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Ungelöste Probleme

Nr. 19. Einführend erklären wir ein sehr einfaches und auch gelöstes Problem. Es
gilt die folgende kombinatorisch-geometrische Aussage1):

Eine wenigstens drei Elemente enthaltende Menge kongruenter Kreisbereiche der
Ebene, von denen je zwei einen nichtleeren Durchschnitt aufweisen, lässt sich in n — 3

Teilmengen so zerlegen, dass die ein- und derselben Teilmenge angehörenden Kreisbereiche

alle einen gemeinsamen nichtleeren Durchschnitt haben. Die Stichzahl n 3
kann nicht durch eine kleinere ersetzt werden.

Um einen Beweis zu führen, überlegt man sich zunächst, dass für den Durchmesser
D der Menge der Kreismittelpunkte die Beschränkung D g 2 gelten muss, wenn man
für den Radius der Kreise r 1 setzt. Nach dem bekannten Satz von H. Jung ist
die Mittelpunktsmenge ganz m einem Kreis vom Radius R 2/K3 enthalten. Andererseits

kann dieser Hüllkreis durch drei Kreise vom Radius r 1 überdeckt werden,
wenn die Mittelpunkte dieser Deckkreise in den Mitten der drei Seiten des dem
Hüllkreis einbeschriebenen regulären Dreiecks angenommen werden. Hieraus folgt,
dass jeder Kreis der ursprünglichen Kreismenge wenigstens einen der drei
Mittelpunkte der Deckkreise enthalten muss. Damit ist gezeigt, dass in unserer Aussage

*) Der Satz findet sich bei H. Hadwiger und H. Debrukner, Ausgewählte Einxelpröbleme der
kombinatorischen Geometrie in der Ebene, Enseign. math. 1955,*Heit 1, 56-89; insbesondere S.75, Nr. 37.
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die Stichzahl n 3 jedenfalls ausreicht. Dass sie aber auch notwendig ist, zeigt
beispielsweise die Menge der neun kongruenten Kreise m der durch die Figur
dargestellten Anordnung.

Nach einer von T. Gallai stammenden Vermutung gilt em Satz der hier erwähnten
Art auch dann, wenn die Kreisbereiche nicht notwendig kongruent smd, die Stichzahl

n muss hierbei aber passend erhöht werden.
Wie L. Fejes Töth2) berichtet, haben P. Ungar und G. Szekeres die Richtigkeit

dieser Vermutung nachgewiesen und gezeigt, dass n — 7 ausreicht T Gallai hatte
aber weiter vermutet, dass n 6 zulassig sei, was m der Tat von A Heppes gezeigt
werden konnte. Neuerdings hat L Sztachö gefunden, dass sogar n — 5 ausreicht.
Diese Angaben hat uns kürzlich L Fejes Töth zur Verfugung gestellt3) und die

Vermutung ausgesprochen, dass vielleicht sogar n 4 noch zulassig ist.
Unser Problem Wie gross ist nun die kleinste noch ausreichende Gallaische Stichzahl

n? H Hadwiger

Nachtrag zu Nr. 6

Fur die von Väzsonyi stammende Vermutung, wonach fur die grosstmoghche
Anzahl N von Punktepaaren der Distanz 1, die m einer aus n Punkten bestehenden
Punktmenge des gewöhnlichen Raumes vom Durchmesser 1 aufweisbar sein können,
N — 2 n — 2 gilt, liegen heute verschiedene Beweise vor. Zwei ungefähr zur gleichen
Zeit unabhängig aufgestellte Beweise gaben B. Grunbaum (The Hebrew University
of Jerusalem)4) und S. Straszewicz (Polytechnique de Varsovie)5).

Es sei darauf hingewiesen, dass aus diesem Ergebnis auch auf die Richtigkeit der
Borsukschen Vermutung (vgl. Nr 2) fur endliche Punktmengen geschlossen werden
kann. In der Tat hat man sich zunächst zu überlegen, dass aus der Formel von
Väzsonyi gefolgert werden kann, dass in einer endlichen Punktmenge vom Durchmesser

1 sicher em Punkt vorhanden sein muss, der nicht mehr als drei Nachbarpunkte

der Distanz 1 aufweist. Hierauf lasst sich leicht em induktiverBeweis dafür
aufbauen, dass jede endliche Punktmenge in vier Teilmengen von kleinerem Durchmesser

zerlegt werden kann. Auf dieser Schlussweise beruht em besonders einfacher
Beweis, den kürzlich A. Heppes und P. R£v£sz (Budapest)6) fur den Borsukschen
Satz in unserm Sonderfall gegeben haben. Hierbei ist der oben als Folgerung der
Formel von Väzsonyi dargestellte Hilfssatz unabhängig und vor den oben erwähnten
Resultaten von Grunbaum und Straszewicz von den beiden Verfassern aufgestellt
worden. H. Hadwiger

2) L Fejes Töth, Lagerungen %n der Ebene, auf der Kugel und tm Raum (Springer-Verlag, Berlin,
Gottingen und Heidelberg 1953), insbesondere S 97

8) Brief an den Unterzeichneten vom 25 März 1957.
4) B Grünbaum, A Proof of Vdzsonyt's Conjecture, Bull Res Coun Israel [A] 6, 77-78 (1956)
5) S Straszewicz, Sur un probUme giomitrique de P Erdos, Bull. Acad polon. Sei, Cl III, 5, 39-40

(1957).
•) A Heppes und P. Revesz, Zum Borsukschen ZerUtlungsproblem, Acta Math Acad. Sei hung. 7,

159-162(1956).
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