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Ungeloste Probleme

Nr.19. Einfiihrend erklidren wir ein sehr einfaches und auch geléstes Problem. Es
gilt die folgende kombinatorisch-geometrische Aussage?):

Eine wenigstens drei Elemente enthaltende Menge kongruenter Kreisbereiche der
Ebene, von denen je zwei einen nichtleeren Durchschnitt aufweisen, lisst sich in n = 3
Teilmengen so zerlegen, dass die ein- und derselben Teilmenge angehorenden Kreisbe-
reiche alle einen gemeinsamen nichtleeren Dwurchschnitt haben. Die Stichzahl n = 3
kann nicht durch eine kleinere ersetzt werden.

Um einen Beweis zu fiihren, {iberlegt man sich zunichst, dass fiir den Durchmesser
D der Menge der Kreismittelpunkte die Beschrinkung D < 2 gelten muss, wenn man
fir den Radius der Kreise r =1 setzt. Nach dem bekannten Satz von H. JuNG ist

die Mittelpunktsmenge ganz 1n einem Kreis vom Radius R = 2///3 enthalten. Anderer-
seits kann dieser Hiillkreis durch drei Kreise vom Radius » =1 iiberdeckt werden,
wenn die Mittelpunkte dieser Deckkreise in den Mitten der drei Seiten des dem
Hiillkreis einbeschriebenen reguliren Dreiecks angenommen werden. Hieraus folgt,
dass jeder Kreis der urspriinglichen Kreismenge wenigstens einen der drei Mittel-
punkte der Deckkreise enthalten muss. Damit ist gezeigt, dass in unserer Aussage

1) Der Satz findet sich bei H. HApwiGer und H. DEBRUNNER, Ausgewdhlte Einselprobleme der kombi-
natorischen Geometrie in der Ebene, Enseign. math. 1955, Heft 1, 56-89; insbesondere S.75, Nr.37.
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die Stichzahl #» = 3 jedenfalls ausreicht. Dass sie aber auch notwendig ist, zeigt bei-
spielsweise die Menge der neun kongruenten Kreise in der durch die Figur darge-
stellten Anordnung.

Nach einer von T. GALLAI stammenden Vermutung gilt ein Satz der hier erwidhnten
Art auch dann, wenn die Kreisbereiche nicht notwendig kongruent sind; die Stich-
zahl » muss hierbei aber passend erhéht werden.

Wie L. FEjEs TOTH?) berichtet, haben P. UNGAR und G. SzEkKERES die Richtigkeit
dieser Vermutung nachgewiesen und gezeigt, dass » = 7 ausreicht. T. GALLAI hatte
aber weiter vermutet, dass # = 6 zulissig sei, was in der Tat von A. HEPPES gezeigt
werden konnte. Neuerdings hat L. SzTacHO gefunden, dass sogar » = 5 ausreicht.
Diese Angaben hat uns kiirzlich L. FEjEs ToTH zur Verfiigung gestellt®) und die
Vermutung ausgesprochen, dass vielleicht sogar # = 4 noch zulissig ist.

Unser Problem : Wie gross ist nun die kleinste noch ausreichende Gallaische Stich-
zahl n? H. HADWIGER

Nachtrag zu Nr. 6

Fiir die von VAzsoNyl stammende Vermutung, wonach fiir die grosstmogliche
Anzahl N von Punktepaaren der Distanz 1, die in einer aus » Punkten bestehenden
Punktmenge des gewohnlichen Raumes vom Durchmesser 1 aufweisbar sein kénnen,
N = 2n — 2 gilt, liegen heute verschiedene Beweise vor. Zwei ungefihr zur gleichen
Zeit unabhingig aufgestellte Beweise gaben B. GRUNBAUM (The Hebrew University
of Jerﬁsalem)“) und S. STrRAszEWICZ (Polytechnique de Varsovie)®).

Es sei darauf hingewiesen, dass aus diesem Ergebnis auch auf die Richtigkeit der
Borsukschen Vermutung (vgl. Nr. 2) fiir endliche Punktmengen geschlossen werden
kann. In der Tat hat man sich zunichst zu iiberlegen, dass aus der Formel von
VAzsony1 gefolgert werden kann, dass in einer endlichen Punktmenge vom Durch-
messer 1 sicher ein Punkt vorhanden sein muss, der nicht mehr als drei Nachbar-
punkte der Distanz 1 aufweist. Hierauf lisst sich leicht ein induktiverBeweis dafiir
aufbauen, dass jede endliche Punktmenge in vier Teilmengen von kleinerem Durch-
messer zerlegt werden kann. Auf dieser Schlussweise beruht ein besonders einfacher
Beweis, den kiirzlich A. HEppPES und P. REvVEsz (Budapest)®) fiir den Borsukschen
Satz in unserm Sonderfall gegeben haben. Hierbei ist der oben als Folgerung der
Formel von VAzsonyi dargestellte Hilfssatz unabhéngig und vor den oben erwidhnten
Resultaten von GRUNBAUM und STRASZEWICZ von den beiden Verfassern aufgestellt
worden. H. HADWIGER
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