Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 12 (1957)
Heft: 3
Rubrik: Kleine Mitteilungen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

56 Kleine Mitteilungen

2. Wir greifen auf die dritte Untergruppe von § 3 zuriick, setzen aber anstelle der
beiden Zahlen a4, und a, zwei Funktionen f,(z) und f,(z). Setzt man voraus, dass die
Gruppenmultiplikation eine Addition der Argumente z bedeutet; so hat man nach (2)
und nach (4) die folgenden Funktionalgleichungen:

RE =+,
fi(z1 + 29) = fi(z1) fi(22) + fal2y) fal2a), (16)
fa(z1 + 29) = f1(2)) fa(22) + fal21) f1(20)-

Man erkennt sofort, dass eine Losung sicher f,(z) = coshz, f,(z) = sinhz ist. Die
Frage nach einer allgemeineren Losung bleibt offen.

Ebenfalls bleibt die Frage nach Losungen offen, wenn man in dem System der
Funktionalgleichungen voraussetzt, dass die Gruppenmultiplikation nicht die Ad-
dition, sondern die Multiplikation der Argumente bedeutet.

In der Tat lassen sich die Hyperbelfunktionen durch die Gruppe aus den Glei-
chungen (16) heraus vollstindig definieren.

3. Genau denselben Weg wie in Ziffer 2 gehen wir mit den beiden Funktionen g,(z)
und 7 gy4(2). Die Funktionalgleichungen lauten nun

gf(2) = —g&2) +1,
81(21 + 29) = g1(21) 81(22) — 8a2(21) £a(22), (17)
g2(21 + 22) = £1(21) 8a(22) + ga(z1) £1(29)-

Die Losung g,(2) = cosz und g,(z) = sinz liegt klar auf der Hand. Samtliche Bemer-
kungen und Fragestellungen der Ziffer 2 kénnen sinngemdiss {ibernommen werden.
Man beachte vor allem den Hinweis, dass die Kreisfunktionen aus der Gruppe
(21(2); © go(2); 1] heraus vollstindig definiert und aufgestellt werden konnen.

Der Leser wird sicher selbst bemerkt haben, dass aus diesem Zusammenhang
heraus die endlichen Untergruppen der Zitfer 4 in § 3 entstanden sind.

4. Abschliessend soll die Frage nach den allgemeinsten Funktionen %,(z), A4(2), k3(2)
aufgeworfen werden, die sich aus der Gruppe mit dem Element [A,(2); hy(2); A3(2)]
durch Aufstellung von Funktionalgleichungen mittels (2) und (4) ergeben.

G. KIRSCHMER, Miinchen

Kleine Mitteilungen

Stosserregung der Welle einer Turbomaschine durch
aerodynamische Kriifte

Der Zustrom oder der Abfluss eines Mediums einer Turbomaschine (Kompressor,
Turbine usw.) enthilt oft eine Stérung der Drehsymmetrie. So wird zum Beispiel die
Strémung hinter einem Flugzeugpropeller durch den Tragfliigel in 2 Teile zerschnitten
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(Figur 1). Jedesmal wenn ein Propellerblatt am Fliigel vorbeistreicht, erfihrt es einen
Stoss, der sich dann auf die Propellerwelle iibertrigt. Der Konstrukteur muss darnach
trachten, diese Stosse moglichst schwach zu halten und ihre Frequenz ausserhalb jeder

R —

g

Figur1

Eigenfrequenz der Maschine (insbesondere der Torsionseigenfrequenzen der Propeller-
welle) zu legen.

Dieses wichtige Problem der Technik ist nicht neu. Eine Darstellung findet sich im
Buch Technische Dynamik von C. B. BiIEzENO und R. GRAMMEL (Springer-Verlag, erste
Auflage 1939), S. 649. Da es aber eines der seltenen Probleme der Technik ist, das mit
ganz elementaren zahlentheoretischen Hilfsmitteln gelost werden kann, mag eine Ver-
offentlichung auch in dieser Zeitschrift von Nutzen sein.

Figur 2

Figur 2 stellt eine Turbomaschine schematisch dar. Die inneren radialen Striche
bedeuten die Laufschaufeln der Maschine, die dusseren Striche bedeuten ruhende Stor-
quellen, zum Beispiel Leitschaufeln. Es seien im ganzen / Laufschaufeln und s Stoér-
quellen gleichmissig iiber den Umfang verteilt. In Figur 2 ist /=12 und s=9. In der
gezeichneten Stellung des Laufrades steht die Laufschaufel Nr. 1 der Stérquelle Nr. 1
gegeniiber.
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Ist (/, s) der grosste gemeinsame Teiler von / und s, so zerfillt der Kreis in (/, s)
gleiche Sektoren, von denen jeder //(J, s) Laufschaufeln und s/(/, s) Stérquellen enthilt.
Dreht sich jetzt das Laufrad so weit, dass sich die Laufschaufel Nr. 1 vom Anfang des
ersten Sektors bis zum Ende dieses Sektors bewegt, so erhilt diese Laufschaufel s/(/, s)
Stosse. Uberhaupt erhilt jede der I/(l, s) Laufschaufeln dieses Sektors s/(l, s) Stdsse;
von diesen fallen keine zwei Stosse zeitlich zusammen, sondern folgen sich in regel-
massigen Zeitabstinden. Bei dieser Drehbewegung werden also insgesamt

Impulse von den Storquellen dieses Sektors iiber die Laufschaufeln auf die Welle
iibertragen. Da es (/, s) Sektoren gibt, erfihrt die Welle bei einer vollen Umdrehung

l S
s T &9

Stosse. Bezeichnet man diese Anzahl der Stgsse, die die Welle bei einer Umdrehung
erleidet, mit #», und ist {/, s} das kleinste gemeinschaftliche Vielfache von / und s, so

ist also
n={1l,s}.

Gibt man dem Storimpuls, den die Welle erfihrt, wenn eine einzige Laufschaufel an
einer Stérquelle vorbeigleitet, die Grosse 1, so gilt fiir die gesamte Storintensitdt I der
Welle

' I={(l,5),

weil immer (J, s) Laufschaufeln gleichzeitig gestort werden. Will man diese Stérinten-
sitit moglichst klein machen, so muss die Zahl der Laufschaufeln relativ prim zur Zahl
der Storquellen sein. W. KisskeL, Ziirich

Uber die perspektive Abbildung von Kugeln

Wir betrachten zwei Kreise ¢,(C, s), &,(K, ) der Bildebene = als Distanzkreise zweier
Perspektiven €, & (Figur 1). Unter bekannten Bedingungen?) ist der scheinbare Umriss
¢ der Kugel y iiber ¢, (« Distanzkugel») vermége R eine Ellipse und der scheinbare
Unmriss k¢ der Distanzkugel x iiber k2, vermodge € eine Hyperbel. Die beiden Umriss-
kegelschnitte sind nach dem Dandelinschen Satz konfokal, wobei ihre gemeinsamen
Brennpunkte F, G das innere bzw. dussere Ahnlichkeitszentrum von ¢, und %, dar-
stellen?). Wir behaupten:

Die Nebenscheitel der Ellipse c® fallen mit den wveellen Vertreterm der konjugiert
imagindren Nebenscheitel deyv Hyperbel k¢ zusammen.

In einem Seitenriss normal zu z = (KC) durch C (Figur 1) erscheinen die erwihnten
Kugeln als konzentrische Kreise 9", »” und die parallel zu z legbaren Sehtangential-
ebenen. an y der Perspektive & als Tangentenpaar 7", 75’ mit den Spuren ¢/, #;’. Aus
den dhnlichen, rechtwinkligen Dreiecken C"K"U" und #]"C"U" (K = Zentrum der Per-
spektive !, U= Beriihrpunkt von 7, mit y) berechnen wir die bekanntlich der wah-
ren Linge der halben Nebenachse b von c¢ gleiche Strecke #'C" zu b=rs[/r*— st
Uben wir beziiglich » die Perspektive € aus, so entspricht dies rechnerisch der Ver-

1) Vergleiche etwa MULLER-KRUPPA, Lehrbuch der darstellenden Geometrie (Springer, Wien 1948), S.348.

%) Man bemerkt, dass Scharen konfokaler Kegelschnitte als scheinbare Umrisse von Kugelpaaren
angesehen werden kdnnen, wobei je zwei Kugeln eines Paares beziiglich der Brennpunkte F, G zentrisch
dh nlich liegen. Die Mitten dieser Kugeln erfiillen eine Involution mit den Doppelpunkten F, G.
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tauschung von 7 und s, wodurch fiir die imaginire Halbachse b der Hyperbel k¢
entsteht:

= ) s
b: =

yst—r2 t)ri—s? '
Es gilt somit, wie behauptet, b =i b. Wir folgern:
Jede Konstruktion, welche divekt Brennpunkte und Nebenachse des elliptischen schein-

baren Zentralumyvisses einev Kugel liefert, gilt ebenso fir die Eymittlung des hyperbolischen
scheinbaren Kugelumrisses und umgekehrt®).

K

Figur 1
Scheinbare Zentralumrisse zweier Kugeln, von denen jede als « Distanzkugel» fungiert.

Wir wenden diesen Satz auf zwei solche Konstruktionen ant).

A) Elliptisches Kugelbild. Der scheinbare Umriss ¢¢ der Kugel y ist in der Perspektive &
mit dem Distanzkreis %, eine Ellipse (Figur 1).

1. Mittels des oben eingefiihrten Seitenrisses normal zu z konstruieren wir #'C" =5
die halbe Nebenachse von c¢¢. Der Halbstrahl (K||ty") trifft (C L 2) in einem Punkte H.
(H L 7{") schneidet z in der Mitte N von c¢. Der Kreis f= (N, NH) geht (als apol-
lonischer Kreis) durch die Brennpunkte F, G von ¢¢ auf z. da diese die Ahnlichkeits-
zentren von ¢, und %, sind. Hiermit liegt c¢ fest.

2. Eine rdumliche Uberlegung lehrt, dass der Zentralriss #¢ jenes Grosskreises # von y,
dessen Ebene normal zu z steht, die Ellipse c® aus Symmetriegriinden in ihren Neben-

3) Im parabolischen Fall arten solche Konstruktionen im allgemeinen aus.
4) Die erstere stammt von E. Bock. Vergleiche dazu E. Béck, Eine einfache Ermittlung des elliptischen
Zentralumrisses der Kugel (Wien 1953; der Technischen Hochschule Wien als Manuskript tiberreicht).
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scheiteln T;, T, beriihrt. Die Brennpunkte F, G von ¢¢, welche wir hier unter Benutzung
der Endpunkte paralleler Durchmesser von ¢, und %, als deren Ahnlichkeitszentren
finden, sind auch - je nachdem N,N § FN - die Haupt- bzw. Nebenscheitel von »n°.
Aus den Spurpunkten N, bzw. N, (C L 2). ¢, von n, die auch n¢ angehéren, und der
Achse FG von n°¢ ermitteln wir die andere Achse T;7T, durch die umgekehrte Papier-
streifenkonstruktion. 7,7, stimmt mit der Nebenachse von c¢¢ iiberein, wodurch c¢
wieder vollstindig festliegt. c¢ beriihrt bekanntlich ¢, doppelt in den Schnittpunkten
von ¢, mit der Polaren von K beziiglich ¢,.

B) Hyperbolisches Kugelbild. Wir fassen nun umgekehrt y als Distanzkugel einer
Perspektive € und x als abzubildende Kugel auf. Der scheinbare Umriss k¢ von x
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Figur 2
Eigenschaften spezieller konfokaler Kegelschnitte.

ist dann eine Hyperbel, welche nach unseren einleitenden Uberlegungen F und G
ebenfalls als Brennpunkte und das durch das reelle Punktepaar T;T, angezeigte kon-
jugiert imaginire Punktepaar als Nebenscheitel besitzt. Wir kénnen nun mit denselben
Konstruktionslinien wie bei A 1., 2. die Hyperbel k¢ festlegen! k¢ beriihrt bekanntlich &,
doppelt in den Schnittpunkten von 2, mit der Polaren von C beziiglich %, .

Man sieht, dass nach A 1. die Brennpunkte des scheinbaren Kugelumrisses immer aus
ordentlichen Schnitten hervorgehen und nach A 2. das Auftragen der Distanz an keine
starre Richtung gebunden ist. Diese Vorteile bietet das allgemein iibliche, auf DANDELIN
zuriickgehende Verfahren nicht. Zudem sind die dargelegten Methoden kiirzer als dieses
und mithin sowohl von praktisch konstruktivem als auch piddagogischem Interesse.

Die speziellen konfokalen Kegelschnittspaare ¢¢ und k¢ besitzen eine Reihe inter-
essanter metrischer Eigenschaften, welche konstruktiv verwertbar sind (die durchaus
elementaren Beweise wurden unterdriickt):
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a) Die vier Schnittpunkte 7, 2, 3, 4 von ¢° und k¢ (Figur 2) liegen auf einem konzen-
trischen Kreis f, dessen Radius die lineare Exzentriz:tidt der beiden Kegelschnitte ist?).
f geht auch durch die Schnittpunkte von ¢, und Z%,.

b) Die etwa zum Brennpunkt F gehorenden Leitgeraden /., [, von ¢¢ bzw. k¢ schnei-
den auf der gemeinsamen Hauptachse dieser Kegelschnitte eine Strecke L.L, aus,
deren Mitte F ist. L;, L, sind die Scheitelkriimmungsmitten der Fokalkurven von c¢¢
bzw. k¢. Der Kreis iiber dieser Strecke wird von den Verbindungsgeraden der Schnitt-
punkte von ¢¢ und £° mit deren gemeinsamer Mitte N beriihrt.

c) Ist g eine solche Verbindungsgerade, so schneidet sie die Hauptscheiteltangenten p,
g von c¢ und k¢ in Punkten P, bzw. Q,, deren Entfernung von den Hauptscheiteln P, Q die
Parameterstrecke von k¢ bzw. ¢¢ ist. Die Tangenten in den Endpunkten P’ und Q' der
Parametersehnen von k¢ bzw. c¢ gehen durch L, bzw. L, und schneiden sich auf der Ge-
raden (72) = (7 L PQ) im Punkte T, dessen Normalabstand von z=(PQ) gleich ist
der Strecke PQ.

d) Die zu ¢® und k¢ konzentrischen Kreise durch P, bzw. Q, schneiden die Haupt-
achse in den Kriimmungsmitten der Hauptscheitel von k¢ bzw. ¢¢. Fiihrt man eine ana-
loge Uberlegung fiir die zu k¢ konjugierte Hyperbel durch, so erhiit man die Neben-
scheitelkriimmungsmitten von c¢. ErNsT DoMkowiTscH, Wien

Ungel6ste Probleme

Nr. 17. Die vorliegende Frage soll lediglich auf anschauliche Art formuliert und
erortert werden: Die beiden in Figur 1 und 2 abgebildeten konvexen Polyeder sind,
wie zeichnerisch angedeutet, aus einem Wiirfel und einem Dodekaeder dadurch
hervorgegangen, dass je vier passende Ecken abgeschnitten wurden. Die beiden
resultierenden Polyeder haben ersichtlich die Eigenschaft, nur Seitenflichen mit

......_--.._\?f

Figur1 Figur 2

einer durch drei teilbaren Eckenzahl aufzuweisen. Vermutlich gilt allgemein die
folgende Aussage:

Ein beliebiges konvexes Polyeder lisst sich durch passendes Abschneiden von Ecken
nach endlich vielen Schritten in ein Restpolyeder verwandeln, das lediglich Seitenflichen
mit esner durch drei teilbaren Eckenzahl besitzt.

Da die beim Abschneiden einer Polyederecke neu entstehenden Eckpunkte drei-
kantig sind, kann man sich auf Dreikantspolyeder beschrinken, da sich durch pas-
sende Schnitte stets zunichst ein solches erzeugen lisst. Die beim weiteren Schneide-
prozess neu hinzukommenden Seitenflichen sind dann stets dreieckig und geniigen
also der gestellten Forderung von selbst.

5) Man ermittelt 1, 2, 3, ¢ direkt durch die Proclussche Ellipsenkonstruktion unter Benutzung der mit
den Asymptoten a;, a4 von k¢ zusammenfallenden Scheitelkreisdurchmesser von c®.
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