 0^== 1 und
es sind Uy und UM unendlichferne Punkte. Die Projektivität zwischen £ und n" lässt
sich nämlich durch F, Z, Uy, Üt und die Bilder Yn, Zn, Uy\ [7/ festlegen. Die
projektiven Skalen auf y und z werden dabei regulär. Die Skala auf x hingegen bleibt
im allgemeinen projektiv. X" sei das Bild ihres Einheitspunktes, Ux dasjenige ihres
Fluchtpunktes.

Aus der Figur 5 ergibt sich leicht, dass das axonometrische Achsenkreuz
0"(x"t ynt z") Zentralprojektion des räumlichen Achsensystems 0(x0, y, z) von S aus
auf die Aufrissebene n" ist. Mit dieser Erkenntnis ist jetzt die Schliessung der Quader-

•) Vernünftig bedeutet hier wiederum, dass das Achsenkreuz den Rang 2 aufweist.
10) E. Stiefel spricht in diesem Falle von einem perspektivischen Achsenkreuz. Vergleiche [10], Seite 124.
u) Vergleiche [10], Seiten 125 und 131.
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figur in £ sichergestellt. Gleichzeitig entnehmen wir aber noch, dass unsere Abbildung
91 des Raumes auf die Ebene £ mit dem Gerüst 0(x, y, z) äquivalent ist mit einem
projektiven Abbild der Zentralprojektion des Raumes auf die Ebene n. Projiziert
man den Raum von 5 aus auf eine beliebige andere (mit 5 nicht inzidente) Ebene n,
so sind die Bilder in n und n" projektiv-äquivalent. Jede axonometrische Abbildung 91,

die aus einem Achsenkreuz vom Typus der Figur 4 hervorgeht, kann daher auch
erzeugt werden durch Zentralprojektion des Raumes auf eine mit dem Projektionszentrum

nicht inzidente Ebene n und eine nachfolgende projektive Abbildung von
n auf die Ebene £. Die projizierende Kongruenz der Abbildung 91 ist ein Geradenbündel.

Speziell liegt ein Parallelenbündel vor, wenn der Punkt S und damit auch der

UzrUy

5z

0

5/
Figur 6

Punkt Ux der Figur 5 unendlichferne Punkte sind. Dies trifft nur dann zu, wenn die
drei Fluchtpunkte Ux, Uy und Uz kollinear sind.

Nennen wir eine geradentreue Abbildung des Raumes auf die Ebene in etwas
verallgemeinertem Sinne eine Zentralprojektion12), wenn die projizierende Kongruenz ein
Geradenbündel ist, so ergibt sich

Satz 2: Jede axonometrische Abbildung vom Typus der Figur 413) ist eine

Zentralprojektion. Insbesondere liegt eine Parallelprojektion vor, wenn die 3 Fluchtpunkte
Ux, Uy und Ug auf einer Geraden liegen.

In gleicher Weise, wie sich bei der Parallelprojektion die Projektionsrichtung aus
dem axonometrischen Achsenkreuz entnehmen lässt, kann auch bei der eigentlichen
Zentralprojektion14) die Lage des Projektionszentrums S aus dem axonometrischen
Achsenkreuz herausgelesen werden. S ist als Raumpunkt dadurch gekennzeichnet,
dass er kein ebenes Bild besitzt, das heisst, die Quaderfigur in £ degeneriert für S.

Dies trifft zu, wenn die Punkte Sx, Sy und Sx so liegen wie in der Figur 6. Auf den

projektiven Skalen von x, y und z lassen sich die Koordinaten von S ablesen; im
gezeichneten Beispiel ist S(—2, —3, +3).

ia) Üblicherweise spricht man nur dann von einer Zentralprojektion, wenn sich die Ebene a so in den

Raum legen lässt, dass die Verbindungsgeraden entsprechender Punkte P und P durch einen festen Punkt
laufen.

ls) E. Stiefel nennt diese Axonometrie eine Perspektive. Vergleiche [10], Seite 124.

u) Wir wollen dann von einer eigentlichen Zentralprojektion sprechen, wenn das Projektionszentrum
im Endlichen liegt, das heisst, wenn die projizierende Kongruenz ein eigentliches Geradenbündel ist.
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In Analogie zu Satz 1 besteht für die Zentralprojektion der
Satz 3: Sind für zwei Zentralprojektionen auf die Bildebenen £ und ß die projizierenden

Kongruenzen identisch, so sind die ebenen Bilder in £ und ß projektiv-äquivalent.
Der Beweis steckt in den festgestellten Zusammenhängen zwischen den Ebenen £

und n. Es sei aber erwähnt, dass man auch hier wiederum das Dreidimensionale
vollständig umgehen kann, das heisst, dass man sich ganz auf die Betrachtung der ebenen

Bilder in £ und ß verlegen kann. Insbesondere hat man die Figur 6 in £ und ß zu
beachten.

Projektiv-äquivalente Abbilder des Raumes erhält man etwa, wenn eine
Photographie £ nochmals photographiert und damit auf eine zweite Bildebene q bezogen
wird. Die projizierende Kongruenz im Räume bleibt dabei bestehen, das heisst, man
erhält durch Photographieren einer Photographie niemals eine Ansicht von einer
andern Stelle aus. Zu diesem Thema sei auf einige bemerkenswerte Arbeiten von
U. Graf hingewiesen16).

2. Topologische Verallgemeinerungen

E. Stiefel machte in einem Anhang seines bereits zitierten Lehrbuches der
darstellenden Geometrie [11] darauf aufmerksam, dass die Theorie der axonometrischen
Abbildungen zahlreiche Berührungspunkte mit einem Zweige der modernen
Geometrie - der sogenannten Gewebegeometrie - aufweist. Man versteht darunter, etwas
summarisch ausgedrückt, eine Topologie von mehreren gleichzeitig nebeneinander
bestehenden Kurven- bzw. Flächenscharen in beliebigen Dimensionen16).

Den beiden in Abschnitt 1 auseinandergesetzten axonometrischen Abbildungstypen

liegt gemeinsam die Annahme zugrunde, dass die drei Bündel von Parallelen
zu den Koordinatenachsen x, y und z als ebene Bilder in
£ drei voneinander verschiedene Geradenbüschel aufweisen.

Innerhalb eines Gebietes ©, das die Büschelträger
(das sind die Punkte Üx, Üy und Ut) nicht enthält, bilden
diese drei einparametrigen Kurvenscharen ein ebenes

Kurven-3-Gewebe (Figur 7). Drei miteinander inzidente
Geraden aus verschiedenen Scharen sind dabei
ausgezeichnet als Träger von projektiven Skalen; diese drei
Geraden (man könnte sie etwa als Null-Linien bezeichnen)
machen zusammen das axonometrische Achsenkreuz aus. Figur 7

Wie man sofort einsieht, hängt die für die Konstruktion
der Abbildung so wichtige Quaderfigur nicht von den genannten drei Skalen ab.
Die Existenz dieser Figur ist eine Eigenschaft des Gewebes allein. In der
Gewebegeometrie ist sie unter dem Namen Reidemeister-Konfiguration bekannt17). Wir

16) Vergleiche U. Graf [3, 4].
ie) Die erste zusammenfassende Darstellung der Gewebegeometrie ist das grosse Gewebebuch [3] von

Blaschke und Bol. Es sei auch auf die kürzlich erschienene Schrift [1] von W. Blaschke hingewiesen,
die bedeutend weniger umfangreich und dementsprechend leichter verdaulich ist. Zum Verständnis der
nachfolgenden Ausführungen dürfte aber auch schon der vor einiger Zeit in dieser Zeitschrift erschienene
Aufsatz [6] des Verfassers genügen.

17) Die Reidemeister-Konfiguration spielt bei gruppentheoretischen Fragen der Gewebegeometrie eine
wichtige Rolle. Vergleiche etwa [2].

Uy Ux



8 M.Jeger: Das axonometrische Prinzip im Lichte moderner Begriffsbildungen

bezeichnen sie im folgenden kurz als Konfiguration R. Die Figur 8 a zeigt sie in
einem krummlinigen Gewebe.

Existiert in einem 3-Gewebe die Konfiguration R an jeder Stelle und in jeder
Grösse, so muss auch die in Figur 8b wiedergegebene Sechseckkonfiguration
(Konfiguration S) an jeder Stelle und in jeder Grösse bestehen. Es geht nämlich S aus
R hervor, wenn wir die Punkte A und B zusammenfallen lassen. In Anlehnung an
die Figur 8b bezeichnet man derartige Kurven-3-Gewebe als Sechseckgewebe.

Ein wichtiges Ergebnis der Gewebegeometrie besagt, dass die Sechseckkonfiguration

notwendig und hinreichend dafür ist, dass sich das betreffende Gewebe auf drei
Parallelenbüschel topologisch abbilden lässt18). Hieraus schhessen wir sofort, dass die
beiden Konfigurationen R und S geometrisch äquivalent sind; die Existenz der einen
in einem Gewebe zieht die Existenz der andern nach sich. Unsere Quader-Figur bei
der axonometrischen Abbildung kennzeichnet die Topologie des auftretenden Kur-
ven-3-Gewebes; dieses ist stets ein Sechseckgewebe19).

Schliesslich sollen auch noch die Verhältnisse im Raum kurz unter den neuen
Gesichtspunkten gewürdigt werden. Die axonometrische Abbildung zeichnet dort
vier Kurvenscharen aus, nämlich die drei Bündel von Parallelen zu den Achsen x, y
und z und die projizierende Kongruenz. Die letztere ist entweder ebenfalls ein
Parallelenbündel (Fall der Parallelprojektion) oder dann ein eigentliches Geradenbündel

(Fall der Zentralprojektion). In beiden Fällen hat man vier zweiparametrige
Kurvenscharen, die topologisch dadurch ausgezeichnet sind, dass je zwei Kurvenscharen

unter sich an jeder Stelle und in jeder Grösse ebene Vierecke aufspannen,
das heisst also nicht windschief sind. Es lässt sich im Räume ein in bezug auf alle
vier Kurvenscharen konvexes Gebiet ©20) angeben, innerhalb von dem keine Dreiecke

aus Geraden unseres 4-Gewebes vorkommen. Im Gebiete © bilden die vier
genannten Kurvenscharen ein sogenanntes VierseitA-Gewebe21). Das ebene Bild von ©
ist ein Gebiet ©, innerhalb von dem die drei Geradenbüschel durch Ux, Uy und Ux

ein Sechseckgewebe ausmachen.
Nach der Idee von E. Stiefel22) lässt sich das axonometrische Prinzip unter

Verwendung gewebegeometrischer Begriffsbildungen stark verallgemeinern. Als Gerüst
der Abbildung belassen wir im Räume das kartesische Koordinatensystem mit den
Achsen x, y und z. Das ebene Bild der drei Parallelenbündel zu x, y und z sei jetzt
aber ein beliebiges Kurven-3-Gewebe, von dem wir allerdings - soll die Konstruktion
der Bildpunkte in £ wie bisher vor sich gehen - verlangen müssen, dass sich in ihm
die Quaderfigur schhesst. Wir müssen somit ein Sechseckgewebe voraussetzen. In

18) Diese Aussage ist bekannt als Satz von Blaschke-Thomsen.
lf) Für die Gewebegeometrie lässt sich aus den Darlegungen des Abschnittes 1 die Tatsache entnehmen,

dass jedes Gewebe aus drei Geradenbüscheln ein Sechseckgewebe ist. Dies ist ein Spezialfall eines viel
umfassenderen Theorems» Nach einem Satz von Graf-Sauer ist nämlich jedes Tangentengewebe an eine
Kurve 3. Klasse ein Sechseckgewebe. In dem für die Axonometrie interessanten Falle ist die Kurve 3. Klasse
ausgeartet; ihr Hüllgebilde besteht aus drei Punkten.

*°) Durch die Forderung der Konvexität wird vermieden, dass einzelne Gewebekurven durch den Rand
des Gebietes zerschnitten werden.

n) Vergleiche [3], erster Abschnitt, § 6.
Es sei noch darauf hingewiesen, dass die Vierseit-4-Gewebe den Sechseck-Geweben in der Ebene

topologisch sehr nahe stehen. Jedes Vierseit-4-Gewebe ist nämlich 4 Bündeln von parallelen Geraden
topologisch äquivalent.

*•) Vergleiche [11], Seite 166.
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jeder Kurvenschar ist dabei eine Linie als Bild der Achsen x, y und z ausgezeichnet.
Die Linien x, y und z tragen je eine monotone Skala (die Bilder der regulären Skalen

von x, y und z), deren Nullpunkt im gemeinsamen Schnittpunkt 0 der drei Linien
liegt. Dieses Sechseckgewebe mit drei ausgezeichneten Nullinien als Skalenträger tritt
jetzt an die Stelle des axonometrischen Achsenkreuzes (Figur 9).

Stiefel bezeichnet die aus einem solchen Gerüst hervorgehende Abbildung des

Raumes auf eine Ebene £ als eine stetige Perspektive.
Zu unserem Sechseckgewebe in £ lässt sich stets ein Gebiet © im Räume finden,

innerhalb von dem die projizierende Kongruenz der Abbildung zusammen mit den
drei Parallelenbündeln zu x, y und z ein Vierseit-4-Gewebe aufspannt. Wählt man ©

Konfiguration R

Figur 8a

Pft

Konfiguration 5

Figur 8b Figur 9

konvex in bezug auf sämtliche vier Kurvenscharen, so ist sein Bild ein Gebiet © in
der Ebene £, und unsere axonometrische Abbildung bildet die Kurven der projizierenden

Kongruenz eineindeutig auf die Punkte in © ab. Diese Einschränkung der
Abbildung zwischen Raum und Ebene müssen wir bei unserer Verallgemeinerung in
Kauf nehmen; wir können im allgemeinen nur noch von einer Abbildung eines

Gebietes © des Raumes auf ein Gebiet © der Ebene £ sprechen.
Es sei noch bemerkt, dass nicht jede Abbildung Raum-Ebene als eine stetige

Perspektive aufgezogen werden kann; dieses Abbildungsverfahren funktioniert nur,
wenn die projizierende Kongruenz mit den drei Parallelenbündeln zu x, y und z ein
Vierseit-4-Gewebe erzeugt.

In Verallgemeinerung der beiden Sätze 1 und 3 schhesst man aus den vorstehenden
Bemerkungen ohne weiteres auf den

Satz 4: Zwei stetige Perspektiven mit den Bildebenen £ und ß, deren projizierende
Kongruenzen in einem in bezug auf sie konvexen Gebiet © übereinstimmen, sind in den
beiden zusammengehörigen Bildgebieten topologisch äquivalent.

3. Lineare Abbildungen im erweiterten Sinne

Wir betrachten jetzt eine stetige und eindeutige Abbildung des Raumes auf die
Ebene £, die jede Raumgerade entweder auf eine Gerade oder auf einen Punkt ab-
büdet. Wir sprechen in diesem Falle von einer geradentreuen Abbildung des Raumes
auf die Ebene £.

Satz 5: Die projizierende Kongruenz einer geradentreuen Abbildung des Raumes auf
eine Ebene ist stets ein Geradenbündel.
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Wir führen den Beweis in zwei Schritten und zeigen zunächst, dass die projizierende
Kongruenz eine Geradenschar ist. Es sei p eine Kurve aus der projizierenden
Kongruenz ; gx und g2 seien zwei inzidente Raumgeraden durch zwei verschiedene Punkte
von p. Das ebene Abbild einer Transversalen t von gx und g2 fällt ebenfalls auf gx g2.

Legt man diese Transversale so, wie in Figur 10 gezeichnet, so liegt zwischen R und
S ein Punkt, dessen Bild mit P1 P2 zusammenfällt, das heisst aber, dass p mit t
inzident sein muss. Wir schhessen daraus, dass die Kurve p in der Ebene co (gx, g2)

hegt. Da die Geraden gt und g2 behebig sind, folgt nun aber sofort, dass p auch noch
in andern Ebenen liegen muss, was aber nur möglich ist, wenn sie eine Gerade ist.

w\fl

9i'92"i

PrP2

Figur 10

/

Qz

Pi w

Figur 11

Die projizierende Kongruenz ist also eine Geradenschar. Es seien nun px und p2 zwei
projizierende Geraden, ferner sei tx eine beliebige Transversale. Durch den Punkt P
von tx sei eine Gerade t2 gelegt, die px im Punkte Q2 schneidet (Figur 11). tx und t2

haben dasselbe ebene Büd; hieraus folgt nun aber, dass t2 auch mit p2 inzident ist. px
und p2 liegen daher in einer Ebene, das heisst, sie schneiden sich. Wenn aber jedes
Paar von projizierenden Geraden inzident ist, so ist die projizierende Kongruenz
notwendigerweise ein Geradenbündel.

Die Forderung der Geradentreue ist für die darstellende Geometrie eine Frage der
Zweckmässigkeit; wir stellen fest, dass unter dieser Annahme die Parallelprojektion
und die Zentralprojektion die einzigen vernünftigen Abbildungen Raum-Ebene sind.
Abgesehen von den projizierenden Geraden ist eine solche Abbildung auch doppel-
verhältnistreu. Man spricht daher auch von einer projektiven Abbildung des Raumes

auf die Ebene.
Die topologische Verallgemeinerung der geradentreuen Abbildung führt auf die

sogenannte geodätische Abbildung. Bei dieser werden die Geraden des Raumes
(geodätische Linien) auf ein quasigeodätisches Kurvensystem in der Ebene £ abgebildet.
Man versteht darunter ein zweiparametriges Kurvensystem in £, das etwa bei
Zugrundelegung eines kartesischen Koordinatensystems mit den Achsen u und v durch
eine Differentialgleichung vom Typus

d*u
dv* + A(u> *> (lr)8+ B{Ut v) (^)8+ C{Uf v)JaV + D{u'v) °



M.Jeger: Das axonometrische Prinzip im Lichte moderner Begriffsbildungen 11

beschrieben wird. Wie sich leicht zeigen lässt, bilden die Gleichungen dieser Art eine
gegenüber topologischen Abbildungen invariante Klasse von Differentialgleichungen
2. Ordnung23). Sie sind geometrisch durch die folgenden beiden Eigenschaften
ausgezeichnet :

Von jedem Punkte aus gibt es in jeder Richtung eine Systemkurve (Integralkurve);
Im Kleinen geht durch zwei Punkte stets genau eine Systemkurve.
Die geodätischen Linien auf einer Fläche sind von dieser Art, was die

Bezeichnungsweise quasigeodätische Systeme nahelegt.
Ist speziell A =B =C ==D =0, so erhält man die Differentialgleichung der

Geraden in £:

Ein quasigeodätisches System, das mit den Geraden der Ebene topologisch
äquivalent ist (das heisst auf diese topologisch abbildbar ist), wird projektiv-euklidisch
genannt.

Es ist leicht einzusehen, dass jede geodätische Abbildung die Raumgeraden innerhalb

eines Gebietes © auf ein projektiv-euklidisches quasigeodätisches System innerhalb

eines Gebietes © abbildet. Ist nämlich etwa e eine Ebene des Raumes, die
innerhalb eines Gebietes ©* C © die projizierende Kongruenz nicht tangiert, so
werden die Geraden von e in ©* auf die Linien des quasigeodätischen Systems innerhalb

eines bestimmten ebenen Gebietes ©* bezogen, das heisst, die letzteren sind
topologisch äquivalent mit den Geraden von e. Daraus ergibt sich nun

Satz 6: Jede geodätische Abbildung des Raumes auf eine Ebene £ ist äquivalent mit
einer topologischen Verzerrung eines geradentreuen (projektiven) Bildes auf eine Ebene oc.

Die projizierende Kongruenz einer geodätischen Abbildung ist stets ein Geraden-
bündel.

Satz 6 berechtigt uns, die geodätischen Abbildungen als lineare Abbildungen in
erweitertem Sinne zu bezeichnen.

Prinzipiell sind zwei Typen von geodätischen Abbildungen auseinanderzuhalten,
nämlich Zentralprojektionen und Parallelprojektionen, je nachdem die projizierende
Kongruenz ein eigentliches oder ein uneigentliches Bündel ist. Es sei nun noch kurz
auf eine topologische Unterscheidungsmöglichkeit der beiden zugehörigen
axonometrischen Abbildungen hingewiesen.

Bei der axonometrischen Darstellung einer geodätischen Abbildung gehen die
drei Parallelenbündel zu den Achsen x, y und z in ein Sechseckgewebe über. Die
Bilder aller Raumgeraden spannen ein quasigeodätisches Kurvensystem auf, das
dieses Sechseckgewebe vollständig enthält. Liegt nun eine Parallelprojektion vor, so
lässt sich die Figur in der Bildebene £ durch topologische Abbildung auf eine andere
Ebene oc stets so vereinfachen, dass das Sechseckgewebe ein regelmässiges wird und
dass das quasigeodätische System das System der Geraden in a ist (isometrische
Axonometrie, vergleiche Figur 12). In bezug auf das Sechseckgewebe ist eine einzelne

28) Zum Begriff quasigeodätisches System vergleiche etwa [3], § 29. Vielfach spricht man auch von
einem projektiven Zusammenhang.

Wenn hier im letzten Teile von topologischen Abbildungen die Rede ist, so ist dabei - wie dies aus
unsern Betrachtungen sich zwangsläufig ergibt - die Differenzierbarkeit der Abbildungsfunktionen
vorauszusetzen. Es handelt sich also genau genommen stets um differenzierbare topologische Abbildungen.
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Gerade g' der Ebene oc dadurch ausgezeichnet, dass sie in jedem ihrer Punkte mit den
drei Kurven des Gewebes ein festes Doppelverhältnis bildet. Das quasigeodätische
System ist identisch mit dem sogenannten Doppelverhältnis-System2*) über dem
Abbildungsgewebe. Die Doppelverhältnis-Eigenschaft ist invariant gegenüber
topologischen Abbüdungen, das heisst, sie besteht auch im ursprünglichen Bild in £. Bei
Zentralprojektion besteht diese Doppelverhältniseigenschaft offensichtlich nicht; der
Leser möge sich dies etwa anhand der Figur 4 selbst überlegen.

Satz 7: Bei der axonometrischen Darstellung der geodätischen Abbildungen sind die

Parallelprojektionen dadurch ausgezeichnet, dass das durch die Raumgeraden in der
Bildebene erzeugte quasigeodätische System stets das Doppelverhältnis-System zum

Abbildungsgewebe ist.
Bemerkenswert ist an Satz 7, dass darin

die Form der Skalen auf den Koordinatenachsen

gar nicht erscheint.
Im Lichte unserer neuen Begriffsbildungen

lässt sich das bekannte Pohlkesche
Theorem folgendermassen aussprechen:

Besitzt eine axonometrische Abbildung
des Raumes auf eine Ebene £ ein
Grundgewebe aus 3 Parallelenscharen und sind
die 3 Skalen auf den Nullinien regulär, so

ist £ ähnlich zu einer Parallelprojektion
des Raumes auf eine Ebene oc.

Daneben schliessen wir auf Grund von
Satz 7 leicht auf

Satz 8: Gehen bei einer stetigen Perspektive die Geraden des Raumes in das

Doppelverhältnis-System zum Abbildungsgewebe über, so ist £ topologisch äquivalent zu einer

Parallelprojektion des Raumes auf eine Ebene ol.

Ein Vergleich der beiden Aussagen zeigt, dass Satz 8 in gewissem Sinne eine

topologische Verallgemeinerung des Theorems von Pohlke darstellt.
M. Jeger, Luzern

Figur 12
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Ungelöste Probleme

Nr. 21. In der Ebene sei ein Dreieck D vorgelegt. Wir fragen, ob sich diesem D eine
von seinem Umkreis K verschiedene Eilinie E so umschreiben lässt, dass D in E derart
stetig herumgeführt werden kann, dass D nach einer vollen Umdrehung in der Ebene
wieder mit sich zur Deckung kommt und hierbei dauernd der festen Eilinie E
einbeschrieben bleibt.

1. Erstens sei angemerkt, dass das reguläre Dreieck die oben geschilderte Eigenschaft

tatsächlich aufweist1). Sind nämlich D' und D" zwei verschiedene, mit dem
regulären Dreieck D kongruente Dreiecke, die eine Seite gemeinsam haben, und ist
E das dem durch D' und D" gebildeten Rhombus umschriebene Kreisbogenzweieck
(vgl. Figur 1), so lässt sich D, das der Eilinie E einbeschrieben vorausgesetzt werden

Figur 1

D'

Figur 2

darf, in der Tat in der vorgeschriebenen Weise in E herumführen; die beiden Scheitel
der Kreisbogen von E spielen bei diesem Drehvorgang abwechselnd die Rolle des
Drehzentrums. Im übrigen scheint das hier beschriebene Beispiel das einzige dieser
Art zu sein.

2. Zweitens wollen wir feststellen, dass es beliebig viele Dreiecke D gibt, die unsere
Eigenschaft sicher nicht aufweisen. Es sei D ein gleichschenkliges Dreieck. Der beim
Mittelpunkt Z des Umkreises K von D gemessene Zentriwinkel des einem Schenkel
zugeordneten Umkreisbogens sei a, und wir wollen voraussetzen, dass a mit n
inkommensurabel ist. D kann dann unsere Eigenschaft nicht haben. In der Tat: Nehmen
wir an, E sei eine D umschriebene von K verschiedene Eilinie der verlangten Art.
Wir drehen nun D um den Umkreismittelpunkt Z der Reihe nach im positiven Sinn
um die Winkel a, 2a, 3a,... und bezeichnen die Drehbilder von D in gleicher Reihen-

1) Das nachfolgend angegebene Beispiel findet sich bei L. M.Jaglom und W. G. Boltjanski, Konvexe
Figuren (Berlin 1956), S. 82.
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