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Zum Problem des vollstindigen Ungleichungssystems
fiir konvexe Rotationskorper

1. Innerhalb der Theorie der konvexen Korper des gewohnlichen Raumes spielen
drei fundamentale Masszahlen eine wichtige Rolle, nimlich das Volumen, die Ober-
fliche und das Integral der mittleren Kriimmung. Diese dem konvexen Korper A
zugeordneten Masse seien der Reihe nach mit

V=V(4), F=FA), M=M(A) )

bezeichnet. Wir beschranken uns in-dieser Note auf die Klasse K, der rotationssym-
metrischen konvexen Koérper?). Auch bei dieser Einschrinkung ist das Problem, alle
zwischen den drei genannten Masszahlen bestehenden Ungleichungen anzugeben, bis
heute noch ungeklirt. Genauer: Ein System § von Ungleichungen

®(V,F, M) =0 [DES] @)

wollen wir vollstindig nennen, wenn zu drei vorgegebenen nichtnegativen Zahlwerten
V, F und M dann und nur dann ein konvexer Rotationskorper 4 € K, existiert,
dessen Masse mit den drei Werten gemiss (1) iibereinstimmen, wenn die Ungleichung
(2) fir jedes @ € 8 erfiillt wird.

Die klassische Theorie liefert lediglich eine dem vollstindigen System angehérende
Ungleichung, ndmlich

M(4) = M(K) [F(K)=F(4); V(K)=V(4)], (3)

wobei K einen Kappenkorper der Kugel bezeichnet (Tafel b, Figur K). Die Unglei-
chung sagt aus, dass unter allen A4 € K, mit vorgeschriebener Oberfliche und ebenso
vorgeschriebenem Volumen der Kappenkérper der Kugel K das grosstmogliche Inte-
gral der mittleren Kritmmung aufweist?).

Dieser bekannten Ungleichung wurde in neuerer Zeit eine weitere an die Seite
gestellt, nimlich

M(4) = M(S) [F(S) =F(4); V(S)=V(4)], 4)

1) Diese Beschrinkung hat sich im Zusammenhang mit den sich auf die drei Masszahlen beziehenden
Extremalproblemen als wesentlich herausgestellt. Dies entspricht der erstmals in einer kurzen Note [1] (siehe
Literaturverzeichnis) sichergestellten Tatsache, dass es konvexe Korper gibt, deren Masszahlen V, F und
M sich nicht durch rotationssymmetrische Kérper realisieren lassen. Hieraus folgt, dass es Ungleichungen
geben muss, die lediglich fiir konvexe Rotationskérper, nicht aber fiir beliebig gestaltete konvexe Korper
gelten.

%) Die Ungleichung, die {ibrigens fiir beliebige konvexe Kérper gilt, lasst sich in der bekannten ein-
fachen Form F*— 8 M V = 0 schreiben, wobei, wie H. Minkowsk1 vermutete und G. BoL nachwies,
Gleichheit nur fiir Kappenkorper der Kugel bestehen kann. Die andern Ungleichungen der klassischen
Theorie, nimlich M*— 4 F =20, M3 — 4872 V = 0 und F3— 36 n V2 = 0, fiir welche Gleichheit nur
fiir die Kugel und bei der letzten isoperimetrischen Ungleichung ausserdem noch fiir die Strecke besteht,
lassen sich alle aus der obenstehenden Minkowskischen Ungleichung folgern und sagth wesentlich weniger
aus. Im Zusammenhang mit dem von uns hier bearbeiteten Problem lidsst sich zusammenfassend sagen,
dass die Brun-Minkowskische Theorie genau eine zum volistindigen System gehtrende Ungleichung liefert.
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wo S die symmetrische Kugelschicht bedeutet (Tafel b, Figur S). Diese besagt, dass
unter allen A4 € K, mit vorgeschriebener Oberfliche und ebenso vorgeschriebenem
Volumen die Kugelschicht S das kleinstmoégliche Integral.der mittleren Kriimmung
aufweist?).

In den Ungleichungen (3) und (4) ist vorausgesetzt, dass die in Betracht fallenden
Extremalkérper K und S mit den beiden vorgegebenen Masszahlen existieren;
andernfalls existiert auch kein Kérper 4 mit den ndmlichen Massen.

Die beiden Ungleichungen (3) und (4) bilden nun aber keineswegs ein vollstindiges
System. Wenn ndmlich das vorgegebene Volumen V gegeniiber der Oberfliche F
relativ klein ist, existieren nicht zu allen Zwischenwerten M des durch die absoluten
Extremwerte geméss (3) und (4) gebildeten Intervalls M(S) < M < M(K) Korper
A€ K, so dass M = M(A) ausfillt. Es miissen demnach weitere Ungleichungen
zwischen den drei Massen V, F und M vorhanden sein; Gleichheit wird in diesen
unbekannten Ungleichungen fiir gewisse Scharen ebenfalls unbekannter Extremal-
korper X € K, bestehen. In Frage kommen Zylinder, Kegelstiimpfe, Kegel, Doppel-
kegel und Kappenkorper von Kugellinsen, die sich gegenseitig ablosen.

Die Aufgabe, das vollstindige System aller Ungleichungen und die zugehorigen
Scharen extremaler konvexer Rotationskorper aufzufinden, wollen wir das sich auf
die Klasse K, beziehende Hauptproblem nennen.

2. Die Problemlage lisst sich auf mannigfaltige Art variieren, indem eine von den
drei Masszahlen V, F und M durch eine andere, der Ausmessung eines rotations-
symmetrischen Eikorpers dienende Grosse ersetzt wird. Wahlt man beispielsweise die
Linge ! des Rotationskoérpers, das heisst die Breite des Korpers in Richtung der
Rotationsachse als weiteres Mass, so ergeben sich die drei Nebenprobleme (V, F, ),
(F,M,l) und (M, V,I), welche darauf hinauslaufen, simtliche zwischen den in
Klammer gesetzten drei Massen bestehenden Relationen aufzusuchen?). Es hat sich
in unserem Zusammenhang gezeigt, dass sich als Hilfsmass besonders der Aquator-
radius a, das heisst der Radius eines grossten Breitenkreises oder also der Radius
eines achsenparallelen Hiillzylinders des Rotationskorpers sehr gut eignet®). In der
Tat sind die drei resultierenden Nebenprobleme (V, F, a), (F, M, a) und (M, V, a)
heute vollstindig gelost®). Insgesamt gibt es also drei vollstindige Nebensysteme,
wovon jedes System vier Ungleichungen umfasst. Die insgesamt zw6lf Ungleichungen
sind in der Tafel a (Seite 103) zusammengestellt. Die auftretenden Extremal-
korper sind alle elementar. Es handelt sich um vier Typen, die in jedem der drei
vollstindigen Nebensysteme in gleicher Reihenfolge auftreten, niamlich Kugel-
zylinder T, symmetrische Kugellinse L, einseitiger Kegel C und Zylinder Z (Tafel b,
Figuren T, L, C, Z).

3) Diese Ungleichung, deren Herleitung in [4] gegeben wurde, ist nur fiir rotationssymmetrische konvexe
Korper giiltig. Sie stellt ihrem Sinne nach ein Gegenstiick zur Minkowskischen Ungleichung dar, lisst sich
aber im Gegensatz zu dieser nicht auf elementare explizite Weise formelmaissig anschreiben.

4) Hier sind bereits zahlreiche einzelne Ergebnisse bekannt. Vgl. [2] und eine Reihe weiterer Arbeiten
des gleichen Verfassers, die im Schriftenverzeichnis des Buches [7] zitiert sind.

5) Der Aquatorradius tritt bereits in zahlreichen #lteren Ungleichungen fiir konvexe Rotationskorper
auf; insbesondere sind hier die von T. BoNNESEN, A. DiNgHAs und E. ScuMipT stammenden Verschir-
fungen der klassischen Ungleichungen zu erwihnen, wie sie beispielsweise in {5] erortert sind. Neue Un-
gleichungen dieser Art finden sich auch in [6].

8) Eine Ubersicht iiber alle diesbeziiglichen Resultate fiir konvexe Rotationskérper des k-dimensionalen
euklidischen Raumes gibt der Vortrag auf der Tagung der DMV im Jahre 1955 in G6ttingen [8].
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Tafel a
Problem Ungleichung Giiltigkeitsbereich
a) (V, F,a) (la) V(4) = V(T) [F(A)= F(T)] 4na® £ F < x
(22) V(4) = V(L) [FA)=F(L)] 2na® £ F <4mna’
(3a) V(4) = V(C) [P(A) F(C)] |(18n/5)a® £ F < o0
(42) V(4) 2 V(Z) [F(d4)=F(Z)] 2na® < F < (18 a/5) a?
b) (F, M, a) | (1b) M(A4) = M(T) [F(4)= F(T)) 4na®<F < o0
(2b) M(A) = M(L) [F(4) = F(L)] 2na* <F <4na’
(3b) M(A4) < M(C) [F(4)= F(C) ona? S F < o0 )
(4b) M(A) < M(Z) [F(4)= F(Z)] 2na? <F <onal
c) (M, V,a)| (tc) M(A) =2 M(T) [(VA)=V(T)]| 4=n/3)a® =V < o0
(2c) M(A) =2 M(L) [V(4)= V(L)] 0=V £ (47/3) ad
(3c) M(A4) = M(C) [V(4)=V(C)] |(en/3)a® =V < o0 ?)
(4c) M(4) < M(Z) [V(4) = V(Z)] 0 <V < (¢n/3)a®
1) ¢ ist die einzige im Intervall 2 < ¢ << 00 liegende reelle Lésung der transzendenten Glei-
chung arccos[1/(o —1)] = [/o (0 — 2) — /2 + 1. Es ist 0 =2,376216 ... .
%) o ist die einzige im Intervall 0 < ¢ < 00 liegende reelle Losung der transzendenten Glei-
chung arctgp = (2/3) 0. Es ist 0 =1,451103....

Tafel b

(>l
DG

Die Ungleichungen lassen sich besonders iibersichtlich zusammenstellen, wenn wir
voraussetzen, dass alle sich beteiligenden Kérper den gleichen Aquatorradius a auf-
weisen sollen, so dass diese simultane Normierung auf die Form

a(4)

gebracht werden kann.

3. Man kann sich nun grundsitzlich die Frage vorlegen, ob sich aus den drei zur
Verfiigung stehenden Losungen der Nebenprobleme Schliisse in bezug auf das Haupt-
problem ziehen lassen. Zunichst ist klar, dass zu vier Zahlwerten V,F, M und «
jedenfalls nur dann ein Kérper der Klasse K, existiert, der diese vier Masszahlen

= a(T) = a(L) = a(C)

= a(Z) = a 5)
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aufweist, wenn alle zwolf Ungleichungen der Tafel a simultan erfiillt werden. Das
gesamte Relationensystem ist also fiir die Realisierung notwendig; dagegen ist dieses
nicht hinreichend. Sind ndmlich alle zw6lf Ungleichungeh erfiillt, so kann nur ge-
schlossen werden, dass drei Kérper in K| existieren, welche der Reihe nach die Werte
(V,F,a), (F,M,a) und (M, V, a) realisieren, woraus aber nicht gefolgert werden
darf, dass ein einziger Korper alle vier Werte liefert.

Eliminiert man also aus den zwdlf Ungleichungen die Hilfsgrosse a, so entsteht
ein Ungleichungssystem fiir die drei Masse V, F und M, wobei im allgemeinen in K,
keine Korper existieren, fiir welche das Gleichheitszeichen beansprucht wird. Der

Y
a
A X
P Figur 1 R
P Q R
8
x = 0,000 | 1 = 1,000 — = 0,810
n
y = 0,000 | 1 = 1,000 0=0,000

Wertevorrat (V, F, M) wird auf diese Weise lediglich eingeschrinkt, aber nicht
exakt begrenzt. Die Losung des Hauptproblems erfordert aber die Kenntnis der
exakten Begrenzung.

Immerhin ist die durch die oben erwihnte Elimination von a erzielbare Ein-
schriankung doch recht aufschlussreich, und es ist das eigentliche Ziel der vorliegenden
Studie, diese in geeigneter Weise sichtbar werden zu lassen.

4. Eine klare Ubersicht iiber die bestehenden Verhiltnisse gewinnt man dadurch,
dass man die Klasse K, der konvexen Rotationskérper durch die Einfithrung der

Koordinaten?) 4 F P
b/ 4 n
- . y e

2 M3 M?® (6)

) Es handelt sich um die von W. BrAscHKE [3] eingefiihrten Koordinaten eines Eikorpers, die gegen-
iiber Ahnlichkeitsabbildungen invariant sind.



H. Hapwicer und H. Bier:: Ungleichungssystem fiir konvexe Rotationskérper 105

auf einen Bereich Ii, einer (x, y)-Ebene abbildet. Den beiden Ungleichungen (3) und
(4) entsprechen dann die Relationen

y = % (7)
und
4 cos g (2 + sinp) 2 (2 cosg + sin?g) n
= = . =
= (2cosg + @sing)3 [ (2cosgp + @ sing)? ’ lsps 2]' (8)

Sind P=(0,0), Q =(1,1) und R = (8/n?, 0) die drei wichtigen Bildpunkte von
Strecke, Kugel und Kreisscheibe, so ist die Bildmenge K, ein von den drei Kurven-

Tafel ¢
Problem Ungleichung Giiltigkeitsbereich
a) (v, %:4) | (1a) ¥ < (p/2) (3 x — p?) pr=x=1
(22) ¥ = (12) (s +pY) (22— pP2 | (12)p* < x < p?
(32) y = (p/2)[2 7 (22 — py)]1 (9/10)p* <% <1
(4a) ¥y = (3p/4) (2% — p?) (1/2) p* = x < (9/10) p
b) (, p) (1b) x < 2p— p? prszs1
(2b) (2 x — P22 + (p/2)
X arccos{(p/x) (2 x — p?)?} =1 (1/2) p? = » = p?
(3b) (p/4) {n — arccos[p?/(4 x — p*)]}
+(12p)[2% (21— pRr 21 (o/4)p? =x <1
(4b) » =22p— (n—1)p?/2 (1/2) p* = x = (o/4) p?
c) (¥, 7) (Ic) ¥ =p*(3—-2p) pP=y =1
(2¢) 1 =2 (p/2){q+2tg(n —2q)/4}") 0 =y =p?
(3c) 1 = (p/4) {n — arctg(4 y/p%)}
+ y/p? (e/)pP =y =1
(4c) ¥y = 3p*— (3 n/4) p? 0 =y =< (e/4)p?
1) g bezeichnet hier die einzige im Intervall 0 < ¢ < 7/2 liegende Losung der Gleichung
8 (2 + sing)2(1 — sing) = 4 (1 + sing)3y

bégen PQ, QR und RP berandeter, ganz im Quadrat 0 < x, y <1 liegender abge-
schlossener und einfach-zusammenhingender Bereich (vgl. Figur 1). Die beiden Rand-
stiicke PQ und QR entsprechen den einparametrigen Scharen der Kugelkappenkorper
K und der symmetrischen Kugelschichten S; das dritte Randstiick RP entspricht den
noch unbekannten Extremalkorperscharen, wie sie am Ende von Abschnitt 1 bereits
erortert wurden.

5. Will man die drei in Abschnitt 2 niher erklirten Nebenprobleme (V, F, a),
(F, M, a) und (M, V, a) auf dhnliche Weise bearbeiten wie oben das Hauptproblem,
so dringt sich die Einfithrung der weiteren Koordinate

4na

p= ()
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auf, durch die eine Verbindung des Aquatorradius a mit den Masszahlen V, F und M
ermoglicht wird. Die Grésse p stellt ein Rundungsmass fiir die Rotationseikérper dar.
Das Intervall 1 < p < 4/n kennzeichnet die «flachen» und das Intervall 0 <p <1
die «langen» Korper; dem Wert $ =1, bei welchem die flache in die lange Form
ibergeht, entspricht die «runde» Form, wie sie durch die Kugel reprisentiert wird.
Die zwolf Ungleichungen der Tafel a lassen sich jetzt mit Hilfe der durch (6) und (9)
eingefiihrten Koordinaten #, y und p ausdriicken. So ergeben sich die zwolf Unglei-
chungen der Tafel c. Wihrend sich in den Ungleichungen der Gruppe (@), die dem

X
|
Q
S OR
P Figur 2 7
P %) R S
8 16 o
0= 0,000 1=1 0 — = = 0,857
x : 000 | 5 = 0,810 | ety =0,
P 0 = 0,000 = 1,000 4__1273 8 =1,201
- - n 2an+0—2

Nebenproblem (V, F, a) entspricht, alle drei Koordinaten beteiligen, konnen die-
jenigen der Gruppen () und (c) durch je zwei ausgedriickt werden. Diese beiden den
Nebenproblemen (F, M, a) und (M, V, a) zugehérenden vollstindigen Ungleichungs-
systeme konnen in einer (x, p)-Ebene und in einer (y, p)-Ebene bildlich dargestellt
werden. Es ergeben sich die in den Figuren 2 und 3 dargestellten Bereiche, die je von
vier den Ungleichungen der betreffenden Gruppe entsprechenden Kurvenstiicken
berandet sind (vgl. auch die den Figuren beigefiigten Koordinatentafeln).

6. Die Tafel c gibt uns nun die Mittel in die Hand, um x und y als Funktion von $
zu diskutieren. Genauer: Wird das Rundungsmass p vorgeschrieben, so kann fest-
gestellt werden, in welchen Intervallen x und y variieren konnen. Zur Vereinfachung
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wollen wir hierzu nur die Ungleichungen der Gruppen (b) und (c¢) heranziehen®). Die
fraglichen Intervalle fiir x bzw. y kénnen in Figur 2 bzw. Figur 3 durch Schnittsehnen
der dargestellten Bereiche mit Parallelen zur x-Achse bzw. y-Achse veranschaulicht
werden. Dabei ist die jeweilige Zweiteilung des Intervalls fiir $ zu beachten!

In der (x, y)-Ebene gedeutet, entspricht jedem Wert von $ ein Rechteck, dessen
Seiten durch die oben erdrterten Intervalle gebildet ist. Die Bildpunkte der Rota-
tionseik6érper vom Rundungsmass p miissen alle in diesem Rechteck liegen; sie werden
im allgemeinen das Rechteck nicht vollstindig ausfiillen (vgl. hierzu die Bemerkungen

Y
Q
Y
R
- p
P Figur 3
P ) R S
4320
0= 0,000 | 1=1,000 | 0=0,000 | ——=C _ —0,487
Y Gatep
4 12
0= 0,000 1=1 0 | — =1,273 — =1,103
p ’ 00 7 ’ 3n+9

in Abschnitt 3). Bilden wir jetzt die Vereinigungsmenge aller Rechtecke, indem wir

# von 0 bis 4/x variieren lassen, so erhalten wir einen Bereich Ii, der (x, y)-Ebene, der
jedenfalls den Bereich K, als Teil enthilt. Dieser sich durch Elimination von p erge-

bende Bereich Igo ist mit Figur 4 dargestellt. Die Elimination von # entspricht hier
der im Abschnitt 3 erérterten Elimination von a.

Der obere Rand von Ifo, der weit iiber dem wahren, durch die Kappenkorper K
gelieferten Randstiick von K, verliuft, ist nicht von Interesse. Ahnliches gilt fiir den

8) Die dadurch erreichbaren Ergebnisse konnten durch Einbezug der Ungleichungen der Gruppe (a)
noch verbessert werden.
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rechten Rand, der rechtsseitig von dem den Kugelschichten S entsprechenden wahren

Randstiick von I?o liegt. Dagegen zeigt der untere Rand von f(o die Existenz und die

ungefihre Gestalt des wahren unbekannten Randstiicks von K, (vgl. hierzu auch
Figur 1). Insbesondere zeigt der Einschnitt, dass das erste beim Kreisscheibenpunkt
ausmiindende wahre Randstiick nach rechts geneigt sein muss. Dies entspricht der
bereits frither nachgewiesenen merkwiirdigen Tatsache, dass das absolute Minimum
von V bei vorgegebenem M und F unstetig verlauft, indem ja der kleinste Wert von
y an der Stelle x = 8/n? als Funktion von x unstetig ist ®).

Y

Figur 4
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