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Ungeloste Probleme

Nr. 20. Wir stellen die Frage: Mit wievielen translationsgleichen Exemplaren lisst
stch esn Eikorper vollstindig iiberdecken, so dass er ganz im Innern der Vereinigungs-
menge der nur durch Verschiebung aus thm hervorgehenden Korper enthalten ist ?

Die genaue Formulierung des Problems lautet wie folgt: Es sei 2 =1 eine natiir-
liche Zahl, und N, bezeichne die kleinste natiirliche Zahl, fiir welche die nachfolgende
Aussage richtig ist: Ist A ein eigentlicher konvexer Koérper des k-dimensionalen eukli-
dischen Raumes, so gibt es » mit A translationsgleiche Korper 4; (¢ =1, ..., #) mit
n < N, derart, dass jeder Punkt von A ein innerer Punkt der Vereinigungsmenge
UpA; ist, so dass also 4 in diesem Sinne durch » translationsgleiche Exemplare
vollstandig tiberdeckt wird, wobei # hochstens N, ist.

Die zur gewiinschten Uberdeckung ausreichende Anzahl » hingt iibrigens sehr
stark von der Form des individuell gewdhlten Korpers ab. Hat A beispielsweise eine
regulire Randfliche, so reicht bereits #n = k& + 1 aus. Wie man mit Anwendung eines
Schubfachschlusses leicht einsehen kann, gilt bei einem Parallelotop fiir die kleinste
in Betracht fallende Anzahl bereits # = 2*; damit ist gezeigt, dass jedenfalls N, = 2*
ausfallen muss. Trivialerweise gilt N; = 2. Ferner ist leicht nachzuweisen, dass N, = 4
ist; hierbei wird die hochste erforderliche Exemplaranzahl » == 4 lediglich beim
Parallelogramm benétigt. Wie F. W. LEv1!) nachgewiesen hat, reicht bei jedem vom
Parallelogramm verschiedenen ebenen Eibereich schon # =3 aus. Die Levische
Schlussmethode ist nicht auf héhere Dimensionen iibertragbar. Welchen Wert hat
N, fir 2 = 3? H. HADWIGER

Kleine Mitteilungen

Einfacher Beweis und Verallgemeinerung einer Dreiecksungleichung

Es sei O ein beliebiger Punkt im Innern eines Dreiecks 4, 4, 4;. Bezeichnen wir mit
R;(i=1, 2, 3) den Abstand OA4;, mit #; den Abstand der Seite 4;,,4;,, von O, so gilt
die Ungleichung

R RRy= 87 7,75, (1)

1) F.W. Levi, Arch. Math. 6, 369-370 (1955). Uberdeckung eines Eibereiches durch Parallelverschie-
bung seines offenen Kerns.
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Gleichheit besteht nur, wenn O der Mittelpunkt eines gleichseitigen Dreiecks ist. Einen
nicht elementaren Beweis von (1) findet man in dem Werk von L. FEjEs-TOTH, Lage-
rungen in der Ebene, auf der Kugel und im Raum (Springer-Verlag 1953), S. 33. Der
folgende Beweis ist ganz elementar.

Bezeichnen wir mit R;+ 2z (1 =1, 2, 3) die Lingen der drei durch O gehenden
Ecktransversalen, mit I die Fliche des Dreiecks 4, 4,4, und mit F; die Fliche des
Dreiecks 0A4;,,A4;,,, so gilt

3 R: 3 2 3 F.
$ —— U )“—-3“‘ =& =2. 2
? Rit+z 1=Z1l< Ri+ 2 §F @

)

4=

Wegen 7; < z; erhdlt man die Ungleichung

3
R;

=2, 3

igl: Ri+ 7 i

Beseitigt man in (3) die Nenner, so ergibt sich nach leichter Rechnung

R,\RyR, R, | Ry | R4
Tnn St T T *)

Nach der bekannten Ungleichung zwischen arithmetischem und geometrischem Mittel
haben wir ferner
8
1 /R, R, Ry R,RyR,
szl ©
Aus (4) und (5) folgt jetzt

A3 —3A4-2=(4+1)*(4—2)=0.

A=

Somit ist 4 = 2, 34 =6 und (1) folgt unmittelbar aus (4).

Mit dieser Methode kann auch eine analoge Aussage fiir das Tetraeder bewiesen
werden. Es bedeute jetzt R; (i=1, 2, 3, 4) den Abstand 0A4;, wo O ein beliebiger
Punkt im Innern des Tetraeders 4,4,454, ist, und r; den Abstand der Seitenfliche
A; 14;,:4; .5 von O. Dann gilt die Ungleichung

R,R,R,R, =817 73747,. (1%)

Gleichheit tritt ein, wenn O der Mittelpunkt eines reguliren Tetraeders ist. Ist V das
Volumen des Tetraeders 4, 4,434, und V; das Volumen des Tetraeders04; , 1 4;,,4; 3,
so gilt, wenn wieder R;+ 2; die Lingen der durch O gehenden Ecktransversalen sind,

Y R 4 z 7
= 31— 5= )-—4- =5 =3, 2%
1‘21' R;+ 2 1_2:( R;+ 2 ~V (2%)
Wegen r; < z; erhdlt man
O
t - =3, 3=
2 R, (3%)
Anstelle von (4) ergibt sich jetzt
4 4
Hﬁ%3+225+§R‘R"- (4*)
-1 7 P R SR 14

Durch zweimalige Anwendung der Ungleichung zwischen arithmetischem und geo-
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metrischem Mittel erhalt man

(5%)
4
R;\1/2 R;R 1 R;R
22 i — itk 14tk
G H("i) H”ifk = 62 L4347 '
1>k

1>k

Aus (4*) und (5*) folgt jetzt
G*—6G%2-8G—-3=(G+1)*(G—3)=0.

Somit ist G = 3, woraus (1*) unmittelbar folgt. J. BERKES, Szeged

Betrachtung zur Technik der Ziircher Proportionalwahlen

Es sollen # gleiche und unteilbare Gegenstiande in g Gruppen aufgeteilt werden, und
zwar ungefahr proportional zu den natiirlichen Zahlen s;, 1 =1, 2, ..., g, deren Summe
s sei. Die genau proportionale Verteilung S;=#s;/s ist im allgemeinen nicht ganz-
zahlig und daher nicht realisierbar. Eine ganzzahlige Naherung #»;,: =1, 2, ..., g, mit
der Summe » soll gemdss den Ziircher Proportionalwahlen nach folgenden Regeln
bestimmt werden:

1. Bestimmung der Verteilungszahl v = [s/(» +1)] 4+ 1.

2. Erste Verteilung: 4;=s;/v, a;=[A;]. Die Summe der a; ist hochstens gleich #=.
Ist sie gleich », dann ist definitiv #; = a;. Andernfalls folgt:

3. Bestimmung der Quotienten Q,=s;/(a;+1). Unter ihnen hat mindestens einer
maximale Grosse, etwa Q. Haben mehrere diesen Wert, dann wahlt man unter ihnen
denjenigen mit dem grossten s;. Versagt auch dieses Kriterium, so entscheidet das
Los. Auf jeden Fall wird man so auf einen bestimmten Index % gefiihrt, fiir den
Q = s/(ag + 1) ist, und es folgt:

4. Zweite Verteilung:

a; (l*k),
b;=

Ist nun die Summe der b; gleich », dann ist definitiv #;=b;. Andernfalls folgt

5. Wiederholung von Regel 3 mit den Quotienten Q,”=s;/(b;+1) und entsprechend
von Regel 4, und dies so lange, bis die Summe » erreicht ist.

Auf Grund der Regeln 1 bis 5 folgt:

a) Es gibt einen positiven Proportionalititsfaktor ¢ so, dass die folgenden Unglei-
chungen erfiillt sind:

n,-gq)s,-gn;-{—l (l=1, 2,...,g). (1)

b) Die an den genauen Zahlen S; eventuell bewirkten Abwertungen sind bei allen
Gruppen stets kleiner als 1, die eventuellen Aufwertungen dagegen nur kleiner als g — 1.

c) Bei nur zwei Gruppen ist die Aufwertung der einen Gruppe gleich der Abwer-
tung der andern, und es wird diejenige Gruppe aufgewertet, fiir die der Ausdruck
([S;1+ 1) (S;—[S;]) den grosseren Wert hat. Die grossere Gruppe hat also bessere Auf-
wertungschancen.

Zum Beweis dienen folgende Uberlegungen:

Eine Gruppe von g Zahlen X; (sie sind im folgenden alle nichtnegativ) werde aufge-
fasst als Parallelkoordinaten eines Punktes (X;) in einem g-dimensionalen Raum. Zur
Abkiirzung werde etwa (X;) = E gesetzt und (#;) = § usw. Der Nullpunkt heisse .

Die Punkte Z, welche den Ungleichungen x;<X;<x;+1 geniigen, bilden eine
Zelle, die durch {x;} symbolisiert sei. Die Ungleichungen (1) bedeuten dann: die Zelle
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{n;} enthdlt mindestens einen Punkt des Strahles wo. Es ist ein innerer Punkt der
Zelle, wenn iiberall das Ungleichheitszeichen gilt. Die Summe der ganzen Zahlen x,
sei als Rang der Zelle {x;} bezeichnet. Dann gilt:

Wenn ein Strahl w ¢ innere Punkte einer Zelle {n;} enthilt, dann enthilt er keine
Punkte irgendeiner andern Zelle desselben Ranges. Daraus folgt: Wenn P ein gemein-
samer Randpunkt zweier Zellen desselben Ranges ist, dann enthilt der Strahl o P
keinen inneren Punkt irgendeiner Zelle dieses Ranges.

Beweis: Wenn die Zelle {b;} den gleichen Rang haben soll wie {a;}, dann muss min-
destens ein b;, etwa b;, um mindestens 1 grosser sein als a,, und mindestens ein anderes
etwa b,, muss um mindestens 1 kleiner sein als a;. Wire nun (X;) ein innerer Punkt von -
{a;} und zugleich (UX;) ein innerer oder Randpunkt von {b;}, dann miisste sein:

<X, <a;+1=6,=UX,=b,+1,
also U > 1, und ebenso

also U< 1, was unmoglich ist.

Nun ist nach Regel 2 (4;) ein Punkt von {a;}, und wegen v > s/(n 4 1) ist der Rang
von {a;} =<n. Im Fall der Gleichheit ist somit (1) erfiillt mit ¢ =1/v. Im Falle der
Ungleichheit sei (B;) = (v A4;/Q) gesetzt. Zufolge Regel 3 ist dann B;<a;+1, wobei
das Gleichheitszeichen mindestens fiir 1 = & gilt. Ferner ist

v v _vatl) _adtl

Q O Sk Ay

und daher B;>A4;, und zwar gleich a;+1 fiir ¢ =£%. Zufolge Regel 4 ist also (B;) ein
Punkt der Zelle {b;}, und wenn #n;= b, ist, ist (1) erfiillt mit ¢ = 1/Q. Kommt auch noch
Regel 5 ins Spiel, so sei Q"= s;/(b;+1) das Maximum der Quotienten Q; und die dritte
Verteilung ¢;=b; fiir 1%/ und ¢;=b;+1. Setzt man dann (C;) = (v B;/Q’), so zeigt eine
analoge Uberlegung, dass (C,) ein Punkt von {¢;} ist. Ist Q, nicht der einzige der Quo-
tienten Q;, welcher das Maximum ( erreicht, so ist v/Q’=1 und (C,;) = (B;), und dies
bleibt beim Weiterfahren so, bis alle gleichen Quotienten aufgebraucht sind, wihrend
der Rang der Zellen immer um 1 wichst. Schliesslich erreicht man eine Zelle vom
Range n, womit dann (1) mit entsprechendem ¢ erfiillt ist. Damit ist a) bewiesen.

Die Punkte (4,), (B;), (C;) usw. bis zum letzten, (L,), liegen alle auf dem Strahl w o,
mit o = (s;). (L;) ist ein Punkt der Zelle {#;}, und seine Koordinatensumme ist deshalb
nicht kleiner als n. (S;) liegt ebenfalls auf w ¢ und hat die Koordinatensumme #.
Daher gilt fiir alle i: S;<L;<n;+1. Dabei gilt das erste Gleichheitszeichen nur,
wenn iiberhaupt (S;) = (L;) = (»n;) ist; denn die s; sind alle >0. Ist nun zum Beispiel
S, >n,, dann ist bestimmt S, <L, und daher die Abwertung S,—#n,<1. Ist aber
S; <mn,, so ist ebenfalls S; < L, fiir alle 7, weil (n;) der einzige Zellenpunkt mit der
Koordinatensumme # ist. Ferner ist #»,— S, gleich der Summe der Differenzen S;— 7,
iiber alle 4, ausgenommen 1. Diese Differenzen sind aber alle kleiner als L;— »;, und jede
der letzteren ist héchstens 1. Daher ist die Aufwertung », — S, kleiner als g — 1. Damit
ist auch b) bewiesen.

Wenn schliesslich g = 2 ist, dann ist auch die Aufwertung <1 und natiirlich gleich
der Abwertung der andern Gruppe. Es kommen also nur die beiden Losungen
A=([S,),[Sg]+1) und A= ([S,]+1,[S;]) in Frage. Die zugehorigen Zellen haben
einzig den Randpunkt ¢ = ([S,] +1, [S,] +1) gemein. Der Strahl w g enthilt keinen
andern Punkt dieser Zellen; das folgt aus dem oben bewiesenen allgemeinen Satz
oder auch unmittelbar aus der geometrischen Anschauung. w g teilt die Strecke 11" im
Verhiltnis ([S,] +1):([S,] +1), wie ebenfalls geometrisch leicht ersichtlich. Der
Schnittpunkt (S;) des bestimmenden Strahles w ¢ mit der Strecke A4’ liegt somit auf
dem einen oder andern Abschnitt, je nach dem in c) angegebenen Kriterium.

Das Wesentliche der gefundenen Resultate besteht in folgendem:

1. Die Aufrundungen kénnen 1 und sogar grosser als 1 sein. Das widerspricht dem
Grundgedanken, dass alle Rundungen kleiner als 1 bleiben sollten. Theoretisch kann
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eine Aufrundung fast den Betrag g — 1 crreichen, dann nimlich, wenn eine iibermich-
tige Gruppe die Zuteilungen aller andern, denen vielleicht nur eine einzige Stimme
fehlt, aufsaugt. Doch kommt ein so extremer Fall in der Praxis eines Wahlganges
kaum vor. Entscheidend wichtig ist aber der nichste Punkt.

2. Die Auf- und Abrundungen sind nicht rein zufillig, bedingt durch die Abweichung
der S; von der nidchsten ganzen Zahl, sondern sie werden systematisch beeinflusst von
der Gruppengrodsse [siehe c)]. Nun erfolgt die Verteilung bei einer Proportionalwahl
stets getrennt in einer grosseren Anzahl von Wahlkreisen, deren relative Gruppen-
grossen nicht stark voneinander abweichen. Der Laie erwartet, dass sich dabei die
Abweichungen der einzelnen Wahlkreise mehr oder weniger ausgleichen. Soweit sie
aber systematisch bedingt sind, miissen sie sich im Gegenteil summieren. Die Praxis
zeigt das klar, und der Stimmbiirger steht nicht selten verstindnislos vor einer Ver-
teilung, die mit Proportionalitit wenig zu tun hat. A. StorL, Ziirich

Verallgemeinerung des Jacobischen Knotensatzes

1. Jacosr hat fiir das astronomische Dreikorperproblem aus dem Satz von der Erhal-
tung des Impulsmomentes eine Folgerung gezogen, die als Knotensatz bezeichnet wird.
Bei seinem Beweise werden gewohnlich die Bewegungen der drei Korper als gestorte Kep-
ler-Bewegungen betrachtet, so dass gewisse Formeln aus der Theorie dieser Bewegungen
explizit in den Beweis eingehen [1]!). Hierdurch wird aber die Tatsache verdeckt, dass
es sich gar nicht um einen spezifischen Satz der Himmelsmechanik handelt, sondern
vielmehr um einen Satz, der fiir jedes Dreik6rpersystem mit Zentralkrédften gilt.

Um anschaulich zu machen, worum es sich handelt, betrachten wir zunichst einen
Spezialfall. Es seien my=1, m,; <1, m, <1 die Massen der drei Korper 0, 1, 2; 1y, 13, T,
ihre Ortsvektoren, bezogen auf den Schwerpunkt des Systems, und vy, b,, v, die ent-
sprechenden Geschwindigkeitsvektoren. Nun gelten fiir jedes n-Korpersystem mit
Zentralkriften der Schwerpunktsatz sowie die Sitze von der Erhaltung des Impulses
und des Impulsmomentes. Im vorliegenden Fall lauten sie:

ro+ml r1+m2 r2= O,
Vg + M, 01+m21)g= 0,
Ty X Do+ M5 Ty X0y + My ¥a X By =h = Tonjt.

Wir fiihren die relativen Orts- und Geschwindigkeitsvektoren

’

L =1t— 1, .
(1=1,2)
v;"=19;— 0y,

in den Erhaltungssatz fiir das Impulsmoment ein. Eine kurze Zwischenrechnung, bei
der wir vom Schwerpunkt- und vom Impulssatz Gebrauch machen, ergibt dann:

2
DMt X0 = 4 (my vy my 1) X (my 0 + w1, 0) =B + O (mf + md).
1

Im Falle § = 0 sind also die Relativbewegungen der beiden Trabanten in jedem Augen-
blick nahezu komplaner bei entgegengesetztem Umlaufsinn.

Fiir das folgende werde §j# 0 vorausgesetzt. Wir erweitern vektoriell mit dem zu
kollinearen Einheitsvektor n und erhalten

2

2, i (67X 0)) X =D (m} +m}).
1

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 127,
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Die beiden Vektoren auf der linken Seite deuten wir anschaulich folgendermassen:
Wire zum Beispiel m,=0 und r; X v; #+ 0, so wiirde sich der Koérper 1 in der durch
r; und »{ aufgespannten Ebene bewegen. r; X v steht auf dieser «k momentanen Bahn-
ebene» senkrecht. Ferner steht n auf der invariablen Ebene des Systems senkrecht.
Wenn diese beiden Ebenen nicht zusammenfallen, so liegt der Vektor (r{ Xvj)Xn
in ihrer Schnittlinie, der « Knotenlinie», und prigt ihr eine Orientierung auf. Aus der
letzten Gleichung lesen wir daher ab: Die Richtungen der beidem Knotenlinien sind
nahezu entgegengesetzt. Genauer ergibt eine leichte Rechnung fiir den Winkel zwischen
den Knotenlinien den Wert =+ O (m;+m,). Das ist unsere spezielle Fassung des
Knotensatzes.

2. In der allgemeinen Fassung werden keinerlei Voraussetzungen iiber die drei Massen
gemacht. Definiert man nun nach JAcoBI neue « Ortsvektoren» R,, R, durch

My to+ My Ly

Ri=r,—71 Ro=1,—
1 1 0 2 2 m0+m1

’

neue « Geschwindigkeitsvektoren» 8B;, B, entsprechend und neue «Massen» M,, M,
durch [1]

my
my+m,

My -+ 1,y

M= Mo+ my+ my

ml y A12 = "12 )
so gilt der Erhaltungssatz

M1m1X$1+M2m2X$2=0-

Fiir ihn hat JacoBr im Falle des astronomischen Dreikorperproblems die geometrische
Deutung mittels der Knotenlinien gegeben. Dieser Erhaltungssatz iibertriagt sich aber
(wie man ohne weiteres nachrechnet) auf Systeme mit beliebigen Zentralkriften
zwischen den drei Korpern. Indem man wieder mit n vektoriell erweitert, erhdlt man
den allgemeinen Knotensatz — nun aber in der schirferen Form, dass die Richtungen
der beiden Knotenlinien exakt entgegengesetzt sind.

3. Wenn die Zentralkriafte den Massen proportional sind, so konnen wir dem speziel-
len Satz eine vielleicht noch anschaulichere Form geben. Die beiden relativen Orts-
vektoren r{, rs sind dann ndmlich nahezu kollinear mit den relativen Beschleunigungen
¥{ bzw. ¥;. Und zwar gilt

o(|r) ‘ I + O (my+ m,) (t=1, 2),

wobei + ¢(r) den Betrag der Kraft zwischen zwei Einheits-Massenpunkten im Abstande
r voneinander bedeutet. Das ergibt sich ohne weiteres aus den Newtonschen Bewe-
gungsgleichungen

— T

To=m, @(|t;— 1) *I——'—'T +my @ (|ta—1y|) Tr——‘—'l' usw.

T

Driickt man nun in der letzten Gleichung des ersten Abschnitts r;” durch ¥;” aus, so folgt

2
Z (]I ’!l) (€' X 1') Xn=D0(m] +mi),

wobei wir §;’ fiir v;’ geschrieben haben. Nun steht der Vektor (¥;" X t;") auf der oskulie-
renden Ebene des betreffenden Trabanten senkrecht (« oskulierend» im Sinne der Dif-
ferentialgeometrie, micht im Sinne der Himmelsmechanik). Daher gilt: Der Winkel
swischen den ovientierten Gevaden, in denen die oskulievenden Ebenen der beiden Trabanten
die invariable Ebene des Systems schneiden, betrdigt n + O (m,+ m,).

Der allgemeine Knotensatz lisst die entsprechende Umformulierung nicht zu. Der
Beweis dieser letzten Behauptung ist an sich einfach, aber etwas umstédndlich und mag
daher iibergangen werden.
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4. Fiir die Veranschaulichung des Satzes an konkreten Beispielen ist die spezielle
Fassung bequemer. Zwei Fille sind moglich: 1. Zentralkérper-Trabant-Untertrabant,
und 2. Zentralkdrper-Trabant-Trabant. Der erste Fall wird durch das System Sonne-
Erde-Mond verwirklicht. Bei ihm leuchtet der behauptete Sachverhalt anschaulich
sofort ein. Interessanter ist der zweite Fall. Mars mit seinen beiden Monden wiirde ihn
reprisentieren, vorausgesetzt, dass die Storkraft der Sonne nicht zu gross ist. Leider
scheint dies aber der Fall zu sein [2]. Natiirlich liesse sich der Einfluss dusserer Stér-
krifte mittels der Erhaltungssitze fiir das #-Korper-System exakt abschitzen. Bei zu
grossen Storkriften (wie sie allem Anschein nach tatsichlich vorliegen) wird jedoch
diese Abschidtzung inhaltslos. Vielleicht wird der Fall 2 von Neptun und seinen beiden
Trabanten verwirklicht. Da aber der zweite Mond erst vor kurzem entdeckt worden ist,
so diirften die erforderlichen Daten noch nicht erhiltlich sein. R. KunTH, Manchester

LITERATURVERZEICHNIS

(1] C.L.CHARLIER, Die Mechanik des Himmels, Band 1 (Leipzig 1902).
[2] H. STRUWE, Uber die Lage der Marsachsen und die Konstanten im Marssystem. Sitz.-
Ber. preuss. Akad. Wiss. 7977.

Spieltheoretische Betrachtungen zur Stummen Mora

Das untenstehende strategische Spiel hat sich in der Spieltheorie als fundamental
erwiesen. Es gestattet, den besonders wichtigen Begriff der gemischten Strategie in

g u

g +1 -1
Uu -1 +1

g gerade; u ungerade.

elementarer und anschaulicher Weise einzufiihren. In der englischen Literatur erscheint
die angeschriebene Matrix als schematische Darstellung des Matching Pennies. Es ist
ein Zweipersonenspiel mit Summe Null und wird gespielt, indem zwei Spieler beide
gleichzeitig eine Miinze auf den Tisch legen. Zeigen beide « Kopf», dann hat der erste,
andernfalls, wenn beide Miinzen «Zahl» aufweisen, der zweite eine Einheit gewonnen.
Dieses Spiel hat sicher auch seinen Reiz, mag indessen, auf die Linge gespielt, einténig
wirken. Es diirfte deshalb nicht uninteressant sein, darauf hinzuweisen, dass es ein
anderes Spiel gibt, das die gleiche strategische Matrix aufweist, grosseren Anreiz bietet
und gleichzeitig zu interessanten psychologischen Erwigungen fiihrt. Es handelt sich
um die Stumme Mora, ein (2 X 2)-Strategienspiel, das gegeniiber der allgemeinen Mora
den Vorteil hat, dass es mit weniger Aufsehen und Lirm gespielt werden kann. Jede
Person weist bei jeder Runde mit der rechten Hand eine Anzahl ausgestreckte Finger
vor. Ist die Summe der ausgestreckten Finger gerade, dann hat der erste Spieler, ist
sie ungerade, dann der zweite Spieler eine Einheit gewonnen. Die «reinen Strategien»
der beiden Spieler bestehen darin, dass beide die Moglichkeit haben, entweder Gerade
oder Ungerade zu bieten. Die Minimax- bzw. Maximin-Strategien ergeben sich durch
Mischung dieser reinen Strategien im Verhiltnis 1:1. Der Wert des Spieles ist Null,
das heisst, es handelt sich um ein faires Spiel.

Besonderen Reiz gewinnt das Spiel dadurch, dass es jedem Spieler unbenommen ist,
seinen Gegner auszuspionieren, sein allfilliges ungeschicktes Verhalten auszuniitzen,
um dadurch entsprechende Gewinne zu erzielen. Beide konnen sich, wie die Theorie
zeigt, gegen solche Intentionen nur erfolgreich wehren, indem sie méglichst vorschrifts-
gemidss Gerade und Ungerade mit den Hiaufigkeiten 0,5 zu 0,5 spielen. Die praktische
Erfiillung dieser Forderung ist indessen schwierig. Wenn ein Spieler aufs Geratewohl
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fortlaufend eine Anzahl Finger ausstreckt, so ist nicht gesagt, dass die Wahrscheinlich-
keit fiir Gerade gleich gross ist wie fiir Ungerade. Im Gegenteil, es ist eher anzunehmen,
dass das Gewohnheitsméassige vorherrschend wirkt, so dass Unterschiede auftreten.
Beachtet man ferner, dass in der Zahlenreihe 1, 2, 3, 4 und 5 eine gerade Summe nur
zweimal, eine ungerade aber dreimal vertreten ist, so muss man nach dem Satz des
mangelnden Grundes sghliessen, dass sich die Wahrscheinlichkeiten fiir Gerade und
Ungerade bei undeterminierter Spielweise wie 2:3 verhalten, also nicht wie 1:1, wie es
erforderlich wire. Das heisst also, dass ein Spieler, der es versteht, sich von jedem
gewohnheitsmissigen Verhalten zu befreien und alle Fingerzahlen entsprechend ihrer
Haufigkeit bietet, strategisch nicht richtig vorgeht, weil er die Verteilung 0,4:0,6, statt
0,5:0,5 beniitzt. Verfallen beide Spieler dem gleichen Fehler, so zeigt die Rechnung,
dass dem ersten im Durchschnitt ein unverdienter Gewinn von 0,04 pro Runde zufilit,
widhrend dem zweiten ein ebensogrosser Verlust erwichst. Erkennt ein Spieler diese
Ungeschicklichkeit beim andern, so kann er sie ausniitzen und im Durchschnitt einen
Gewinn bis zu 0,2 pro Runde erzielen, also einen beachtenswerten Erfolg erreichen,
wenn man bedenkt, dass bei geiibten Spielern eine Runde nur etwa eine Sekunde
beansprucht. Die Aufgabe, direkt, ohne Zuhilfenahme eines Zufallsmechanismus oder
von Tabellen iiber Zufallszahlen, mit einer Wahrscheinlichkeit von 0,5 zu spielen,
diirfte kaum zu bewiltigen sein. Der Mensch erscheint ausserstande, rein zufillig zu
handeln. Er besitzt keine in ihm eingebaute «Urne», auf die er sich verlassen konnte.
Er besitzt bloss die «Fidhigkeit», gedankenlos zu handeln. Dieses kann indessen einem
zufdlligen Benehmen nicht gleichgestellt werden. Die gedankenlose Verrichtung einer
Aufgabe wird erfahrungsgemiss durch instinktives Verhalten stark beeinflusst, was
beim Spiel tunlichst vermieden werden muss.

Die Aufgabe, den Zufall zu imitieren, ohne umstidndliche Zufallsmechanismen zu
Hilfe nehmen zu miissen, diirfte im Falle der Stummen Mora am ehesten gelingen, wenn
sich der Spieler darauf beschrinken konnte, die Zahl der Finger mit gleicher Frequenz
erscheinen zu lassen. Es stellt sich damit die Frage, ob das Spiel so modifiziert werden
kann, dass diese Forderung erfiillt wird. Tatsdchlich bestehen dazu, wie man auf
Grund der Spieltheorie nachweisen kann, verschiedene Moglichkeiten.

1. Werden die Werte der strategischen Matrix abgedndert, so dass diese lautet:

so ergeben sich sowohl fiir die Maximin- als auch fiir die Minimax-Strategie das ge-
wiinschte Zahlenverhiltnis 2:3. Die gestellte Bedingung wire also erfiillt. Dieses Spiel
ist aber nicht fair. Sein Wert ist v =1/5, das heisst, auf fiinf Runden kénnte der erste
Spieler bei strategisch richtigem Verhalten im Durchschnitt eine Einheit gewinnen.
Damit der zweite Spieler nicht von vornherein benachteiligt ist, miisste sich der erste
auf Grund einer Nebenvereinbarung verpflichten, fiir je fiinf Spiele eine Entschddigung
von einer Einheit an den zweiten zu zahlen.

2. Indessen lassen sich die Zahlenwerte der strategischen Matrix auch so dndern,
dass das gewiinschte Zahlenverhiltnis resultiert und das Spiel trotzdem fair bleibt.
Das einfachste Beispiel diirfte sein:

g u
g 9 -6
u | —6 4

Der Wert dieses Spieles ist tatsiachlich Null, wihrend die besten Strategien das Zahlen-
verhiltnis 2:3 aufweisen.
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Selbstverstindlich kann die Stumme Mora auch anders gespielt werden, so zum
Beispiel nur mit vier Fingern. Da eine Hand fiinf und nicht vier Finger aufweist,
ergeben sich bei solchen Abarten leicht Zweideutigkeiten, so dass eine Anderung der
Zahlenmatrix wohl vorzuziehen wire.

Jedenfalls erscheint es iiberraschend, dass ein elementares Spiel wie die Stumme Mora
bereits Ingredienzen enthdlt, zu deren Kldrung die Hilfsmittel der Spieltheorie heran-
gezogen werden miissen. P. NovrF1, Ziirich

Aufgaben

Aufgabe 276. If {+} denotes the integer closest to x, prove that

g{ﬁ} _ {Vﬁ}(snzl—{vﬁ}’) _

Leo MoskiR, Edmonton (Kanada), und J. LAMBEK, Montreal
Lisung: Alle Buchstaben sollen natiirliche Zahlen bedeuten. Es ist

ey = |3 -

Unter den Zahlen %2 mit {V_k_} = a ist a®+ a offenbar die grosste. Die Anzahl dieser %
ist somit

*)

a*t+a—~{{a—1)2+a~1]=2a.
Hieraus folgt

Z{W} Sra- PADLELED _ B3 prrp) +1- 11, (2)

a=1

(*) ist also wegen (1) fiir » = p% + p richtig. Hieraus folgt fiirg< 2p

Fom - el By, @)

k=n—gq+1

Wegen

{yn}=p={yn—9¢} wund )_—,’{Vk} gp=q{yn—q}

k=n—q+1

Zq{ﬁ} _ A= —(Q +1-{yn—q7]

geht (3) iiber in

Auch in diesem Fall ist also (*) giiltig. Da (2) fiir jedes p richtig ist, gilt (*) allgemein.
F. LEUENBERGER, Zuoz
Wird die rechte Seite von (*) mit f(n) bezeichnet, so gilt

fn+1) —f(n) = {Vn+}

Wegen f(1) =1 ergibt sich hieraus (*) durch vollstindige Induktion.

Weitere Losungen sandten A. BAGer (Hjerring), L. CaArLITZ (Durham, N. C., USA),
R. LAUFFER (Graz), F. LEUENBERGER (2. L6sung), H. MEiL1 (Winterthur), J. PIEHLER
(Leuna), W. RicHTER (Neuchitel).
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