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Ungelöste Probleme

Nr. 20. Wir stellen die Frage Mit wievielen translatwnsgleichen Exemplaren lasst
sich ein Eikörper vollständig überdecken, so dass er ganz im Innern der Vereinigungsmenge

der nur durch Verschiebung aus ihm hervorgehenden Korper enthalten ist
Die genaue Formulierung des Problems lautet wie folgt Es sei k ^ 1 eine natürliche

Zahl, und Nk bezeichne die kleinste natürliche Zahl, fur welche die nachfolgende
Aussage richtig ist Ist A em eigentlicher konvexer Korper des /e-dimensionalen
euklidischen Raumes, so gibt es n mit A translationsgleiche Korper At (i 1, n) mit
n <^Nk derart, dass jeder Punkt von A em innerer Punkt der Veremigungsmenge
UxAt ist, so dass also A in diesem Sinne durch n translationsgleiche Exemplare
vollständig überdeckt wird, wobei n höchstens Nk ist.

Die zur gewünschten Überdeckung ausreichende Anzahl n hangt übrigens sehr
stark von der Form des individuell gewählten Korpers ab. Hat A beispielsweise eine
reguläre Randflache, so reicht bereits n k + 1 aus Wie man mit Anwendung eines
Schubfachschlusses leicht einsehen kann, gilt bei einem Parallelotop fur die kleinste
m Betracht fallende Anzahl bereits n-=2k, damit ist gezeigt, dass jedenfalls Nk ^ 2k

ausfallen muss. Tnvialerweise gilt Nx =- 2 Ferner ist leicht nachzuweisen, dass N2 4

ist, hierbei wird die höchste erforderliche Exemplaranzahl n — 4 lediglich beim
Parallelogramm benotigt. Wie F. W. Levi1) nachgewiesen hat, reicht bei jedem vom
Parallelogramm verschiedenen ebenen Eibereich schon n 3 aus. Die Levische
Schlussmethode ist nicht auf höhere Dimensionen übertragbar. Welchen Wert hat
Nk fur k ^ 3? H Hadwigfr

Kleine Mitteilungen

Einfacher Beweis und Verallgemeinerung einer Dreiecksungleichung

Es sei O em beliebiger Punkt im Innern eines Dreiecks AXA2AZ Bezeichnen wir mit
Rt (i 1, 2, 3) den Abstand ÖAX, mit r% den Abstand der Seite Ai + XA%^ 2 von O, so gilt
die Ungleichung

RxR2Rz^Srxr2rz. (1)

*) F.W. Levi, Arch Math 0,369-370(1955) Überdeckung eines Eibereiches durch ParallelVerschiebung

seines offenen Kerns.
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Gleichheit besteht nur, wenn O der Mittelpunkt eines gleichseitigen Dreiecks ist Einen
nicht elementaren Beweis von (1) findet man in dem Werk von L Fejes-Töth, Lage-
rungen in der Ebene, auf der Kugel und im Raum (Springer-Verlag 1953), S 33 Der
folgende Beweis ist ganz elementar

Bezeichnen wir mit Rt + zt (t l, 2, 3) die Langen der drei durch O gehenden
Ecktransversalen, mit F die Flache des Dreiecks AXA2AZ und mit Fx die Flache des
Dreiecks OAi + xAt + 2, so gilt

£-*fc-g('-xh;)-'-,$$-' (2)

Wegen r% ^ z% erhalt man die Ungleichung

3

y "t-• ^ 2 (3)

Beseitigt man m (3) die Nenner, so ergibt sich nach leichter Rechnung

ÄMi ^ 2 + *L + 1* + ** (4)'l'i'i rx r2 rz w
Nach der bekannten Ungleichung zwischen arithmetischem und geometrischem Mittel
haben wir ferner

3 \rx ^ r2
"*" rz) ~ ]/ rxr2rz ' (5)

Aus (4) und (5) folgt jetzt

A*- 3 A _ 2 (A + l)2 (A - 2) ^ 0

Somit ist A ^ 2, 3 A *> 6 und (1) folgt unmittelbar aus (4)
Mit dieser Methode kann auch eine analoge Aussage fur das Tetraeder bewiesen

werden Es bedeute jetzt R% (i 1, 2, 3, 4) den Abstand 0A%, wo 0 em beliebiger
Punkt im Innern des Tetraeders AxA2AzAi ist, und rt den Abstand der Seitenfläche
^*ii^*^2^ii-3 von ^ Dann gilt die Ungleichung

RxR2RzR^Slrxr2rzr4 (1*)

Gleichheit tritt ein, wenn 0 der Mittelpunkt eines regulären Tetraeders ist Ist V das
Volumen des Tetraeders A XA2AZ AA und Ftdas Volumen des Tetraeders OA% + 1At+2At+8,
so gilt, wenn wieder Rt + z$ die Langen der durch O gehenden Ecktransversalen sind,

.£¦&-£('-T^r)—,#=' <*•>

Wegen rt<Zzt erhalt man
JL t?

^3. (3*)

Anstelle von (4) ergibt sich jetzt
4 D 4

Durch zweimalige Anwendung der Ungleichung zwischen arithmetischem und geo-
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metrischem Mittel erhalt man

(5*)

Aus (4*) und (5*) folgt jetzt

G*_ 6 G2- 8G-3 (G + l)3(G-3)^0
Somit ist G S> 3, woraus (1*) unmittelbar folgt J B*rkes, Szeged

Betrachtung zur Technik der Zürcher Proportionalwahlen

Es sollen n gleiche und unteilbare Gegenstande in g Gruppen aufgeteilt werden, und
zwar ungefähr proportional zu den natürlichen Zahlen st, i 1, 2, g, deren Summe
5 sei Die genau proportionale Verteilung St n sjs ist im allgemeinen nicht
ganzzahlig und daher nicht realisierbar Eine ganzzahlige Näherung nx, i 1, 2, g, mit
der Summe n soll gemäss den Zürcher Proportionalwahlen nach folgenden Regeln
bestimmt werden

1 Bestimmung der Verteilungszahl i [s/(n 4-1)] 4-1
2 Erste Verteilung At=sjv, a%=[At] Die Summe der at ist höchstens gleich n

Ist sie gleich n, dann ist definitiv nt at Andernfalls folgt
3 Bestimmung der Quotienten Qt= sj(at + l) Unter ihnen hat mindestens einer

maximale Grosse, etwa Q Haben mehrere diesen Wert, dann wählt man unter ihnen
denjenigen mit dem grossten st Versagt auch dieses Kriterium, so entscheidet das
Los Auf jeden Fall wird man so auf einen bestimmten Index k gefuhrt, fur den
0 sk/(ak + 1) ist, und es folgt

4 Zweite Verteilung
iax (i*k)
\ak + l (i k)

Ist nun die Summe der bt gleich n, dann ist definitiv nt= bt \ndernfalls folgt
5 Wiederholung von Regel 3 mit den Quotienten ß/ sJ(bt-\-1) und entsprechend

von Regel 4, und dies so lange, bis die Summe n erreicht ist
Auf Grund der Regeln 1 bis 5 folgt
a) Es gibt einen positiven Proportionahtatsfaktor cp so, dass die folgenden

Ungleichungen erfüllt sind
nt^cpst^nt+l (» 1,2, g) (1)

b) Die an den genauen Zahlen St eventuell bewirkten Abwertungen sind bei allen
Gruppen stets kleiner als 1, die eventuellen Aufwertungen dagegen nur kleiner als g — 1

c) Bei nur zwei Gruppen ist die Aufwertung der einen Gruppe gleich der Abwertung

der andern, und es wird diejenige Gruppe aufgewertet, fur die der Ausdruck
([5t] + 1) (S,— [SJ) den grosseren Wert hat Die grossere Gruppe hat also bessere
Aufwertungschancen

Zum Beweis dienen folgende Überlegungen
Eine Gruppe von g Zahlen X% (sie sind im folgenden alle nichtnegativ) werde aufgefasst

als Parallelkoordmaten eines Punktes (X%) in einem g-dimensionalen Raum Zur
Abkürzung werde etwa (Xt) 3 gesetzt und (xt) f usw Der Nullpunkt heisse cd

Die Punkte 3, welche den Ungleichungen x%^.X%^x% + l genügen, bilden eine
Zelle, die durch {x%} symbolisiert sei Die Ungleichungen (1) bedeuten dann die Zelle
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{nt} enthalt mindestens einen Punkt des Strahles co a Es ist ein innerer Punkt der
Zelle wenn überall das Ungleichheitszeichen gilt Die Summe der ganzen Zahlen xi
sei als Rang der 7elle {xt} bezeichnet Dann gilt

Wenn em Strahl cd o innere Punkte einer Zelle {nt} enthalt dann enthalt er keine
Punkte irgendeiner andern Zelle desselben Ranges Daraus folgt Wenn P ein gemein
samer Randpunkt zweier Zellen desselben Ranges ist, dann enthalt der Strahl co P
keinen inneren Punkt irgendeiner Zelle dieses Ranges

Beweis Wenn die Zelle {bt} den gleichen Rang haben soll wie {at}, dann muss
mindestens ein bt, etwa bx, um mindestens 1 grosser sein als ax, und mindestens ein anderes
etwa b2, muss um mindestens 1 kleiner sein als a2 Ware nun (Xt) ein innerer Punkt von
{at} und zugleich (UXt) ein innerer oder Randpunkt von {bt}, dann musste sein

ax < Xx < ax 4-1 ^ bx ^ UXX ^ bx 41,
also (/>!, und ebenso

b2^UX2^b2+l^a2<X2<a2-\ 1,

also U<1, was unmöglich ist
Nun ist nach Regel 2 (^4,) ein Punkt von {at}t und wegen v > s/(n 4-1) ist der Rang

\on {at}^n Im Fall der Gleichheit ist somit (1) erfüllt mit cp l/v Im Falle der
Ungleichheit sei (£,) (vAJQ) gesetzt Zufolge Regel 3 ist dann Bt^at4-1, wobei
das Gleichheitszeichen mindestens fur i =- k gilt Ferner ist

±_ JL v(ak + x) ^ f*±L-> i
Q Qk *k Ak

und daher Bt>At, und zwar gleich at + l fur i k Zufolge Regel 4 ist also (Bt) ein
Punkt der Zelle {bt}, und wenn nt= bt ist, ist (1) erfüllt mit cp 1/Q Kommt auch noch
Regel 5 ins Spiel, so sei 0' S//(fy-fl) das Maximum der Quotienten Qt und die dritte
Verteilung c%— bx fur i4=l und ct— bt + l Setzt man dann (Ct) (vBJQ'), so zeigt eine
analoge Überlegung, dass (C%) ein Punkt von {cx} ist Ist Qk nicht der einzige der
Quotienten Q%, welcher das Maximum Q erreicht, so ist v/Q'=l und (C%) (B%), und dies
bleibt beim Weiterfahren so, bis alle gleichen Quotienten aufgebraucht smd, wahrend
der Rang der Zellen immer um 1 wachst Schliesslich erreicht man eine Zelle vom
Range n, womit dann (1) mit entsprechendem cp erfüllt ist Damit ist a) bewiesen

Die Punkte (At), (Bt), (Ct) usw bis zum letzten, (Lt), liegen alle auf dem Strahl co a,
mit cr= (5,) (Lt) ist ein Punkt der Zelle {nt}, und seine Koordinatensumme ist deshalb
nicht kleiner als n (St) hegt ebenfalls auf coo* und hat die Koordinatensumme n
Daher gilt fur alle 1 St^Lt^.nt + l Dabei gilt das erste Gleichheitszeichen nur,
wenn überhaupt (Sf) — (Lt) — (n,) ist, denn die sf smd alle >0 Ist nun zum Beispiel
Sx > nx, dann ist bestimmt Sx < Lx und daher die Abwertung Sx — nx < 1 Ist aber
Sx < nx, so ist ebenfalls St < L% fur alle 1, weil (n%) der einzige Zellenpunkt mit der
Koordinatensumme n ist Ferner ist nx — Sx gleich der Summe der Differenzen S% — n%

uber alle x, ausgenommen 1 Diese Differenzen sind aber alle kleiner als Lt — n%, und jede
der letzteren ist höchstens 1 Daher ist die Aufwertung nx — Sj kleiner als g — 1 Damit
ist auch b) bewiesen

Wenn schliesslich g 2 ist, dann ist auch die Aufwertung < 1 und natürlich gleich
der Abwertung der andern Gruppe Es kommen also nur die beiden Losungen
A ([SJ, [SJ 4-1) und A'= ([SJ +1, [S2]) m Frage Die zugehörigen Zellen haben
einzig den Randpunkt g ([SJ 4-1, [SJ 4-1) gemein Der Strahl cd q enthalt keinen
andern Punkt dieser Zellen, das folgt aus dem oben bewiesenen allgemeinen Satz
oder auch unmittelbar aus der geometrischen Anschauung co q teilt die Strecke A A' im
Verhältnis ([SJ4-1) ([SJ + 1), wie ebenfalls geometrisch leicht ersichtlich Der
Schnittpunkt (St) des bestimmenden Strahles coa mit der Strecke Xkf hegt somit auf
dem einen oder andern Abschnitt, je nach dem in c) angegebenen Kriterium

Das Wesentliche der gefundenen Resultate besteht in folgendem
1 Die Aufrundungen können 1 und sogar grösser als 1 sein Das widerspricht dem

Grundgedanken, dass alle Rundungen kleiner als 1 bleiben sollten. Theoretisch kann
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eine Aufrundung fast den Betrag g — 1 erreichen, dann namhch, wenn eine übermächtige
Gruppe die Zuteilungen aller andern, denen vielleicht nur eine einzige Stimme

fehlt, aufsaugt Doch kommt ein so extremer Fall in der Praxis eines Wahlganges
kaum vor Entscheidend wichtig ist aber der nächste Punkt

2 Die Auf und Abrundungen sind nicht rem zufällig, bedingt durch die Abweichung
der St von der nächsten ganzen Zahl, sondern sie werden systematisch beeinflusst von
der Gruppengrosse [siehe c)] Nun erfolgt die Verteilung bei einer Proportionalwähl
stets getrennt in einer grosseren Anzahl von Wahlkreisen, deren relative Gruppengrossen

nicht stark voneinander abweichen Der Laie erwartet, dass sich dabei die
Abweichungen der einzelnen Wahlkreise mehr oder weniger ausgleichen Soweit sie
aber systematisch bedingt sind, müssen sie sich im Gegenteil summieren Die Praxis
zeigt das klar, und der Stimmburger steht nicht selten verständnislos vor einer
Verteilung, die mit Proportionalität wenig zu tun hat \ Stoll, 7unch

Verallgemeinerung des Jacobischen Knotensatzes

1 Jacobi hat fur das astronomische Dreikorperproblem aus dem Satz von der Erhaltung

des Impulsmomentes eine Folgerung gezogen, die als Knotensatz bezeichnet wird
Bei seinem Beweise werden gewohnlich die Bewegungen der drei Korper als gestörte Kepler

Bewegungen betrachtet, so dass gewisse Formeln aus der Theorie dieser Bewegungen
explizit m den Beweis eingehen [l]1) Hierdurch wird aber die Tatsache verdeckt, dass
es sich gar nicht um einen spezifischen Satz der Himmelsmechanik handelt, sondern
vielmehr um einen Satz, der fur jedes Dreikorpersystem mit Zentralkraften gilt

Um anschaulich zu machen, worum es sich handelt, betrachten wir zunächst einen
Spezialfall Es seien m0= 1, mx<^l, m2<^l die Massen der drei Korper 0, 1, 2, r0, xx, x2
ihre Ortsvektoren, bezogen auf den Schwerpunkt des Systems, und n0, nlf n2 die
entsprechenden Geschwindigkeitsvektoren Nun gelten fur jedes n-Körpersystem mit
Zentralkraften der Schwerpunktsatz sowie die Satze von der Erhaltung des Impulses
und des Impulsmomentes Im vorliegenden Fall lauten sie

r0 + mlxl + m%Tl'-0l

»o4-w1o14-w2n2=0,

tQ X üo 4- rnx xx X x>x 4- m2 r2 X o2 F) s fonft.

Wir fuhren die relativen Orts- und Geschwindigkeitsvektoren

n'=rt-r0,
(t~1.2)

u/=nt-D0,
in den Erhaltungssatz fur das Impulsmoment em Eine kurze Zwischenrechnung, bei
der wir vom Schwerpunkt- und vom Impulssatz Gebrauch machen, ergibt dann

2

JTVW| t/ x 0/ f) 4- (mx xx 4- m2 x2) X (nix x>[ 4 m2 u2') \) 4- O (m\ 4- m\)
1

Im Falle \) 0 sind also die Relativbewegungen der beiden Trabanten in jedem Augenblick

nahezu komplaner bei entgegengesetztem Umlaufsinn
Fur das folgende werde f) 4= 0 vorausgesetzt Wir erweitern vektonell mit dem zu f)

kolhnearen Einheitsvektor n und erhalten

2Jmt (r,' X 0/) X n £> (m\ 4- m\)

l) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 127
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Die beiden Vektoren auf der linken Seite deuten wir anschaulich folgendermassen:
Wäre zum Beispiel *w2=0 und rtXüi + O, so würde sich der Körper 1 in der durch
x[ und r>[ aufgespannten Ebene bewegen. x{ X »i steht auf dieser « momentanen
Bahnebene» senkrecht. Ferner steht n auf der invariablen Ebene des Systems senkrecht.
Wenn diese beiden Ebenen nicht zusammenfallen, so liegt der Vektor (x[ Xt)[)Xn
in ihrer Schnittlinie, der « Knotenlinie », und prägt ihr eine Orientierung auf. Aus der
letzten Gleichung lesen wir daher ab: Die Richtungen der beiden Knotenlinien sind
nahezu entgegengesetzt. Genauer ergibt eine leichte Rechnung für den Winkel zwischen
den Knotenlinien den Wert n 4-0 (mx-\-m2). Das ist unsere spezielle Fassung des
Knotensatzes.

2. In der allgemeinen Fassung werden keinerlei Voraussetzungen über die drei Massen
gemacht. Definiert man nun nach Jacobi neue «Ortsvektoren» 9^, %2 durch

«j _r r «? _r ^x^mxxxyix-=xx-x0, 9t2=r2 —,rnQ-j-mx

neue « Geschwindigkeitsvektoren » 93^, 332 entsprechend und neue « Massen » Mx, M2
durch [1]

** m0 ** Wa + rn*;tf~ ~—mx, M2= ,° *—m2,
mQ + mx m0 + mx + m2

so gilt der Erhaltungssatz
Mx${xx%l + M2%X%2= 0.

Für ihn hat Jacobi im Falle des astronomischen Dreikörperproblems die geometrische
Deutung mittels der Knotenlinien gegeben. Dieser Erhaltungssatz überträgt sich aber
(wie man ohne weiteres nachrechnet) auf Systeme mit beliebigen Zentralkräften
zwischen den drei Körpern. Indem man wieder mit n vektoriell erweitert, erhält man
den allgemeinen Knotensatz - nun aber in der schärferen Form, dass die Richtungen
der beiden Knotenlinien exakt entgegengesetzt sind.

3. Wenn die Zentralkräfte den Massen proportional sind, so können wir dem speziellen
Satz eine vielleicht noch anschaulichere Form geben. Die beiden relativen

Ortsvektoren x'x> xi sind dann nämlich nahezu kollinear mit den relativen Beschleunigungen
t( bzw. xi. Und zwar gilt

V- <P(\ t.D -j^p + O («i + «•) (< - 1. 2).

wobei ± q>(r) den Betrag der Kraft zwischen zwei Einheits-Massenpunkten im Abstände
r voneinander bedeutet. Das ergibt sich ohne weiteres aus den Newtonschen
Bewegungsgleichungen

x0^mxcp(\xx-x0\) |**I*°i +*»ay(|ra-t0|) |r2lrl| ' USW*

Drückt man nun in der letzten Gleichung des ersten Abschnitts r/ durch r/ aus, so folgt

wobei wir t/ für »/ geschrieben haben. Nun steht der Vektor (¥/ X i/) auf der oskulie-
renden Ebene des betreffenden Trabanten senkrecht (« oskulierend » im Sinne der
Differentialgeometrie, nicht im Sinne der Himmelsmechanik). Daher gilt: Der Winkel
zwischen den orientierten Geraden, in denen die oskulierenden Ebenen der beiden Trabanten
die invariable Ebene des Systems schneiden, beträgt n+0 (mx-{-mt).

Der allgemeine Knotensatz lässt die entsprechende Umformulierung nicht zu. Der
Beweis dieser letzten Behauptung ist an sich einfach, aber etwas umständlich und mag
daher übergangen werden.
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4. Für die Veranschaulichung des Satzes an konkreten Beispielen ist die spezielle
Fassung bequemer. Zwei Fälle sind möglich: 1. Zentralkörper-Trabant-Untertrabant,
und 2. Zentralkörper-Trabant-Trabant. Der erste Fall wird durch das System Sonne-
Erde-Mond verwirklicht. Bei ihm leuchtet der behauptete Sachverhalt anschaulich
sofort ein. Interessanter ist der zweite Fall. Mars mit seinen beiden Monden würde ihn
repräsentieren, vorausgesetzt, dass die Störkraft der Sonne nicht zu gross ist. Leider
scheint dies aber der Fall zu sein [2]. Natürlich liesse sich der Einfluss äusserer
Störkräfte mittels der Erhaltungssätze für das «-Körper-System exakt abschätzen. Bei zu
grossen Störkräften (wie sie allem Anschein nach tatsächlich vorliegen) wird jedoch
diese Abschätzung inhaltslos. Vielleicht wird der Fall 2 von Neptun und seinen beiden
Trabanten verwirklicht. Da aber der zweite Mond erst vor kurzem entdeckt worden ist,
so dürften die erforderlichen Daten noch nicht erhältlich sein. R. Kuuth, Manchester

LITERATURVERZEICHNIS

[1] C. L. Charlier, Die Mechanik des Himmels, Band 1 (Leipzig 1902).
[2] H. Struwe, Über die Lage der Marsachsen und die Konstanten im Marssystem. Sitz.-

Ber. preuss. Akad. Wiss. 1911.

Spieltheoretische Betrachtungen zur Stummen Mora

Das untenstehende strategische Spiel hat sich in der Spieltheorie als fundamental
erwiesen. Es gestattet, den besonders wichtigen Begriff der gemischten Strategie in

8 u

g 4-1 -1
u -1 4-1

g gerade; u ungerade.

elementarer und anschaulicher Weise einzuführen. In der englischen Literatur erscheint
die angeschriebene Matrix als schematische Darstellung des Matching Pennies. Es ist
ein Zweipersonenspiel mit Summe Null und wird gespielt, indem zwei Spieler beide
gleichzeitig eine Münze auf den Tisch legen. Zeigen beide «Kopf», dann hat der erste,
andernfalls, wenn beide Münzen «Zahl» aufweisen, der zweite eine Einheit gewonnen.
Dieses Spiel hat sicher auch seinen Reiz, mag indessen, auf die Länge gespielt, eintönig
wirken. Es dürfte deshalb nicht uninteressant sein, darauf hinzuweisen, dass es ein
anderes Spiel gibt, das die gleiche strategische Matrix aufweist, grösseren Anreiz bietet
und gleichzeitig zu interessanten psychologischen Erwägungen führt. Es handelt sich
um die Stumme Mora, ein (2 X 2)-Strategienspiel, das gegenüber der allgemeinen Mora
den Vorteil hat, dass es mit weniger Aufsehen und Lärm gespielt werden kann. Jede
Person weist bei jeder Runde mit der rechten Hand eine Anzahl ausgestreckte Finger
vor. Ist die Summe der ausgestreckten Finger gerade, dann hat der erste Spieler, ist
sie ungerade, dann der zweite Spieler eine Einheit gewonnen. Die «reinen Strategien»
der beiden Spieler bestehen darin, dass beide die Möglichkeit haben, entweder Gerade
oder Ungerade zu bieten. Die Minimax- bzw. Maximin-Strategien ergeben sich durch
Mischung dieser reinen Strategien im Verhältnis 1:1. Der Wert des Spieles ist Null,
das heisst, es handelt sich um ein faires Spiel.

Besonderen Reiz gewinnt das Spiel dadurch, dass es jedem Spieler unbenommen ist,
seinen Gegner auszuspionieren, sein allfälliges ungeschicktes Verhalten auszunützen,
um dadurch entsprechende Gewinne zu erzielen. Beide können sich, wie die Theorie
zeigt, gegen solche Intentionen nur erfolgreich wehren, indem sie möglichst vorschrifts-
gemäss Gerade und Ungerade mit den Häufigkeiten 0,5 zu 0,5 spielen. Die praktische
Erfüllung dieser Forderung ist indessen schwierig. Wenn ein Spieler aufs Geratewohl
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fortlaufend eine Anzahl Finger ausstreckt, so ist nicht gesagt, dass die Wahrscheinlichkeit
für Gerade gleich gross ist wie für Ungerade. Im Gegenteil, es ist eher anzunehmen,

dass das Gewohnheitsmässige vorherrschend wirkt, so dass Unterschiede auftreten.
Beachtet man ferner, dass in der Zahlenreihe 1, 2, 3, 4 und 5 eine gerade Summe nur
zweimal, eine ungerade aber dreimal vertreten ist, so muss man nach dem Satz des
mangelnden Grundes s^hliessen, dass sich die Wahrscheinlichkeiten für Gerade und
Ungerade bei undeterminierter Spielweise wie 2:3 verhalten, also nicht wie 1:1, wie es
erforderlich wäre. Das heisst also, dass ein Spieler, der es versteht, sich von jedem
gewohnheitsmässigen Verhalten zu befreien und alle Fingerzahlen entsprechend ihrer
Häufigkeit bietet, strategisch nicht richtig vorgeht, weil er die Verteilung 0,4:0,6, statt
0,5:0,5 benützt. Verfallen beide Spieler dem gleichen Fehler, so zeigt die Rechnung,
dass dem ersten im Durchschnitt ein unverdienter Gewinn von 0,04 pro Runde zufällt,
während dem zweiten ein ebensogrosser Verlust erwächst. Erkennt ein Spieler diese
Ungeschicklichkeit beim andern, so kann er sie ausnützen und im Durchschnitt einen
Gewinn bis zu 0,2 pro Runde erzielen, also einen beachtenswerten Erfolg erreichen,
wenn man bedenkt, dass bei geübten Spielern eine Runde nur etwa eine Sekunde
beansprucht. Die Aufgabe, direkt, ohne Zuhilfenahme eines Zufallsmechanismus oder
von Tabellen über Zufallszahlen, mit einer Wahrscheinlichkeit von 0,5 zu spielen,
dürfte kaum zu bewältigen sein. Der Mensch erscheint ausserstande, rein zufällig zu
handeln. Er besitzt keine in ihm eingebaute «Urne», auf die er sich verlassen könnte.
Er besitzt bloss die «Fähigkeit», gedankenlos zu handeln. Dieses kann indessen einem
zufälligen Benehmen nicht gleichgestellt werden. Die gedankenlose Verrichtung einer
Aufgabe wird erfahrungsgemäss durch instinktives Verhalten stark beeinflusst, was
beim Spiel tunlichst vermieden werden muss.

Die Aufgabe, den Zufall zu imitieren, ohne umständliche Zufallsmechanismen zu
Hilfe nehmen zu müssen, dürfte im Falle der Stummen Mora am ehesten gelingen, wenn
sich der Spieler darauf beschränken könnte, die Zahl der Finger mit gleicher Frequenz
erscheinen zu lassen. Es stellt sich damit die Frage, ob das Spiel so modifiziert werden
kann, dass diese Forderung erfüllt wird. Tatsächlich bestehen dazu, wie man auf
Grund der Spieltheorie nachweisen kann, verschiedene Möglichkeiten.

1. Werden die Werte der strategischen Matrix abgeändert, so dass diese lautet:

S u

s 2 -1
u _1 1

so ergeben sich sowohl für die Maximin- als auch für die Minimax-Strategie das
gewünschte Zahlenverhältnis 2:3. Die gestellte Bedingung wäre also erfüllt. Dieses Spiel
ist aber nicht fair. Sein Wert ist v 1/5, das heisst, auf fünf Runden könnte der erste
Spieler bei strategisch richtigem Verhalten im Durchschnitt eine Einheit gewinnen.
Damit der zweite Spieler nicht von vornherein benachteiligt ist, musste sich der erste
auf Grund einer NebenVereinbarung verpflichten, für je fünf Spiele eine Entschädigung
von einer Einheit an den zweiten zu zahlen.

2. Indessen lassen sich die Zahlenwerte der strategischen Matrix auch so ändern,
dass das gewünschte Zahlenverhältnis resultiert und das Spiel trotzdem fair bleibt.
Das einfachste Beispiel dürfte sein:

g u

e 9 -6
u -6 4

Der Wert dieses Spieles ist tatsächlich Null, während die besten Strategien das
Zahlenverhältnis 2:3 aufweisen.
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Selbstverständlich kann die Stumme Mora auch anders gespielt werden, so zum
Beispiel nur mit vier Fingern. Da eine Hand fünf und nicht vier Finger aufweist,
ergeben sich bei solchen Abarten leicht Zweideutigkeiten, so dass eine Änderung der
Zahlenmatrix wohl vorzuziehen wäre.

Jedenfalls erscheint es überraschend, dass ein elementares Spiel wie die Stumme Mora
bereits Ingredienzen enthält, zu deren Klärung die Hilfsmittel der Spieltheorie
herangezogen werden müssen. P. Nolfi, Zürich

Aufgaben

Aufgabe 276. If {x} denotes the integer closest to x, prove that

A ^ f^»1 (3 w 4-1 - iVn}1)
jTtyk} ALU .—VLU. 0
a>=i

Leo Moser, Edmonton (Kanada), und J.Lambek, Montreal
Lösung: Alle Buchstaben sollen natürliche Zahlen bedeuten. Es ist

{^M^} j|/(a+4-)2--l}=«. (1)

Unter den Zahlen k mit fyk} a ist a2 4- a offenbar die grosste. Die Anzahl dieser k
ist somit

a* + a-[(a-l)2 + a-l] 2a.
Hieraus folgt

%{W-fr*-p{p+V2p+1) -$w+p)+*-n- (2)
A-l

(3)

(*) ist also wegen (1) für n p* + p richtig. Hieraus folgt für q < 2 p

gw W[-;-W),jw,A«l k=n-q+l
Wegen

n

{fit} p {]fiTrq} und 27 {fö} 1P=9{fi^l}
k=n-q+l

geht (3) über in

Ä-l 3

Auch in diesem Fall ist also (*) gültig. Da (2) für jedes p richtig ist, gilt (*) allgemein.
F. Leuenberger, Zuoz

Wird die rechte Seite von (*) mit /(«) bezeichnet, so gilt

f(n + l)-f(n) {Vn~Tl}.

Wegen /(l) 1 ergibt sich hieraus (*) durch vollständige Induktion.
Weitere Lösungen sandten A. Bager (Hjorring), L. Carlitz (Durham, N. C, USA),

R. Lauffer (Graz), F. Leuenberger (2. Lösung), H. Meili (Winterthur), J. Piehler
(Leuna), W. Richter (Neuchätel).
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