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In unserem Fall ist, wenn vy das Vorzeichen von B bedeutet,

1

U=7(A+C+vBV(A—C)2+Bz)=L;q»

V= (A+C—v,V(A -0 1 BY) = pg+1,
kA

W=—g@u ) =K - g—0w-

A <0 (Ellipse): ¢ — p und p g + 1 miissen verschiedenes Vorzeichen haben. Da
g>$p>0, pg+1<0 unmoglich ist, gilt ¢ —p <0, p¢g+1>0. Hieraus folgt
—1/p < g < p. Fur W > 0 ist die Ellipse reell.

A > 0 (Hyperbel): In diesem Fall ist entweder ¢ > p > 0 oder ¢ < —1/p < 0. Ist
W= 0, so ist die durch (5) erzeugte Rotationsfliche je nach der Grésse von K ein
einschaliges oder ein zweischaliges Hyperboloid. Ist W= 0, so liegen zwei reelle
Geraden durch M vor, die einen Rotationskegel erzeugen.

A =0 (Parabel): a) ¢ =p > 0. Bei Drehung des Koordinatensystems um den
durch tga =B/2 A = —1/p bestimmten spitzen negativen Winkel « geht (4) iiber in

2RVPE+1E =0 (p2+1) 24+ p (B2 —K). (6)

Die Parabelachse fillt also mit der Rotationsachse zusammen. Ist 2 =0 und K > 0,
so zerfdllt (6) in zwei zur Rotationsachse parallele reelle Geraden, die einen Rotations-
zylinder erzeugen.

b) pg+1=0, ¢=—1/p. (4) erhdlt die Form

Li—k)=K
(z + ? X — ) =,
Fiir K = 0 sind das zwei parallele, zur Rotationsachse senkrechte Geraden, die zwei
parallele Ebenen erzeugen. E.TrosT, Ziirich

Uber Geraden in allgemeiner Lage

Endlich viele Geraden in der euklidischen oder projektiven Ebene, unter denen
keine Parallelen vorkommen und von denen keine drei durch einen Punkt gehen,
sind Geraden in allgemeiner Lage. Wir sagen auch, sie bilden eine einfache Konfigura-
tion. In diesem Aufsatz soll iiber die wenigen bekannten Eigenschaften solcher ein-
facher Konfigurationen und der durch diese hervorgerufenen Teilungen der Ebene
in Gebiete (Zellen) berichtet werden.

Bereits im Jahre 1826 zeigte J. STEINER!), dass m Geraden in allgemeiner Lage die
euklidische Ebene in (";') + 1 Zellen zerlegen, von denen 2m unbeschrinkt sind.
Dies ergibt sich leicht durch vollstindige Induktion nach der Anzahl der Geraden.
Wir nehmen die Aussage fiir eine einfache Konfiguration & mit m Geraden bereits

1) J. STEINER, Einige Gesetse tiber die Theilung der Ebene und des Raumes, Crelles J. reine angew. Math. 1,
349--364 (18286), oder Gesammelte Werke I, S.77-94 (Bérlin 1881).
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als bewiesen an und fiigen eine weitere Gerade g hinzu, die mit den m Geraden je
cinen Schnittpunkt hat. Diese m Schnittpunkte zerlegen g in zwei Halbstrahlen und
m — 1 Strecken. Jede dieser Strecken sowie jeder dieser Halbstrahlen zerlegt eine
Zelle von R in zwei neue Zellen. Die Zellenzahl nimmt also um m + 1 zu. Es ergibt
sich fiir m + 1 Geraden in der Tat die Zellenzahl

(m+1

; )+1+m+1=(’”+2

)

In einem Buch von v. STAUDT?) steht die Bemerkung, dass m Geraden in allgemeiner

X
NV NS

\)ﬁ/ ~ X/ ~

Figurl

Lage die projektive Ebene in (3) + 1 Zellen zerlegen. Wenn man eine einfache Konfi-
guration mit den Geraden gy, g;, ..., g, -1 Kollinear so transformiert, dass eine Gerade
— etwa g, — in die unendlich ferne Gerade fillt, so wird die Teilung der projektiven
Ebene durch die Geraden gy, g;, ..., gn_1 identisch mit der Teilung der euklidischen
Ebene durch die Geraden gy, ..., gu_1. So ergibt sich aus der Anzahlformel von
STEINER diejenige von v. STAUDT.

Bei F. Levi®) findet sich unter anderem ein Satz, der hier erwdhnt sei: Jede
Gerade einer einfachen Konfiguration in der projektiven Ebene ist zu mindestens drei
Dreiecken benachbart. Hierbei heisst eine Gerade g zu einer Zelle { benachbart, wenn
g und ¢ eine Strecke gemeinsam haben. Zwei Zellen gelten als benachbart, wenn
sie eine Strecke (oder einen Halbstrahl) als gemeinsamen Rand besitzen.

3) G. K.CHR. V. STAUDT, Geomeirie der Lage (Niirnberg 1847), § 13.
3) F.Levi, Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade, Ber. math.-phys. Klasse
sichs. Akad. Wiss. Leipzig 78, 256-267 (1926).
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Wir nennen zwei einfache Konfigurationen & und ' mit je m Geraden dquivalent,
wenn die Menge der Zellen von & eineindeutig derart auf die Menge der Zellen von
K’ abgebildet werden kann, dass benachbarten Zellen von § stets wieder benachbarte
Zellen von &' entsprechen. Wenn wir zunichst nur den Fall der euklidischen Ebene
betrachten, so ergibt sich, dass alle einfachen Konfigurationen mit vier Geraden
untereinander dquivalent sind. Bei fiinf Geraden gibt es bereits nichtdquivalente
Konfigurationen. In Figur 1 sind alle 6 Moglichkeiten aufgezdhlt. Dass zum Beispiel
die beiden Teilungen I und II nicht dquivalent sind, erkennt man daraus, dass einmal
4 und einmal nur 3 Dreiecke auftreten. Eine allgemeine Formel fiir die Anzahl 4,,
der Klassen nichtidquivalenter einfacher Konfigurationen mit m Geraden ist nicht
bekannt und diirfte schwierig zu finden sein. Fiir m < 7 sind diese Anzahlen 4,,
durch R. KLEEY) bestimmt worden. In recht miihevoller Weise fand er die Werte

A1=A2=A3=A4=1, A5=6, A6=43, A7=922.

Im Falle der projektiven Ebene fand R. KLEE fiir die Anzahl P,, der Klassen nicht-
dquivalenter einfacher Konfigurationen mit m Geraden die Werte

Pl P)*-*P3 P4 P5—-—-1 P6:4! P‘-zll.

Wenn wir in einer einfachen Konfiguration  eine Gerade g derart verschieben
(nicht notwendig parallel zu sich selbst, aber doch so, dass in keinem Zwischenstadium
die Gerade g zu einer anderen Geraden von R parallel ist), dass kein Schnittpunkt
von K iiberstrichen wird, so entsteht natiirlich wieder eine zu & dquivalente einfache
Konfiguration. Eine solche Operation nennen wir eine 0-Verschiebung. Entsprechend
soll das « Hinwegschieben » einer Geraden iiber genau einen Schnittpunkt von & eine
1-Verschiebung heissen. In Figur 1 sind zum Beispiel II aus I, III aus II, IV aus III
usw. durch jeweils eine 1-Verschiebung entstanden. Das Spiegelbild einer einfachen
Konfiguration { liefert wieder eine zu & dquivalente einfache Konfiguration. Durch
0-Verschiebungen und Spiegelung erhilt man also immer dquivalente einfache Kon-
figurationen. Wir vermuten, dass auch umgekehrt zwei dquivalente einfache Konfi-
gurationen durch mehrmalige Anwendung von 0-Verschiebungen und durch eventuell
eine Spiegelung aufeinander zuriickgefiihrt werden kénnen. Lelder konnte dies bisher
noch nicht bewiesen werden.

Ein Halbkreis sei durch m Punkte in m +1 gleich grosse Kreisbdgen zerlegt.
Wenn wir in jedem dieser m Punkte eine Tangente an den Halbkreis errichten, so
erhalten wir eine leicht zu iiberblickende einfache Konfiguration von m Geraden.
Wir nennen sie die Standardkonfiguration. Figur 1 III ist ein Beispiel fiir m =5. Wir
beweisen jetzt

Satz 1. Durch mehrmalige Anwendung von O- und 1-Verschiebungen kann man aus
jeder einfachen Konfiguration mit m Geraden jede andere einfache Konfiguration mit
m Geraden herstellen.

Beweis. Zwei verschiedene Standardkonfigurationen S;, &, mit je m Geraden,
deren zugehérige Halbkreisradien gleich gross sind, sind kongruente geometrische

4) R. KiEE, Uber die einfachen Konfigurationen der euklidischen und projektiven Ebeme (Focken und
Oltmanns, Dresden 1938).
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Figuren. Man kann eine passende Drehung der ganzen Figur &, um den Mittelpunkt
des zugehdrigen Halbkreises durchfiihren und dann durch eine Parallelverschiebung G,
mit &, zur Deckung bringen. Die genannte Drehung der Figur &, kann man aber
auch erhalten, indem man nacheinander jeweils immer nur eine Gerade ein Stiickchen
weiterbewegt. Ebenso kann man die darauffolgende Parallelverschiebung aus lauter
0-Verschiebungen stiickweise zusammensetzen. Durch endlich viele 0-Verschiebun-
gen kann man also &, in &, iiberfithren. Zum Beweis von Satz 1 bleibt daher nur
noch zu zeigen, dass man jede beliebige einfache Konfiguration & durch 0- und 1-Ver-
schiebungen in eine Standardkonfiguration iiberfithren kann, deren zugehériger
Halbkreisradius » fest vorgegeben ist. Zu diesem Zwecke wihlen wir in einer unbe-
schriankten Zelle { von & derart einen Punkt M, dass die Kreisscheibe 2 mit dem vor-
gegebenen Radius » um diesen Punkt M als Mittelpunkt noch ganz im Inneren von
¢ liegt. Mit Hilfe einer kleinen 0-Verschiebung einer Geraden g, von & erreichen wir,
dass alleVerbindungsstrecken je zweier Schnittpunkte von &, die nicht auf g, liegen,
nicht zu g, parallel sind. Nun verschieben wir die Gerade g, parallel zu sich selbst
in Richtung auf %, bis sie Tangente von % ist. Hierbei werden niemals zwei Schnitt-
punkte von & gleichzeitig iiberstrichen, so dass die besagte Parallelverschiebung von
g, aus lauter 1-Verschiebungen zusammengesetzt ist. In derselben Weise kann man
nacheinander alle Geraden von ! durch 0- und 1-Verschiebungen zu Tangenten von
k werden lassen. Die m Berithrungspurikte dieser m Tangenten liegen alle auf einem
Halbkreis von 2. Man kann jetzt diese Tangenten als Tangenten von % schrittweise
nacheinander noch so verschieben (Drehungen um M), dass schliesslich eine Stan-
dardkonfiguration entsteht. Satz 1 ist hiermit bewiesen.

Die bei einer einzelnen 1-Verschiebung entstehende Verdnderung der Zellzerlegung
der Ebene durch & kann man leicht iiberblicken. Ein Dreieck 4 geht in ein neues
Dreieck iiber, wobei es alle drei Nachbarzellen wechselt. Sonst bleiben die Zellen in
ihren Nachbarbeziehungen unveridndert. Zu jeder 1-Verschiebung gehoért ein Dreieck
d, so dass die 1-Verschiebung darin besteht, dass eine Seitengerade von & iiber den
gegeniiberliegenden Eckpunkt von § hinweggeschoben wird. Es scheint nun plausibel,
dass auch umgekehrt zu einem vorgegebenen Dreieck 4 in einer einfachen Konfigu-
ration eventuell unter Zuhilfenahme einiger passender 0-Verschiebungen stets auch
eine zu § gehorige 1-Verschiebung ausfiihrbar ist. Der Umstand, dass dies indessen
nicht richtig ist, ist einer der Griinde, warum die Aufzdhlung der Aquivalenzklassen
der einfachen Konfigurationen so schwierig ist. Fiir den genannten Sachverhalt
geben wir ein Beispiel an.

Wir behaupten, dass in der durch Figur 2 dargestellten einfachen Konfiguration
mit 9 Geraden die Gerade g nicht iiber den Schnittpunkt P, hinweggeschoben werden
kann, auch wenn man vorher beliebige 0-Verschiebungen ausfithrt. Zum Beweise
betrachten wir die 6 Punkte 4,, 4,, A,, B,, By, B; (Figur 3). Die Verbindungsgerade
zweier Punkte P und Q bezeichnen wir mit (P, Q). Dann ist P, der Schnittpunkt der
Geraden (4,, B,) und (4;, B,). Mit P, bzw. P; sei der Schnittpunkt der Geraden
(A3, By) und (4,, B,) bzw. der Geraden (4,, By) und (4,, B,) bezeichnet (Figur 3).
Nach dem Satz von Pappus-PascaL liegen die drei Punkte P, P,, P, auf einer
Geraden p, die die Ebene in zwei Halbebenen zerlegt. Die beiden in Figur 3 schraf-
fierten Gebiete « und f liegen auf derselben von p erzeugten Halbebene. Wenn es
nun moglich wire, die Gerade g mit einer 1-Verschiebung iiber den Punkt F, so zu
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riicken, so miisste eine Gerade g’ existieren, die je einen Punkt aus dem Innern von
«, # und y enthélt. Durch die drei Geraden (B,, 4,), (B,, 45) und p wird die Ebene in
6 Gebiete zerlegt. Mit 5 von diesen 6 Gebieten wiirde diese Gerade g’ innere Punkte
gemeinsam haben. Dies ist jedoch unmoéglich. Durch die sozusagen «unsichtbare »
Pascal-Gerade p wird also die Moglichkeit einer 1-Verschiebung der Geraden iiber
den Punkt P, vereitelt.

Die durch eine einfache Konfiguration & hervorgerufene Zellzerlegung der Ebene
lasst sich in folgender Weise kombinatorisch beschreiben. Es seien g,, g, ..., g. die

7NN

Figur 2 Figur 3

Geraden von R und {; [t =1, 2,..., (*}!) + 1] die Zellen, in die die Ebene durch
R zerlegt wird. Jede Gerade g, sei willkiirlich mit einer Richtung (Orientierung)
versehen. Man kann dann in bezug auf jedes g, von einer linken und einer rechten
Halbebene sprechen. Der betrachteten einfachen Konfiguration ordnen wir sodann
die Matrix S = (e;;) zu, wobei ¢;, = +1 oder —1 zu setzen ist, je nachdem die
Zelle {; rechts oder links von der Geraden g, liegt. Hierbei sei # der Spaltenindex,
so dass jede Zelle durch eine Zeile von S reprisentiert wird. Die Zeilen von S schrei-
ben wir wie Vektoren der Linge m, zum Beispiel 3 = {—1, -1, +1, +1, —-1},
—3={+1, 41, -1, 1, +1} oder kiirzer 3 ={— — + + —}. In Figur 1 VI ist eine
solche Beschreibung der Zellen durch Zeilen angedeutet. Zwei Zeilen, die sich nur in
einer einzigen Komponente unterscheiden, nennen wir benachbarte Zeilen. Es ist klar,
dass benachbarten Zellen benachbarte Zeilen entsprechen und umgekehrt. Wenn wir
in einer Geraden g, von R die Orientierung indern, so haben wir gleichzeitig in der
Matrix die k-te Spalte mit —1 zu multiplizieren. Das Vertauschen zweier Geraden
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in K entspricht dem Vertauschen zweier Spalten von S. Zwei Matrizen, die man durch
mehrmaliges Ausfiihren der drei Operationen,

Vertauschen zweier Zeilen,
Vertauschen zweier Spalten,
Multiplikation einer Spalte mit —1,

zur Ubereinstimmung bringen kann, mégen dguivalent heissen. Wir beweisen

Satz 2. Zwei einfache Konfigurationen & und K sind dann und nur dann dquivalent,
wenn die zugehorigen Matrizen S und S’ dquivalent sind.

Die Matrizen S und S’ zweier einfacher Konfigurationen & und f’ seien dquivalent,
das heisst, durch Umnumerierung der Spalten und Zeilen von S’ und durch Multipli-
kation gewisser Zeilen von S’ mit —1 kann man S und S’ identisch werden lassen.
Wir numerieren die Zellen und Geraden von !’ entsprechend. Ebenso sei die Orien-
tierung der Geraden von R’ passend gewdhlt. Nun ist also S identisch mit der zu
K’ gehorigen Matrix S’. Wir bilden die Zellen von & auf die Zellen von R’ ab, indem
wir Zellen mit derselben zugehdrigen Zeile aufeinander abbilden. Benachbarte Zellen
von R gehéren dann zu benachbarten Zeilen von S = S, somit auch zu benachbarten
Zellen von K'.

Wenn umgekehrt & und R’ zwei dquivalente einfache Konfigurationen sind, so
gibt es eine Abbildungsvorschrift ¢, die jeder Zeile von & eine Zelle von &' zuordnet,
wobei benachbarte Zellen in benachbarte Zellen iibergehen. Da eine Strecke bzw. ein
Halbstrahl von R eindeutig als gemeinsame Grenze zweier benachbarter Zellen und
ein Schnittpunkt von K durch die vier umliegenden Zellen eindeutig bestimmt ist,
so ist durch ¢ auch eine Abbildungsvorschrift fiir die Schnittpunkte, Strecken, Halb-
strahlen und Zellen von & auf die Schnittpunkte, Strecken, Halbstrahlen und Zellen
von R gegeben. Natiirlich sind hierbei inzidente Elemente von R auf inzidente
Elemente von R’ abgebildet. Ausserdem ist klar, dass die Strecken und Halbstrahlen
einer Geraden g von & auf diejenige einer Geraden g’ von K abgebildet sind. Auch
entsprechen die Zellen von R, die zu einer Halbebene beziiglich g gehéren, den Zellen
einer Halbebene beziiglich g’ in &'. Die Représentation einer Zelle von & durch eine
Zeile von S bedeutet aber nichts anderes als die Darstellung der Zelle als Durchschnitt
von m Halbebenen. Daher sind die Matrizen S und S’ dquivalent.

In einer einfachen Konfiguration R ist jede Gerade g; durch die m — 1 anderen
Geraden in m — 2 Strecken und zwei Halbstrahlen 4; und %; zerlegt. Der Rand einer
unbeschrinkten Zelle { von & enthilt stets zwei solche Halbstrahlen, etwa 4, und 4,.
Zu diesem { gibt es sodann eine «gegeniiberliegende » unbeschrinkte Zelle ¢, nimlich
diejenige, die durch 4, und A, (und eventuell einigen Strecken) begrenzt ist. Wenn 3
bzw. 3 die dieser Zelle { bzw. 4 entsprechende Zeile der Matrix S ist, so gilt 3 = —3.
Ist nimlich P ein Punkt von ¢ und P ein Punkt von £, so wird die Verbindungs-
strecke PP durch alle Geraden von R geschnitten. P und P liegen somit in bezug auf
jede Gerade von & auf zwei verschiedenen Halbebenen. Nun sei « eine beschrinkte
Zelle und a die zugehorige Zeile in S. Zu jedem Punkt Q der Ebene gibt es dann
mindestens eine Gerade von K, fiir die Q und « auf derselben Halbebene liegen. Daher
kommt in der Matrix S die Zeile —a bestimmt nicht vor. Wenn S eine beliebige
Matrix ist, so wollen wir mit U(S) die Menge aller Zeilen x von S verstehen, fiir die
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auch die reziproke Zeile —x in S vorkommt. Wenn also S die zu einer einfachen Kon-
figuration gehorige Matrix ist, so sind die unbeschrinkten Zellen genau durch die
Zeilen von U(S) reprisentiert.

Satz 3. Die zu einer esnfachen Konfiguration K gehorige Matrix S hat die folgenden
drei Eigenschaften :

I. Wenn man in S alle bis auf 3 Spalten streicht, so bleiben genaw 7 verschiedene
Zeilen 1ibrig.

II. Wenn man in U(S) alle bis auf 3 Spalten streicht, so bleiben genau 6 verschiedene
Zeilen 1ibrig.

II1. Die Matrix S ist in bezug auf die Eigenschaft 1 maximal, das heisst, wenn man
etne tn S moch nicht vorkommende Zeile zu S hinzufiigt, so geht die Eigenschaft 1 ver-
loren.

Bewers zu 1. Wenn wir in R eine Gerade g entfernen, so entsteht eine einfache
Konfiguration & mit m — 1 Geraden, deren zugehérige Matrix S’ findet man aus
S durch Streichen der zu g gehérigen Spalte; danach hat man alle etwa doppelt vor-
kommenden Zeilen nur einmal zu zdhlen. Streicht man also nacheinander m — 3 be-
liebige Zeilen aus S, so erhélt man eine durch 3 Geraden realisierbare Matrix. Diese
hat genau 7 verschiedene Zeilen, weil drei Geraden in allgemeiner Lage die Ebene in
7 Zellen zerlegen.

Beweis zu 11. Wir bezeichnen die Matrix, die beim Streichen der letzten Spalte aus
S bzw. U(S) entsteht, mit S’ bzw. U(S)’. Durch Entfernen der letzten Geraden von
& entstehe die einfache Konfiguration K’, so dass S’ die zu K" gehorige Matrix ist.
In jeder unbeschrinkten Zelle von K’ liegt eine unbeschrinkte Zelle von &, das heisst,
die Zeilen von U(S’) sind in U(S)’ enthalten. Wenn x eine Zeile von S ist, so sei mit
x’ diejenige Zeile bezeichnet, die durch Weglassen der letzten Komponente aus x ent-
steht. Ist.a eine Zeile von U(S)’, so existiert eine Zeile b aus U(S) mit b’ = a. Aus
b e U(S) folgt der Reihe nach:

b, —bES; b, (—b)€ES; b,—-b€ES; a —a€S’; a€cU(S).

Also ist auch umgekehrt jede Zeile von U(S)’ in U(S’) enthalten, das heisst U(S’) und
U(S)’ sind identische Matrizen (bis auf die Reihenfolge der Zeilen). Werden in U(S)
zwei Spalten gestrichen, etwa die beiden letzten, so folgt

U(S)" =[U(S)T =U(S)" = U(S").

Ganz allgemein entsteht also aus U(S) beim Streichen von s beliebigen Spalten eine
Matrix U(S)® = U(S"), wobei S® durch Streichen von s Spalten aus S hervorgeht.
Setzt man s =m — 3, so wird U(S)™~% = U(S™-%), Hierbei ist S™-¥ wegen Eigen-
schaft I eine Matrix mit 7 Zeilen. U(S™-®) hat daher genau 6 Zeilen. Hiermit ist die
Eigenschaft II bewiesen.

Zu 111. Der Beweis der Eigenschaft III wiirde hier zu viel Platz erfordern. Er ist
durchgefiihrt in einer ausfiihrlichen Arbeit des VerfassersS).

Alle Matrizen S, die zu einer einfachen Konfiguration mit m Geraden gehéren,
kombinatorisch zu kennzeichnen, ist eine ungeloste Frage. Wiederum ist der durch
das Beispiel von Figur 2 geschilderte Umstand ein grosses Hindernis. Man kann

5) G. RINGEL, Teilungen der Ebene durch Geraden oder topologische Geraden, Math. Z, 64, 79-102 (1956).
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diese Schwierigkeit umgehen, wenn man die einfachen Konfigurationen wie F. LEvI
in folgender Weise verallgemeinert:

Wenn wir in einer Geraden eine endliche Teilstrecke durch einen einfachen Bogen
ersetzen, der mit den beiden restlichen Halbstrahlen der Geraden je nur den betref-
fenden Endpunkt gemeinsam hat, so nennen wir die entstandene Kurve eine Pseudo-
gerade. Eine Pseudogerade ist sozusagen eine «verbogene» Gerade. Wir sagen, m
Pseudogeraden bilden eine einfache Konfiguration, wenn sich je zwei in genau einem
Punkte schneiden und diese Schnittpunkte alle verschieden sind. Nun ist es stets
moglich, eine 1-Verschiebung in bezug auf ein vorgegebenes Dreieck durchzufiihren.
Der Satz 3 gilt natiirlich auch fiir einfache Konfigurationen mit Pseudogeraden. Ja,
es gilt sogar der viel schirfere

Satz 4. Notwendig und hinveichend dafiir, dass eine rechteckige Matrix S mit m
Spalten, deren Elemente gleich +1 oder —1 sind, zu einer einfachen Konfiguration von
Pseudogeraden gehort, ist die gleichzeitige Giiltigkeit der drei Bedingungen 1, 11, I11 von
Satz 3, wenn m + 4 vorausgesetzt ist.

Der Beweis zu Satz 4 ist recht langwierig und kann hier nicht gegeben werden. Er
findet sich in der bereits zitierten Arbeit®). Dort ist auch das einzige Gegenbeispiel
im Falle m = 4 angegeben: Eine Matrix mit 4 Spalten und 15 Zeilen, die die drei
Eigenschaften I, II, III besitzt und doch nicht durch 4 Geraden (oder Pseudogeraden)
realisierbar ist. G. RINGEL, Bonn

Kleine Mitteilungen

Quelques propriétés de coordonnées relatives a un triangle

Etant donné un triangle ABC quelconque, prenons sur les cotés 4B, BC, C4 des
points C’, A’, B’ tels que AC'=v-AB, BA’=s-BC, CB’=t-CA. Les droites 44’,
BB’, CC’ déterminent un nouveau triangle A”B”"C” dont on calcule aisément l'aire V:

[(A—=7)(1—s)(1L—¢)—rsi)?
—s+sr)(l—r+rt)(1—t+1ts)

V=V, a (Vy=aire ABC).

Lorsque
rst=(1-7)(1-5)(1-1¢), (1)

les trois points 4", B”, C" se confondent en un point P. On peut alors considérer les
valeurs 7, s, £ comme des coordonnées triangulaires du point P par rapport au triangle
ABC. Tout point P a des coordonnées bien déterminées, sauf les sommets 4, B, C qui
correspondent aux valeurs (0, s, 1), (1, 0, ¢), (r, 1, 0) (r, s, ¢ quelconques). Inversement,
si on se donne deux des trois valeurs, on détermine univoquement le point P, exception
faite des sommets et des cotés du triangle. On peut dire que les coordonnées (7, s, ¢)
engendrent une transformation birationnelle du plan du triangle sur la surface du
troisi¢éme degré x-y-z=(1~x):(1—y)- (1 —2), les points 4, B, C étant singuliers.

Si 'on se donne 3 valeurs a, b, ¢, vérifiant (1), et un triangle quelconque (non numé-
roté), on pourra trouver 12 points ayant ces trois nombres pour coordonnées (dans un
ordre quelconque), par rapport au triangle ABC ou ACB; si I'on choisit une des orien-
tations du triangle, on aura les 12 points:

D(a, b,c); E(b,c, a); F(cab); G(l—a, 1—¢, 1-0b);
H(l—¢, 1—b, 1—a); J(1—0b, 1—a, 1—2¢);
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