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In unserem Fall ist, wenn vB das Vorzeichen von B bedeutet,

U=\(a+C+vb]/(A-C)*+B*)~^,
V \{A + C - vBV(A-C)*+B*) pq + l,

k2A
W=-g(xM,zM)^K- 4(p~ q)*

A < 0 (Ellipse): q — p und £ # -f-1 müssen verschiedenes Vorzeichen haben. Da
q> p> 0, ^£-fl<0 unmöglich ist, gilt q — p <0, p q + 1> 0. Hieraus folgt
-1/p < q < p. Für W > 0 ist die Ellipse reell.

A > 0 (Hyperbel): In diesem Fall ist entweder q> p> 0 oder # < —ljp<0. Ist
PF #= 0, so ist die durch (5) erzeugte Rotationsfläche je nach der Grösse von K ein
einschaliges oder ein zweischahges Hyperboloid. Ist W — 0, so liegen zwei reelle
Geraden durch M vor, die einen Rotationskegel erzeugen.

A 0 (Parabel): a) q p>0. Bei Drehung des Koordinatensystems um den
durch tgaL=Bj2A —1//> bestimmten spitzen negativen Winkel a geht (4) über in

2 ft Vp2+lC p(p2+l)P+p (k* - K). (6)

Die Parabelachse fällt also mit der Rotationsachse zusammen. Ist k 0 und K > 0,
so zerfällt (6) in zwei zur Rotationsachse parallele reelle Geraden, die einen Rotationszylinder

erzeugen.
b) pq + 1 0, q= -l\p. (4) erhält die Form

(* + j*-tf=K.
Für K ä 0 sind das zwei parallele, zur Rotationsachse senkrechte Geraden, die zwei
parallele Ebenen erzeugen. E. Trost, Zürich

Über Geraden in allgemeiner Lage

Endlich viele Geraden in der euklidischen oder projektiven Ebene, unter denen
keine Parallelen vorkommen und von denen keine drei durch einen Punkt gehen,
sind Geraden in allgemeiner Lage. Wir sagen auch, sie bilden eine einfache Konfiguration.

In diesem Aufsatz soll über die wenigen bekannten Eigenschaften solcher
einfacher Konfigurationen und der durch diese hervorgerufenen Teilungen der Ebene
in Gebiete (Zellen) berichtet werden.

Bereits im Jahre 1826 zeigte J. Steiner1), dass m Geraden in allgemeiner Lage die
euklidische Ebene in f*^"1) 4-1 Zellen zerlegen, von denen 2m unbeschränkt sind.
Dies ergibt sich leicht durch vollständige Induktion nach der Anzahl der Geraden.
Wir nehmen die Aussage für eine einfache Konfiguration 51 mit m Geraden bereits

*) J. Steiner, Einige Gesetze über die Theilung der Ebene und des Raumes, Crelles J. reine angew. Math. 1,
349-364 (1826), oder Gesammelte Werke I, S. 77-94 (Berlin 1881).
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als bewiesen an und fugen eine weitere Gerade g hinzu, die mit den m Geraden je
einen Schnittpunkt hat. Diese m Schnittpunkte zerlegen g in zwei Halbstrahlen und
m — 1 Strecken. Jede dieser Strecken sowie jeder dieser Halbstrahlen zerlegt eine
Zelle von il m zwei neue Zellen. Die Zellenzahl nimmt also um m 4- 1 zu. Es ergibt
sich für w 4-1 Geraden in der Tat die Zellenzahl

2 )+l + « + l 2 )+l.
In einem Buch von v. Staudt2) steht die Bemerkung, dass m Geraden in allgemeiner

??—

?++

w -H- + +

-^4ff

Figur 1

Lage die projektive Ebene in (2) 4-1 Zellen zerlegen. Wenn man eine einfache
Konfiguration mit den Geraden g0, gt,... ,gm _ 2 kollinear so transformiert, dass eine Gerade
— etwa g0 — in die unendlich ferne Gerade fällt, so wird die Teilung der projektiven
Ebene durch die Geraden g0, gx, gm_x identisch mit der Teilung der euklidischen
Ebene durch die Geraden gx,..., gw_x. So ergibt sich aus der Anzahlformel von
Steiner diejenige von v. Staudt.

Bei F. Levi8) findet sich unter anderem ein Satz, der hier erwähnt sei* Jede
Gerade einer einfachen Konfiguration in der projektiven Ebene ist zu mindestens drei
Dreiecken benachbart. Hierbei heisst eine Gerade g zu einer Zelle £ benachbart, wenn
g und C eine Strecke gemeinsam haben. Zwei Zellen gelten als benachbart, wenn
sie eine Strecke (oder einen Halbstrahl) als gemeinsamen Rand besitzen.

*) G. K. Chr. v. Staudt, Geometrte der Lage (Nürnberg 1847), § 13.
3) F. Levi, Du Teilung der projektiven Ebene durch Gerade oder Pseudogerade, Ber. math.-phys. Klasse

sächs. Akad. Wiss. Leipzig 78t 256-267 (1926).
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Wir nennen zwei einfache Konfigurationen il und il' mit je m Geraden äquivalent,
wenn die Menge der Zellen von il eineindeutig derart auf die Menge der Zellen von
il' abgebildet werden kann, dass benachbarten Zellen von il stets wieder benachbarte
Zellen von il' entsprechen. Wenn wir zunächst nur den Fall der euklidischen Ebene
betrachten, so ergibt sich, dass alle einfachen Konfigurationen mit vier Geraden
untereinander äquivalent sind. Bei fünf Geraden gibt es bereits nichtäquivalente
Konfigurationen. In Figur 1 sind alle 6 Möglichkeiten aufgezählt. Dass zum Beispiel
die beiden Teilungen I und II nicht äquivalent sind, erkennt man daraus, dass einmal
4 und einmal nur 3 Dreiecke auftreten. Eine allgemeine Formel für die Anzahl Am
der Klassen nichtäquivalenter einfacher Konfigurationen mit m Geraden ist nicht
bekannt und dürfte schwierig zu finden sein. Für m^l sind diese Anzahlen Am
durch R. Klee4) bestimmt worden. In recht mühevoller Weise fand er die Werte

Ax A2 As At l, A5 6, ^6 43, 47 922.

Im Falle der projektiven Ebene fand R. Klee für die Anzahl Pm der Klassen
nichtäquivalenter einfacher Konfigurationen mit m Geraden die Werte

P1 P2 P3 P4 P5 1> P6 4, P7 ll.
Wenn wir in einer einfachen Konfiguration il eine Gerade g derart verschieben

(nicht notwendig parallel zu sich selbst, aber doch so, dass in keinem Zwischenstadium
die Gerade g zu einer anderen Geraden von il parallel ist), dass kein Schnittpunkt
von il überstrichen wird, so entsteht natürlich wieder eine zu il äquivalente einfache
Konfiguration. Eine solche Operation nennen wir eine ^-Verschiebung. Entsprechend
soll das «Hinwegschieben » einer Geraden über genau einen Schnittpunkt von Ä eine

1-Verschiebung heissen. In Figur 1 sind zum Beispiel II aus I, III aus II, IV aus III
usw. durch jeweils eine 1-Verschiebung entstanden. Das Spiegelbild einer einfachen
Konfiguration il liefert wieder eine zu il äquivalente einfache Konfiguration. Durch
0-Verschiebungen und Spiegelung erhält man also immer äquivalente einfache
Konfigurationen. Wir vermuten, dass auch umgekehrt zwei äquivalente einfache
Konfigurationen durch mehrmalige Anwendung von 0-Verschiebungen und durch eventuell
eine Spiegelung aufeinander zurückgeführt werden können. Leider konnte dies bisher
noch nicht bewiesen werden.

Ein Halbkreis sei durch m Punkte in m + 1 gleich grosse Kreisbögen zerlegt.
Wenn wir in jedem dieser m Punkte eine Tangente an den Halbkreis errichten, so
erhalten wir eine leicht zu überblickende einfache Konfiguration von m Geraden.
Wir nennen sie die Standardkonfiguration. Figur 1 III ist ein Beispiel für w 5. Wir
beweisen jetzt

Satz 1. Durch mehrmalige Anwendung von 0- und 1-Verschiebungen kann man aus
jeder einfachen Konfiguration mit m Geraden jede andere einfache Konfiguration mit
m Geraden herstellen.

Beweis. Zwei verschiedene Standardkonfigurationen Si, S2 rnit je m Geraden,
deren zugehörige Halbkreisradien gleich gross sind, sind kongruente geometrische

4) R. Klee, Über die einfachen Konfigurationen der euklidischen und projektiven Ebene (Focken und
Oltmanns, Dresden 1938).
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Figuren. Man kann eine passende Drehung der ganzen Figur &x um den Mittelpunkt
des zugehörigen Halbkreises durchführen und dann durch eine Parallelverschiebung <5X

mit S2 zur Deckung bringen. Die genannte Drehung der Figur (3X kann man aber
auch erhalten, indem man nacheinander jeweils immer nur eine Gerade ein Stückchen
weiterbewegt. Ebenso kann man die darauffolgende ParallelVerschiebung aus lauter
0-Verschiebungen stückweise zusammensetzen. Durch endlich viele 0-Verschiebungen

kann man also &x in S2 überführen. Zum Beweis von Satz 1 bleibt daher nur
noch zu zeigen, dass man jede beliebige einfache Konfiguration il durch 0- und
1-Verschiebungen in eine Standardkonfiguration überführen kann, deren zugehöriger
Halbkreisradius r fest vorgegeben ist. Zu diesem Zwecke wählen wir in einer
unbeschränkten Zelle C von il derart einen Punkt M, dass die Kreisscheibe k mit dem
vorgegebenen Radius r um diesen Punkt M als Mittelpunkt noch ganz im Inneren von
f liegt. Mit Hilfe einer kleinen 0-Verschiebung einer Geraden gx von il erreichen wir,
dass alleVerbindungsstrecken je zweier Schnittpunkte von il, die nicht auf gx liegen,
nicht zu gx parallel sind. Nun verschieben wir die Gerade gx parallel zu sich selbst
in Richtung auf k, bis sie Tangente von k ist. Hierbei werden niemals zwei Schnittpunkte

von il gleichzeitig überstrichen, so dass die besagte Parallelverschiebung von
gx aus lauter 1-Verschiebungen zusammengesetzt ist. In derselben Weise kann man
nacheinander alle Geraden von il durch 0- und 1-Verschiebungen zu Tangenten von
k werden lassen. Die m Berührungspunkte dieser m Tangenten liegen alle auf einem
Halbkreis von k. Man kann jetzt diese Tangenten als Tangenten von k schrittweise
nacheinander noch so verschieben (Drehungen um M), dass schliesslich eine
Standardkonfiguration entsteht. Satz 1 ist hiermit bewiesen.

Die bei einer einzelnen 1-Verschiebung entstehende Veränderung der Zellzerlegung
der Ebene durch il kann man leicht überblicken. Ein Dreieck d geht in ein neues
Dreieck über, wobei es alle drei Nachbarzellen wechselt. Sonst bleiben die Zellen in
ihren Nachbarbeziehungen unverändert. Zu jeder 1-Verschiebung gehört ein Dreieck
d, so dass die 1-Verschiebung darin besteht, dass eine Seitengerade von d über den
gegenüberliegenden Eckpunkt von <5 hinweggeschoben wird. Es scheint nun plausibel,
dass auch umgekehrt zu einem vorgegebenen Dreieck d in einer einfachen Konfiguration

eventuell unter Zuhilfenahme einiger passender 0-Verschiebungen stets auch
eine zu 6 gehörige 1-Verschiebung ausführbar ist. Der Umstand, dass dies indessen

nicht richtig ist, ist einer der Gründe, warum die Aufzählung der Äquivalenzklassen
der einfachen Konfigurationen so schwierig ist. Für den genannten Sachverhalt
geben wir ein Beispiel an.

Wir behaupten, dass in der durch Figur 2 dargestellten einfachen Konfiguration
mit 9 Geraden die Gerade g nicht über den Schnittpunkt P2 hinweggeschoben werden
kann, auch wenn man vorher beliebige O-Verschiebungen ausführt. Zum Beweise
betrachten wir die 6 "Punkte AX,A2, AZ,BX,B2,BZ (Figur 3). Die Verbindungsgerade
zweier Punkte P und Q bezeichnen wir mit (P, Q). Dann ist P2 der Schnittpunkt der
Geraden (Ax, Bx) und (Az, Bz). Mit Px bzw. P8 sei der Schnittpunkt der Geraden

(A 3, B2) und (A2, Bx) bzw. der Geraden (A2, Bz) und (Ax, B2) bezeichnet (Figur 3).
Nach dem Satz von Pappus-Pascal liegen die drei Punkte Px, P2, Pz auf einer
Geraden p, die die Ebene in zwei Halbebenen zerlegt. Die beiden in Figur 3 schraffierten

Gebiete a und ß liegen auf derselben von p erzeugten Halbebene. Wenn es

nun möglich wäre, die Gerade g mit einer 1-Verschiebung über den Punkt P2 so zu
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rücken, so musste eine Gerade g' existieren, die je einen Punkt aus dem Innern von
ol, ß und y enthält. Durch die drei Geraden (P2, Ax), (P2, Az) und p wird die Ebene in
6 Gebiete zerlegt. Mit 5 von diesen 6 Gebieten würde diese Gerade g' innere Punkte
gemeinsam haben. Dies ist jedoch unmöglich. Durch die sozusagen «unsichtbare»
Pascal-Gerade p wird also die Möglichkeit einer 1-Verschiebung der Geraden über
den Punkt P2 vereitelt.

Die durch eine einfache Konfiguration il hervorgerufene Zellzerlegung der Ebene
lässt sich in folgender Weise kombinatorisch beschreiben. Es seien gx, g2, gm die

Bm

4

Figur 1 Figur 3

Geraden von il und & [i 1, 2,..., ("» + 1) -f 1] die Zeilen, in die die Ebene durch
il zerlegt wird. Jede Gerade gk sei willkürlich mit einer Richtung (Orientierung)
versehen. Man kann dann in bezug auf jedes gk von einer linken und einer rechten
Halbebene sprechen. Der betrachteten einfachen Konfiguration ordnen wir sodann
die Matrix S (eik) zu, wobei eik=+1 oder —1 zu setzen ist, je nachdem die
Zelle Ci rechts oder links von der Geraden gk liegt. Hierbei sei k der Spaltenindex,
so dass jede Zelle durch eine Zeile von S repräsentiert wird. Die Zeilen von 5 schreiben

wir wie Vektoren der Länge m, zum Beispiel 3 {— 1, —1, 4-1, 4-1, — l},
-J {+1, +1, -1, -1, 4-1} oder kürzer 3 { (- + -}. In Figur 1 VI ist eine
solche Beschreibung der Zellen durch Zeilen angedeutet. Zwei Zeilen, die sich nur in
einer einzigen Komponente unterscheiden, nennen wir benachbarte Zeilen. Es ist klar,
dass benachbarten Zellen benachbarte Zeilen entsprechen und umgekehrt. Wenn wir
in einer Geraden gk von il die Orientierung ändern, so haben wir gleichzeitig in der
Matrix die k-te Spalte mit — 1 zu multiplizieren. Das Vertauschen zweier Geraden
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in il entspricht dem Vertauschen zweier Spalten von S. Zwei Matrizen, die man durch
mehrmaliges Ausführen der drei Operationen,

Vertauschen zweier Zeilen,
Vertauschen zweier Spalten,
Multiplikation einer Spalte mit —1,

zur Übereinstimmung bringen kann, mögen äquivalent heissen. Wir beweisen
Satz 2. Zwei einfache Konfigurationen il und &' sind dann und nur dann äquivalent,

wenn die zugehörigen Matrizen S und S' äquivalent sind.
Die Matrizen S und S' zweier einfacher Konfigurationen il und Ä' seien äquivalent,

das heisst, durch Umnumerierung der Spalten und Zeilen von S' und durch Multiplikation

gewisser Zeilen von S' mit -1 kann man 5 und 5' identisch werden lassen.
Wir numerieren die Zellen und Geraden von il' entsprechend. Ebenso sei die
Orientierung der Geraden von il' passend gewählt. Nun ist also 5 identisch mit der zu
Ä' gehörigen Matrix S'. Wir bilden die Zellen von il auf die Zellen von il' ab, indem
wir Zellen mit derselben zugehörigen Zeile aufeinander abbilden. Benachbarte Zellen
von il gehören dann zu benachbarten Zeilen von S S', somit auch zu benachbarten
Zellen von il'.

Wenn umgekehrt il und il' zwei äquivalente einfache Konfigurationen sind, so
gibt es eine Abbildungsvorschrift cp, die jeder Zeile von il eine Zelle von il' zuordnet,
wobei benachbarte Zellen in benachbarte Zellen übergehen. Da eine Strecke bzw. ein
Halbstrahl von il eindeutig als gemeinsame Grenze zweier benachbarter Zellen und
ein Schnittpunkt von il durch die vier umliegenden Zellen eindeutig bestimmt ist,
so ist durch cp auch eine Abbildungsvorschrift für die Schnittpunkte, Strecken,
Halbstrahlen und Zellen von il auf die Schnittpunkte, Strecken, Halbstrahlen und Zellen
von il' gegeben. Natürlich sind hierbei inzidente Elemente von il auf inzidente
Elemente von il' abgebildet. Ausserdem ist klar, dass die Strecken und Halbstrahlen
einer Geraden g von il auf diejenige einer Geraden g' von il' abgebildet sind. Auch
entsprechen die Zellen von il, die zu einer Halbebene bezüglich g gehören, den Zellen
einer Halbebene bezüglich g' in il'. Die Repräsentation einer Zelle von il durch eine
Zeile von S bedeutet aber nichts anderes als die Darstellung der Zelle als Durchschnitt
von m Halbebenen. Daher sind die Matrizen S und S' äquivalent.

In einer einfachen Konfiguration il ist jede Gerade gf- durch die m — 1 anderen
Geraden in m — 2 Strecken und zwei Halbstrahlen h{ und h4 zerlegt. Der Rand einer
unbeschränkten Zelle £ von il enthält stets zwei solche Halbstrahlen, etwa hx und h2.

Zu diesem £ gibt es sodann eine «gegenüberliegende» unbeschränkte Zelle C> nämlich
diejenige, die durch hx und A2 (und eventuell einigen Strecken) begrenzt ist. Wenn 3

bzw. 3 die dieser Zelle f bzw. f entsprechende Zeile der Matrix S ist, so gilt 3 — 3.

Ist nämlich P ein Punkt von f und P ein Punkt von £, so wird die Verbindungsstrecke

PP durch alle Geraden von il geschnitten. P und P liegen somit in bezug auf
jede Gerade von il auf zwei verschiedenen Halbebenen. Nun sei ot eine beschränkte
Zelle und a die zugehörige Zeile in S. Zu jedem Punkt Q der Ebene gibt es dann
mindestens eine Gerade von Ä, für die Q und <x auf derselben Halbebene liegen. Daher
kommt in der Matrix S die Zeile — a bestimmt nicht vor. Wenn S eine beliebige
Matrix ist, so wollen wir mit U(S) die Menge aller Zeilen t von S verstehen, für die
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auch die reziproke Zeile — xinS vorkommt. Wenn also S die zu einer einfachen
Konfiguration gehörige Matrix ist, so sind die unbeschränkten Zellen genau durch die
Zeilen von U(S) repräsentiert.

Satz 3. Die zu einer einfachen Konfiguration R gehörige Matrix S hat die folgenden
drei Eigenschaften:

I. Wenn man in S alle bis auf 3 Spalten streicht, so bleiben genau 7 verschiedene

Zeilen übrig.
II. Wenn man in U(S) alle bis auf 3 Spalten streicht, so bleiben genau 6 verschiedene

Zeilen übrig.
III. Die Matrix S ist in bezug auf die Eigenschaft I maximal, das heisst, wenn man

eine in S noch nicht vorkommende Zeile zu S hinzufügt, so geht die Eigenschaft I
verloren.

Beweis zu I. Wenn wir in il eine Gerade g entfernen, so entsteht eine einfache
Konfiguration il' mit m — 1 Geraden, deren zugehörige Matrix S' findet man aus
S durch Streichen der zu g gehörigen Spalte; danach hat man alle etwa doppelt
vorkommenden Zeilen nur einmal zu zählen. Streicht man also nacheinander m — 3

beliebige Zeilen aus S, so erhält man eine durch 3 Geraden realisierbare Matrix. Diese
hat genau 7 verschiedene Zeilen, weil drei Geraden in allgemeiner Lage die Ebene in
7 Zellen zerlegen.

Beweis zu II. Wir bezeichnen die Matrix, die beim Streichen der letzten Spalte aus
S bzw. U(S) entsteht, mit S' bzw. U(S)'. Durch Entfernen der letzten Geraden von
il entstehe die einfache Konfiguration il', so dass 5' die zu il' gehörige Matrix ist.
In jeder unbeschränkten Zelle von il' liegt eine unbeschränkte Zelle von il, das heisst,
die Zeilen von U(S') sind in U(S)' enthalten. Wenn x eine Zeile von S ist, so sei mit
x' diejenige Zeile bezeichnet, die durch Weglassen der letzten Komponente aus x
entsteht. Ist a eine Zeile von U(S)', so existiert eine Zeile b aus U(S) mit b' a. Aus

beU(S) folgt der Reihe nach:

b, -b€S; b', (-b)'eS'; b', -b'€S'; o, -a€5'; aeU(S').

Also ist auch umgekehrt jede Zeile von U(S)' in U(S') enthalten, das heisst U(S') und
U(S)f sind identische Matrizen (bis auf die Reihenfolge der Zeilen). Werden in U(S)
zwei Spalten gestrichen, etwa die beiden letzten, so folgt

u(sy - [U(syy u(sy u(s,f).

Ganz allgemein entsteht also aus U(S) beim Streichen von s beliebigen Spalten eine
Matrix U(S){S) U(S{S)), wobei S(s) durch Streichen von s Spalten aus S hervorgeht.
Setzt man s m - 3, so wird U(SYm-3) i7(S<m-3)). Hierbei ist S<"-8> wegen Eigenschaft

I eine Matrix mit 7 Zeilen. U(S{m~z)) hat daher genau 6 Zeilen. Hiermit ist die
Eigenschaft II bewiesen.

Zu III. Der Beweis der Eigenschaft III würde hier zu viel Platz erfordern. Er ist
durchgeführt in einer ausführlichen Arbeit des Verfassers5).

Alle Matrizen S, die zu einer einfachen Konfiguration mit m Geraden gehören,
kombinatorisch zu kennzeichnen, ist eine ungelöste Frage. Wiederum ist der durch
das Beispiel von Figur 2 geschilderte Umstand ein grosses Hindernis. Man kann

5) G. Ringel, Teilungen der Ebene durch Geraden oder topologische Geraden, Math. Z. 64, 79-102 (1956).



82 Kleine Mitteilungen

diese Schwierigkeit umgehen, wenn man die einfachen Konfigurationen wie F. Levi
in folgender Weise verallgemeinert

Wenn wir m einer Geraden eine endliche Teilstrecke durch einen einfachen Bogen
ersetzen, der mit den beiden restlichen Halbstrahlen der Geraden je nur den
betreffenden Endpunkt gemeinsam hat, so nennen wir die entstandene Kurve eine Pseudogerade.

Eine Pseudogerade ist sozusagen eine «verbogene» Gerade. Wir sagen, m
Pseudogeraden bilden eine einfache Konfiguration, wenn sich je zwei in genau einem
Punkte schneiden und diese Schnittpunkte alle verschieden sind. Nun ist es stets
möglich, eine 1-Verschiebung m bezug auf em vorgegebenes Dreieck durchzufuhren.
Der Satz 3 gilt natürlich auch fur einfache Konfigurationen mit Pseudogeraden. Ja,
es gilt sogar der viel schärfere

Satz 4. Notwendig und hinreichend dafür, dass eine rechteckige Matrix S mit m
Spalten, deren Elemente gleich +1 oder —1 sind, zu einer einfachen Konfiguration von
Pseudogeraden gehört, ist die gleichzeitige Gültigkeit der drei Bedingungen I, II, III von
Satz 3, wenn m * 4 vorausgesetzt ist.

Der Beweis zu Satz 4 ist recht langwierig und kann hier nicht gegeben werden. Er
findet sich in der bereits zitierten Arbeit5). Dort ist auch das einzige Gegenbeispiel
im Falle m — 4 angegeben Eine Matrix mit 4 Spalten und 15 Zeilen, die die drei
Eigenschaften I, II, III besitzt und doch nicht durch 4 Geraden (oder Pseudogeraden)
realisierbar ist. G. Ringel, Bonn

Kleine Mitteilungen

Quelques proprietes de coordonnees relatives ä un triangle
Etant donn6 un tnangle ABC quelconque, prenons sur les cötes AB, BC, CA des

points C, A', B' tels que ÄC^r-AB, BOV^sBC, CW=t CA Les droites AA',
BB\ CC determinent un nouveau tnangle A'*B"C" dont on calcule aisement Faire V

V~Vq m '\~J.\t7. Vlr,7/T_7i,.i (K„-diieABC)[(l-r)(l-s)(l-<)-rjl]«
(l-.s+sr)(l-r + f/)(l-<+*s)

Lorsque
r5*-(l-r)(l-s)(l-/)f (1)

les trois points A", B", C" se confondent en un point P. On peut alors considerer les
valeurs r, s, / comme des coordonnees triangulaires du pomt P par rapport au tnangle
ABC Tout pomt P a des coordonnees bien d^terminees, sauf les sommets A,B,C qui
correspondent aux valeurs (0, s, 1), (1, 0, t), (r, 1, 0) (r, s, t quelconques) Inversement,
si on se donne deux des trois valeurs, on determme umvoquement le pomt P, exception
faite des sommets et des cötes du triangle. On peut dire que les coordonnees (r, s, t)
engendrent une transformation birationnelle du plan du tnangle sur la surface du
troisieme degre x • y • z (1 — x) • (1 — y) • (1 — z), les points A, B, C etant singuhers.

Si Ton se donne 3 valeurs u, b, ct venfiant (1), et un tnangle quelconque (non nume-
rote), on pourra trouver 12 points ayant ces trois nombres pour coordonnees (dans un
ordre quelconque), par rapport au tnangle ABC ou ACB; si Ton choisit une des onen-
tations du tnangle, on aura les 12 points:

D(a,btc), E(btc,a); F{ctatb); G(l -a, 1 -c, 1 -6),
H(l~c$ 1-6, 1-a); J(l-bt 1-a, 1-c);
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