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Zum Problem des vollständigen Ungleichungssystems
für konvexe Rotationskörper

1. Innerhalb der Theorie der konvexen Körper des gewöhnlichen Raumes spielen
drei fundamentale Masszahlen eine wichtige Rolle, nämlich das Volumen, die
Oberfläche und das Integral der mittleren Krümmung. Diese dem konvexen Körper A
zugeordneten Masse seien der Reihe nach mit

V=V(A), F F(A), M~=M(A) (1)

bezeichnet. Wir beschränken uns in dieser Note auf die Klasse K0 der rotationssymmetrischen

konvexen Körper1). Auch bei dieser Einschränkung ist das Problem, alle
zwischen den drei genannten Masszahlen bestehenden Ungleichungen anzugeben, bis
heute noch ungeklärt. Genauer: Ein System S von Ungleichungen

0(V,F,M)^O [0eS] (2)

wollen wir vollständig nennen, wenn zu drei vorgegebenen nichtnegativen Zahlwerten
V, F und M dann und nur dann ein konvexer Rotationskörper A € K0 existiert,
dessen Masse mit den drei Werten gemäss (1) übereinstimmen, wenn die Ungleichung
(2) für jedes 0 € S erfüllt wird.

Die klassische Theorie liefert lediglich eine dem vollständigen System angehörende
Ungleichung, nämlich

M(A) ^ M(K) [F(K) F(A); V(K) V(A)], (3)

wobei K einen Kappenkörper der Kugel bezeichnet (Tafel b, Figur K). Die Ungleichung

sagt aus, dass unter allen A € K$ mit vorgeschriebener Oberfläche und ebenso

vorgeschriebenem Volumen der Kappenkörper der Kugel K das grösstmögliche Integral

der mittleren Krümmung aufweist2).
Dieser bekannten Ungleichung wurde in neuerer Zeit eine weitere an die Seite

gestellt, nämlich

M(A)^M(S) [F(S)^F(A); V(S) V(A)], (4)

*) Diese Beschränkung hat sich im Zusammenhang mit den sich auf die drei Masszahlen beziehenden
Extremalproblemen als wesentlich herausgestellt. Dies entspricht der erstmals in einer kurzen Note [1] (siehe
Literaturverzeichnis) sichergestellten Tatsache, dass es konvexe Körper gibt, deren Masszahlen V, F und
M sich nicht durch rotationssymmetrische Körper realisieren lassen. Hieraus folgt, dass es Ungleichungen
geben muss, die lediglich für konvexe Rotationskörper, nicht aber für beliebig gestaltete konvexe Körper
gelten.

*) Die Ungleichung, die übrigens für beliebige konvexe Körper gilt, lässt sich in der bekannten
einfachen Form F* — 3 M V ^ 0 schreiben, wobei, wie H. Minkowski vermutete und G. Bol nachwies,
Gleichheit nur für Kappenkörper der Kugel bestehen kann. Die andern Ungleichungen der klassischen
Theorie, nämlich M*- 4 n F ^ 0, M8 — 48 n% V ^ 0 und F8 - 36 n V* ^ 0, für welche Gleichheit nur
für die Kugel und bei der letzten isoperimetrischen Ungleichung ausserdem noch für die Strecke besteht,
lassen sich alle aus der obenstehenden Minkowskischen Ungleichung folgern und sagin wesentlich weniger
aus. Im Zusammenhang mit dem von uns hier bearbeiteten Problem lässt sich zusammenfassend sagen,
dass die Brun-Minkowskische Theorie genau eine zum vollständigen System gehörende Ungleichung liefert.
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wo S die symmetrische Kugelschicht bedeutet (Tafel b, Figur S). Diese besagt, dass

unter allen A £ K0 mit vorgeschriebener Oberflache und ebenso vorgeschriebenem
Volumen die Kugelschicht S das kleinstmögliche Integral,der mittleren Krümmung
aufweist3).

In den Ungleichungen (3) und (4) ist vorausgesetzt, dass die in Betracht fallenden
Extremalkorper K und S mit den beiden vorgegebenen Masszahlen existieren;
andernfalls existiert auch kein Korper A mit den nämlichen Massen.

Die beiden Ungleichungen (3) und (4) bilden nun aber keineswegs em vollständiges
System. Wenn namhch das vorgegebene Volumen V gegenüber der Oberflache F
relativ klein ist, existieren nicht zu allen Zwischenwerten M des durch die absoluten
Extremwerte gemäss (3) und (4) gebildeten Intervalls M(S) 5j M ^ M(K) Korper
AzK0, so dass M M(A) ausfallt. Es müssen demnach weitere Ungleichungen
zwischen den drei Massen V, F und M vorhanden sein, Gleichheit wird in diesen
unbekannten Ungleichungen fur gewisse Scharen ebenfalls unbekannter Extremalkorper

X € KQ bestehen. In Frage kommen Zylinder, Kegelstumpfe, Kegel, Doppelkegel

und Kappenkorper von Kugellmsen, die sich gegenseitig ablosen.
Die Aufgabe, das vollständige System aller Ungleichungen und die zugehörigen

Scharen extremaler konvexer Rotationskörper aufzufinden, wollen wir das sich auf
die Klasse K0 beziehende Hauptproblem nennen.

2. Die Problemlage lasst sich auf mannigfaltige Art variieren, indem eine von den
drei Masszahlen V, F und M durch eine andere, der Ausmessung eines
rotationssymmetrischen Eikorpers dienende Grosse ersetzt wird. Wählt man beispielsweise die
Lange / des Rotationskörpers, das heisst die Breite des Korpers in Richtung der
Rotationsachse als weiteres Mass, so ergeben sich die drei Nebenprobleme (V,F, l),
(F, M, l) und (M, V, l), welche darauf hinauslaufen, sämtliche zwischen den m
Klammer gesetzten drei Massen bestehenden Relationen aufzusuchen4). Es hat sich

in unserem Zusammenhang gezeigt, dass sich als Hilfsmass besonders der Aquator-
radms a, das heisst der Radius eines grossten Breitenkreises oder also der Radius
eines achsenparallelen Hullzyhnders des Rotationskörpers sehr gut eignet5). In der
Tat sind die drei resultierenden Nebenprobleme (V, F, a), (F, M, a) und (M, V, a)
heute vollständig gelost6). Insgesamt gibt es also drei vollständige Nebensysteme,
wovon jedes System vier Ungleichungen umfasst. Die insgesamt zwölf Ungleichungen
smd in der Tafel a (Seite 103) zusammengestellt. Die auftretenden Extremalkorper

smd alle elementar. Es handelt sich um vier Typen, die m jedem der drei
vollständigen Nebensysteme m gleicher Reihenfolge auftreten, namhch Kugel-
zylinder T, symmetrische Kugelhnse L, einseitiger Kegel C und Zylinder Z (Tafel b,

Figuren T, L, C, Z).
3) Diese Ungleichung, deren Herleitung in [4] gegeben wurde, ist nur fur rotationssymmetrische konvexe

Korper gültig Sie stellt ihrem Sinne nach ein Gegenstuck zur Mmkowskischen Ungleichung dar, lasst sich
aber im Gegensatz zu dieser nicht auf elementare explizite Weise formelmassig anschreiben

4) Hier sind bereits zahlreiche einzelne Ergebnisse bekannt. Vgl [2] und eine Reihe weiterer Arbeiten
des gleichen Verfassers, die im Schriftenverzeichnis des Buches [7] zitiert sind.

5) Der Aquatorradius tritt bereits in zahlreichen älteren Ungleichungen fur konvexe Rotationskörper
auf, insbesondere sind hier die von T Bonnesen, A. Dinghas und E. Schmidt stammenden Verschärfungen

der klassischen Ungleichungen zu erwähnen, wie sie beispielsweise in [5] erörtert sind Neue
Ungleichungen dieser Art finden sich auch in [6]

e) Eine Übersicht uber alle diesbezüglichen Resultate fur konvexe Rotationskörper des fc-dimensionalen
euklidischen Raumes gibt der Vortrag auf der Tagung der DM V im Jahre 1955 in Gottingen [8].
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Tafel a

103

Problem Ungleichung Gültigkeitsbereich

a) (V,F,a) (la) V(A) ^ V(T) [F(A) F(T)]
(2a) V(A) ^ V(L) [F(A) F(L)]
(3a) V(A) ^ V(C) [*(A) F(C)]
(4a) V(A) ^V(Z) [F(A) F(Z)]

Ana2 ^ F < oo

2na2^F^4na2
(18 n/5)a2 ^F < oo

2;ra2 ^F ^ (18 n/5) a2

b) (F,M,a) (lb) M(A) ^ M(T) [F(A) F(T)]
(2b) M(A) ^ M(L) [F(A) F(L)]
(3b) M(A) ^ M(C) \F(A) F(C)]
(4b) M(A) ^ M(Z) [F(A) F(Z)]

4 ;r a2 <£ F < oo

2rca2^F^4:rra2
or n a2 ^ F < oo x)

2 tt a2 ^F ^ (TTia2

c) (M, V, a) (lc) M(A) ^M(T) [V(A)= V(T)]
(2c) M(A)^M(L) [V(A)=V(L)]
(3c) M(A) ^ M(C) [V(A) V(C)]
(4c) M(A) ^ M(Z) [F(^) V(Z)]

(4 n/3) az ^ V < oo
0 ^ V < (An/3) a3

(g n/3) az ^ V < oo 2)

0 ^ V ^ (q n/3) az

x) a ist die emsige im Intervall 2 < CT < oo liegende reelle Losung der transzendenten Glei

chung arccos[1/(0- - 1)] |/(T {O - 2) - ff/2 + 1 Es ist a 2,376216
2) Q ist die einzige im Intervall 0 < Q < oo liegende reelle Losung der transzendenten Glei

chung arctgg (2/3) Q Es ist Q 1,451103

Tafel b

Die Ungleichungen lassen sich besonders übersichtlich zusammenstellen, wenn wir
voraussetzen, dass alle sich beteiligenden Korper den gleichen Aquatorradius a

aufweisen sollen, so dass diese simultane Normierung auf die Form

a(A) a(T) a(L) - a(C) =- a(Z) - a (5)

gebracht werden kann.
3. Man kann sich nun grundsätzlich die Frage vorlegen, ob sich aus den drei zur

Verfugung stehenden Losungen der Nebenprobleme Schlüsse in bezug auf das
Hauptproblem ziehen lassen. Zunächst ist klar, dass zu vier Zahlwerten V, F, M und a

jedenfalls nur dann em Korper der Klasse K0 existiert, der diese vier Masszahlen
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aufweist, wenn alle zwölf Ungleichungen der Tafel a simultan erfüllt werden. Das
gesamte Relationensystem ist also für die Realisierung notwendig; dagegen ist dieses

nicht hinreichend. Sind nämlich alle zwölf Ungleichungefi erfüllt, so kann nur
geschlossen werden, dass drei Körper in K0 existieren, welche der Reihe nach die Werte
(V,F,a), (F,M,a) und (M, V,a) realisieren, woraus aber nicht gefolgert werden
darf, dass ein einziger Körper alle vier Werte liefert.

Eliminiert man also aus den zwölf Ungleichungen die Hilfsgrösse a, so entsteht
ein Ungleichungssystem für die drei Masse V, F und M, wobei im allgemeinen in K0
keine Körper existieren, für welche das Gleichheitszeichen beansprucht wird. Der

Figur 1

p Q R

X

y

0 0,000

0 0,000

1 1,000

1 1,000

-^- 0,810
n2

0 0,000

Wertevorrat (V,F,M) wird auf diese Weise lediglich eingeschränkt, aber nicht
exakt begrenzt. Die Lösung des Hauptproblems erfordert aber die Kenntnis der
exakten Begrenzung.

Immerhin ist die durch die oben erwähnte Elimination von a erzielbare
Einschränkung doch recht aufschlussreich, und es ist das eigentliche Ziel der vorliegenden
Studie, dieöe in geeigneter Weise sichtbar werden zu lassen.

4. Eine klare Übersicht über die bestehenden Verhältnisse gewinnt man dadurch,
dass man die Klasse Kq der konvexen Rotationskörper durch die Einführung der
Koordinaten7)' 4*F 48n*V ,,x

M3

7) Es handelt sich um die von W. Blaschke [3] eingeführten Koordinaten eines Eikörpers, die gegenüber

Ähnlichkeitsabbildungen invariant sind.
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auf einen Bereich Kq einer (x, y)-Ebene abbildet. Den beiden Ungleichungen (3) und
(4) entsprechen dann die Relationen

und

> 4 cos 9? (2 -j- sin29?)
y (2 cos cp -f (p sin cp)3

y ^ x2

_
2 (2 cos cp + sin2cp)

(2 cos cp -f cp sincp)2 ' o^^f]
(7)

(8)

Sind P (0, 0), Q (1,1) und R (8/?r2, 0) die drei wichtigen Bildpunkte von
Strecke, Kugel und Kreisscheibe, so ist die Bildmenge Jf0 ein von den drei Kurven-

Tafel c

Problem Ungleichung Gültigkeitsbereich

a) (y, X, p) (la) y £ (P/2) (3x- p2) P2 ^ x ^ 1

(2a) y ^ (1/2) (x + p2) (2x- p2Y'2 (1/2) p2 ^ x ^p2
(3a) y ^(p/2)[2x(2x-p2)yi* (9/10) />2 ^ * ^ 1

(4a) y ^ (3 p/4) (2x- p2) (1/2) £2 ^ at ^ (9/10) p2

b) (x,p) (lb) x ^ 2 p — p2 p2 ^ x ^1
(2b) (2*- P*)m + (P/2)

X arccos{(p/x) (2 x - p2)™} ^ l (1/2) p2 ^ x ^p2
(3b) (p/4) {n - arccos [p2/(4 x - p2)]}

+ (l/2p)[2x(2x-p2)]U2^l (a/4) £2 ^ * ^ 1

(4b) x ^ 2p - (n-1) p2/2 (1/2) £2 £ x <Z (a/4) p2

c) (y,p) (lc) y ^p2(3-2p) p* ^ y ^ 1

(2c) 1 ^(p/2){q + 2tg(n-2q)/4}i) 0 ^ y ^ />3

(3c) 1 ^ (/>/4){*-arctg(4y//>3)}
+ y/P* (e/4) p3 ^ y ^ 1

(4c) y ^ 3 p2 - (3 n/4) p* 0 ^ y ^ (q/4) p^

l) q bezeichriet hier die einzige im Intervall 0 < q < nß liegende Lösung der Gleichung

p« (2 + sin?)2 (1 - sin?) 4 (1 -f sinq)zy2.

bögen PQ, QR und #P berandeter, ganz im Quadrat 0 ^ x, y <J 1 liegender
abgeschlossener und einfach-zusammenhängender Bereich (vgl. Figur 1). Die beiden
Randstücke PQ und @# entsprechen den einparametrigen Scharen der Kugelkappenkörper
K und der symmetrischen Kugelschichten S; das dritte Randstück RP entspricht den
noch unbekannten Extremalkörperscharen, wie sie am Ende von Abschnitt 1 bereits
erörtert wurden.

5, Will man die drei in Abschnitt 2 näher erklärten Nebenprobleme (V, F, a),
(F, M, a) und (M, V, ä) auf ähnliche Weise bearbeiten wie oben das Hauptproblem,
so drängt sich die Einführung der weiteren Koordinate

4na
M (9)
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auf, durch die eine Verbindung des Äquatorradius a mit den Masszahlen V, F und M
ermöglicht wird. Die Grösse p stellt ein Rundungsmass für die Rotationseikörper dar.
Das Intervall lg/)g 4/ti kennzeichnet die «flachen» und das Intervall 0 ^p 5g 1

die «langen» Körper; dem Wert p 1, bei welchem die flache in die lange Form
übergeht, entspricht die «runde» Form, wie sie durch die Kugel repräsentiert wird.
Die zwölf Ungleichungen der Tafel a lassen sich jetzt mit Hilfe der durch (6) und (9)
eingeführten Koordinaten x, y und p ausdrücken. So ergeben sich die zwölf
Ungleichungen der Tafel c. Während sich in den Ungleichungen der Gruppe (a), die dem

*P
Figur 2

0 0,000

0 0,000

1 1,000

1 1,000

: 0,810

1,273

16 a

(2n + o-2)2
8

______

0,857

1,201

Nebenproblem (V, F, a) entspricht, alle drei Koordinaten beteiligen, können
diejenigen der Gruppen (b) und (c) durch je zwei ausgedrückt werden. Diese beiden den
Nebenproblemen (F, M, a) und (M, V, a) zugehörenden vollständigen Ungleichungssysteme

können in einer (x, £)-Ebene und in einer (y, £)-Ebene bildlich dargestellt
werden. Es ergeben sich die in den Figuren 2 und 3 dargestellten Bereiche, die je von
vier den Ungleichungen der betreffenden Gruppe entsprechenden Kurvenstücken
berandet sind (vgl. auch die den Figuren beigefügten Koordinatentafeln).

6. Die Tafel c gibt uns nun die Mittel in die Hand, um x und y als Funktion von p
zu diskutieren. Genauer: Wird das Rundungsmass p vorgeschrieben, so kann
festgestellt werden, in welchen Intervallen x und y variieren können. Zur Vereinfachung
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wollen wir hierzu nur die Ungleichungen dei Gruppen (b) und (c) heranziehen8) Die
fraglichen Intervalle fur x bzw y können m Figur 2 bzw Figur 3 durch Schnittsehnen
der dargestellten Bereiche mit Parallelen zur ;i-Achse bzw y-Achse veranschaulicht
werden. Dabei ist die jeweilige Zweiteilung des Intervalls fur p zu beachten'

In der (x, y)-Ebene gedeutet, entspricht jedem Wert von p em Rechteck, dessen

Seiten durch die oben erörterten Intervalle gebildet ist Die Bildpunkte der Rota-
tionseikorper vom Rundungsmass p müssen alle m diesem Rechteck liegen, sie werden
im allgemeinen das Rechteck nicht vollständig ausfüllen (vgl hierzu die Bemerkungen

-P
Hgur 3

p Q R S

y

P

0 0,000

0 0,000

1 1,000

1 1,000

0 0,000

4
— =1,273
n

432Q 0 1^7
(3T + e)3 -Mu7

12
1 103

3 n -f Q

in Abschnitt 3). Bilden wir jetzt die Vereinigungsmenge aller Rechtecke, indem wir

p von 0 bis A/n variieren lassen, so erhalten wir einen Bereich K0 der (x, y)-Ebene, der

ledenfalls den Bereich Kq als Teil enthalt. Dieser sich durch Elimination von p

ergebende Bereich K0 ist mit Figur 4 dargestellt. Die Elimination von p entspricht hier
der im Abschnitt 3 erörterten Elimination von a.

Der obere Rand von Kq, der weit über dem wahren, durch die Kappenkorper K
gelieferten Randstuck von K0 verlauft, ist nicht von Interesse. Ähnliches gilt fur den

8) Die dadurch erreichbaren Ergebnisse konnten durch Einbezug der Ungleichungen der Gruppe (a)
noch verbessert werden
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rechten Rand, der rechtsseitig von dem den Kugelschichten S entsprechenden wahren

Randstück von Kq liegt. Dagegen zeigt der untere Rand von K0 die Existenz und die

ungefähre Gestalt des wahren unbekannten Randstücks von K0 (vgl. hierzu auch
Figur 1). Insbesondere zeigt der Einschnitt, dass das erste beim Kreisscheibenpunkt
ausmündende wahre Randstück nach rechts geneigt sein muss. Dies entspricht der
bereits früher nachgewiesenen merkwürdigen Tatsache, dass das absolute Minimum
von V bei vorgegebenem M und F unstetig verläuft, indem ja der kleinste Wert von
y an der Stelle x 8/rc2 als Funktion von x unstetig ist9).

Figur 4
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•) Vgl. hierüber den Aufsatz [9].
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