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ändern. Man erhält:

£«+!-£»+(~). Km+l Km+l(™), ^-+i-iW+l + 3(2). ff» + 1 Ä»+l + (7)-

Und hieraus ergibt sich mit Ez= 1, Kz — 3, F3= 6, i?3= 4:

M3' ^=3(a)' ^3(") + w' MsV""
Hingegen ist es schwierig, die Gliederung im einzelnen zu kennzeichnen. Für jedes

n>6 ergeben sich jedenfalls wesentlich verschiedene Typen. Es scheint aber heute
noch unmöglich zu sein, über die Anzahl der Typen allgemeine Aussagen zu machen.
Der Beweis (Zurückführung auf die Verknüpfungs- und Anordnungsaxiome) dafür, dass
der Fall n 6 (der die Topologie der kubischen Raumkurven und kubischen Ebenengewinde

begründet) stets denselben, im Vorangehenden anschaulich beschriebenen
Gliederungstypus liefert, ist recht umständlich.

(Es folgen am eingangs genannten Orte weitere Bemerkungen und Übungen zum
Thema.)

L. Locher-Ernst, Winterthur

Schraubung und Netfcprojektion

Unter «Netzprojektion» versteht man jene Abbildung des projektiven Punktraumes
auf die Punkte einer Bildebene, bei der die Strahlen eines Drehnetzes als Projektionsstrahlen

fungieren; als Bildebene wird dabei die Mittelebene des Netzes verwendet.
Der Netzriss eines Punktes P ist demnach der Bildspurpunkt des durch P legbaren
Netzstrahles. Dieses Abbildungsverfahren wurde im Anschluss an eine Arbeit von
L. Tuschel [1]l) von verschiedenen Gesichtspunkten aus untersucht [2], [3]. Das Ziel
dieser Note ist es, die Netzprojektion auf elementarem Weg aus den Gesetzen der
euklidischen Schraubung zu entwickeln und darüber hinaus einige Beispiele für die
Fruchtbarkeit dieses Gedankens zu geben. Ausserdem sollen die Verhältnisse in der
Bildebene konsequent unter Verwendung komplexer Zahlen beschrieben werden und
so aufs neue die Zweckmässigkeit dieses Kalküls für die ebene Geometrie demonstriert
werden.

Wir legen durch einen Punkt 0 der lotrecht gedachten Schraubachse z eine

waagrechte Ebene [i und betrachten die Schraubtangenten ihrer Punkte in der
Rechtsschraubung mit dem Parameter p (im folgenden kurz «Grundschraubungy>
genannt). Ist r der Abstand eines Punktes A der Bildebene jj, von 0 und a der
Neigungswinkel der Schraubtangente a von A gegen /*, so gilt bekanntlich (Figur 1):

rtgcL p. (1)

Die Gesamtheit dieser Schraubtangenten a ist eine gewisse Strahlkongruenz SR. Dreht
sich die Schraubtangente a um die ar-Achse, so überstreicht a ein Drehhyperboloid,
dessen Nebenscheitel auf der z-Achse liegen und die Höhenkoten ±ip besitzen.
31 besteht daher aus den rechtsgewundenen Erzeugenden von oo1 koaxialen Dreh-

*) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 40.
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hyperboloiden mit gemeinsamen Nebenscheiteln, ist also ein Drehnetz. Diese
kinematische Erzeugung eines Drehnetzes ist die Grundlage für die folgende kurze
Darstellung der Gesetze der Netzprojektion.

Netzriss Pw eines Raumpunktes P

Liegt der Raumpunkt P auf der Bahntangente a des Punktes A von ja, so ist A
der Netzriss Pw von P. Besitzt P die Höhenkote z und bezeichnet man den Abstand

Au

P

PO

P

P

Figur 1

Netzriss eines Raumpunktes.

seines Grundrisses P' von A mit u, so gilt (Figur 1):

tg<x. p:r z:u.

Ist £ der gerichtete Winkel AOP'\ so gilt ferner:

tg£ w:r.

* £tg£.
Aus (2) und (3) erhält man

(2)

(3)

(4)

Dieser Winkel £ heisst nach E. Müller die «Winkelkote» von P. Pw geht somit aus P'
durch eine Drehstreckung um 0 durch den Drehwinkel — £ und dem Streckungsverhältnis

cos £: 1 hervor (Figur 1).
Nimmt man 0 als Ursprung eines kartesischen Normalkoordinatensystems in der

Ebene /* und fasst man die Koordinaten x, y eines Punktes A zu einer komplexen
Zahl A x + iy zusammen (wir bezeichnen im folgenden die Punkte und die ihnen
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zugeordneten komplexen Zahlen mit denselben Grossbuchstaben), so lautet die
Abbildungsgleichung der Netzprojektion in komplexer Gestalt:

P"=P'cos£*-'c. (5)

Jeder Punkt der Bildebene ist naturgemäss sein eigener Netzriss, für einen
Fernpunkt jedoch versagt (5). Fasst man nach Th. Schmid den Endpunkt R der
Parameterstrecke der Grundschraubung als Auge einer Zentralprojektion nach jj, auf, so
ist der in ja liegende Gratpunkt A der Bahntangente a der Drehfluchtpunkt von a [4].
A ist Netzriss sämtlicher Punkte von a, mithin auch des Fernpunktes Au von a

(Figur 1).

Netzriss gw einer Geraden g
Sind G und G£ Spur- bzw. Fluchtpunkt einer Geraden g, so ist der Grundriss P'

eines ihrer Punkte P gegeben durch die komplexe Zahl

P'=G-XGCU. (6)

Aus den ähnlichen Dreiecken A G£OR und A GP'P (Figur 2 zeigt die nach fx umge-

p

DO

B

P

GZ
Figur 2

Netzriss einer Geraden.

legten Dreiecke) folgt z Xp, also nach (4) A tg£. Setzt man P'=G — tg£G£
in (5) ein, so erhält man bei variablem £ den Netzriss gw von g als Ort der Punkte Pw

Pw^(Gcos£-GZsmQe -••: (7)
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Ist C ein Punkt des Kreises über den beiden Punkten A, B und bedeutet cp den orien
tierten Peripheriewinkel ABC, so besitzt C die Darstellung

C (A cos cp - i B sin cp) ei(p. (8)

Durch Vergleich mit (7) erkennt man: Das Netzbild gw einer Geraden g ist ein Kreis
über dem Durchmesser GG%\ der Peripheriewinkel des Bogens von G zum Netzbild Pw
eines Punktes P der Geraden g ist die negative Winkelkote von P.

Der Netzriss einer ^-normalen Geraden / ist ein Kreis durch 0 (=L%), für eine

/^-parallele Gerade jedoch versagt Formel (7). Nach (5) geht der Netzriss eines
horizontalen Feldes aus seinem Grundriss durch eine Drehstreckung (0; — £, cos£:l)
hervor; das Netzbild einer horizontalen Geraden h ist daher eine Gerade hw durch
den Lotfusspunkt aus 0 auf den Grundriss h', wobei der Winkel hw h' gleich £ ist.

Netzumriss nw einer (nicht waagrechten) Ebene n
Der Netzumriss nw einer Ebene n ist das Netzbild des in n liegenden Projektionsstrahles.

Sein Spurpunkt liegt naturgemäss auf der Spur p, sein Drehfluchtpunkt
auf der Drehflucht pf der Ebene n. Da der Spurpunkt eines Projektionsstrahles
Netzriss seiner Punkte ist, fällt nw in den Schnittpunkt von p mit p%.

Die Ebene n besitzt in der Grundschraubung eine Grattangente t, deren Grundriss

t' mit der Drehflucht p™ von n zusammenfällt [4]; der Netzumriss nw von n ist
daher der Spurpunkt T ihrer Grattangente t.

Damit sind die Grundlagen einer konstruktiven Behandlung der Netzprojektion
gezeigt. Die kinematische Einführung des Abbildungsmittels der Netzprojektion legt
die Netzabbildung einer Schraubung nahe. Dabei ergeben sich nicht uninteressante
Zusammenhänge, wie an einigen Beispielen gezeigt werden soll.

Netzriss eines Schmiegelementes (P, t, n) einer Schraublinie s
der Grundschraubung

Ist P ein Punkt der Schraublinie s, t die Tangente in P an s und n die Schmiegebene

von s in P, so ist der Grundriss P' von P der Lotfusspunkt aus 0 auf den
Grundriss V der Grattangente t von n (Figur 3). P' liegt auf dem Grundriss s' von s,
einem Kreis um 0 vom Radius q. Der Netzriss tw von t ist ein Kreis, der durch den

Spurpunkt T von t (Netzumriss nw von n) und durch P' (Netzbild Tuw des

Fernpunktes Tu von t) geht; P'T ist daher ein Durchmesser von tw. Die lotrechte Gerade /
durch P besitzt den Kreis mit dem Durchmesser OP' als Netzbild lw\ im Restschnitt
von r und lw liegt das Netzbild Pw von P. Da tw die beiden Kreise s' und /• in P'
normal durchsetzt, liegen die Punkte T — nw und Pw invers zum Kreis s. - Durch
Vorgabe des Netzbildes eines Bestandteiles des Schmiegelementes ist dieses
zweideutig festgelegt. Gibt man Pw bzw. T nw vor, so sind die möglichen Gratpunkte
der zugehörigen Schmiegelemente jene Punkte des Drehzylinders durch s, die auf
dem Strahl des Grunddrehnetzes durch Pw hegen. Ist jedoch tw als Orthogonalkreis
zu s' bekannt, so sind jene Punkte des Drehzylinders durch s mögliche Gratpunkte,
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die auf jenem Strahl des zum Grundnetz koaxialen Drehnetzes vom Parameter 2 p
aufgefädelt sind, dessen Spurpunkt die Mitte der gemeinsamen Sehne von tw und s'
ist. Dies folgt aus einer kurzen elementaren Überlegung.

c

IT

X

Figur 3

Netzriss einer Schraubhme und Netzumriss einer Schraubtorse der Grundschraubung

Netzriss sw einer Schraublinie s und Netzumriss Sw einer
Schraubtorse 2 der Grundschraubung

Durchläuft der Punkt P eine Schraublinie 5 der Grundschraubung, so beschreibt
pw jhj. Netzbild sw. Die Spurpunkte T der Tangenten t von s erfüllen die Evolvente

von s', die durch die komplexe Gleichung

T q (1 — i co) (9)

beschrieben wird, wenn der Bildspurpunkt S von s auf der positiven x-Achse
angenommen wird (Figur 3). co bedeutet dabei den Winkel, durch den S um 0 gedreht
werden muss, um nach P' zu gelangen. Durch Inversion an s' geht die Kreisevolvente
(9) über in das Netzbild sw von s:

l+coa (l-ioj)eta (10)

Bei dieser Inversion gehen ferner die Tangenten t' von s' über in die s' berührenden
Kreise lw durch 0. Da die Evolvente (9) die Gerade t' normal durchsetzt, ist sw eine

orthogonale Trajektorie der Kreisschar (lw). sw ist somit eine Kreistraktrix vom
parabolischen Typ, also eine Traktrix complicata [5], [6]. Durchläuft die Ebene n die
Schraubtorse £ mit der Gratlinie s, so beschreibt ihr Netzumriss nw den Netzumriss
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Ew; Ew ist daher die Kreisevolvente (9). Fasst man dagegen E als Tangentenfläche
von s auf, so tritt zur Kreisevolvente Ew noch der Netzriss sw der Gratlinie s von E
hinzu, gehört doch s zum wahren Umriss von E. Dies drückt sich auch im Netzbild
aus. Die Kreise tw sind Orthogonalkreise von s' und berühren die Kreisevolvente (9)
in den Punkten T.tw bleibt bei der betrachteten Inversion als Ganzes fest, muss daher
die Kurve sw im Punkt Pw berühren. Die Hüllkurve dieser Kreise tw setzt sich daher
aus der Spurkurve der Torse und ihrer Inversen bezüglich s' zusammen.

Netzumriss einer geraden, offenen Strahlschraubfläche <P

der Grundschraubung

Die Fläche 0 wird von den horizontalen Geraden e überstrichen, die den
Drehzylinder durch eine Schraublinie s der Grundschraubung in den Punkten P von s

berühren. Der Netzumriss 0W von 0 ist die Hüllkurve der Netzrisse ew der Erzeugenden
e von 0. Ein solcher Netzriss ew ist eine Gerade durch den Lotfusspunkt P' aus 0
auf den Grundriss e' von e und trägt Pw (Figur 4); ew ist daher die Polare des

Spurpunktes T der Schraubtangente t von P bezüglich des Kreises s'. Die Kurve 0W ist

O/E
P

S

Figur 4

Netzumriss einer geraden, offenen Strahlschraubflache der Grundschraubung.

somit als Polarkurve der Kreisevolvente (9) eine hyperbolische Spirale. Die Evolvententangente

in T steht normal zu t' und geht im Polarsystem über in den Berührpunkt
Ew von 0W mit ew. Ew liegt also auf der Parallelen zu e' durch 0, der Winkel P'EwO
ist die Winkelkote £ von P. Die Gleichung der Spirale 0W lautet daher:

Ew~~iQctgteim. (11)

Da die Höhenkote z von P einerseits p tg£, andererseits (da P auf der Schraublinie s
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liegt) p oo beträgt, gilt co tg£ und somit

Ew= -A-et(°.

39

(12)

Treffen die Erzeugenden e die Schraubachse z, ist also 0 eine Wendelfläche, so bilden
die Geraden ew das Strahlbüschel 0.

Netzriss s,w einer Schraublinie s, und Netzumriss 2'1w einer Schraubtorse EA

einer zur Grundschraubung koaxialen Schraubung

Durchläuft der Punkt Px eine Schraublinie sx einer zur Grundschraubung koaxialen
Schraubung vom Parameter pi^ jap und ist P ein Punkt, der dieselbe Höhenkote
wie Px besitzt und auf der Schraublinie s der Grundschraubung liegt, die denselben

Bildspurpunkt S wie sx aufweist, so geht P( aus P' und P™ aus Pw durch eine Drehung

1u

W

*r
P

*'.
Wf-

V,

Figur 5

Netzriss einer Schraublinie und Netzumriss einer Schraubtorse einer koaxialen Schraubung.

um 0 durch den Winkel
co (7-1) (13)

hervor (Figur 5). oj bzw. o)t ist dabei jener Winkel, durch den S um 0 gedreht werden

muss, um nach P' bzw. P/ zu gelangen. Die Gleichung des Netzbildes sf von st
entsteht daher aus der Gleichung von sw (10) durch Multiplikation mit exp i (a^- co)

und lautet daher:
P" 7+^(ls-'ß,)eW"- (14)
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Unterwirft man den Spurpunkt T der Tangente t der Schraublinie s in P derselben
Drehung um 0, so ist der gedrehte Punkt Tß zu Ptw bezüglich s' invers. Ist Tx der
Spurpunkt der Tangente tx der Schraublinie sx in Px, so ist das Teilverhältnis

Tt*Ti: p(Ti =Q(oy1-oj)'.QO)1=l-fi, (15)

also konstant. P± ist die Krümmungsmitte der Evolvente (9) in Tx, Tß durchläuft daher

die (1 — ja)-Zwischenevolute ([5], S. 275ff.)

T^Qil-iaüe'-l* (16)

der Kreisevolvente (9), das heisst: Das Netzbild einer koaxialen Schraublinie der

Schraubung mit dem Parameter jap ist bezüglich ihres Grundrisskreises invers zur
(1 — fx) -Zwischenevolute der Spurkurve ihrer Tangentenfläche.

Die Tangentialebene nx der Torse Ex von sx längs tx besitzt die Tangente in Tx an
die Evolvente (9) als Spur; auf ihr liegt der Netzumriss jrf von nx. Die Netzflucht
nx\ von nx geht zufolge der Parameterrelation aus t[ durch Streckung aus 0 im
Verhältnis l.ja hervor, n™ liegt auf nfu, besitzt also von Tx den konstanten Abstand
q (ljfi — 1). Der Netzumriss 27f der Schraubtorse Ex

n™ ± (1 _ i w) ei°>lß (17)

ist demnach einerseits die q(1/jx — \)-Tangentiale der Spurkurve von E, andererseits
zur (1 — ja)-Zwischenevolute (16) der Spurkurve zentrisch ähnlich. Fasst man
dagegen Et als Tangentenfläche von sx auf, so tritt zum Netzumriss E™ noch der Netzriss

Si der Gratlinie st von Ex hinzu. Die Kreise /f berühren demnach - wie man aus
Figur 5 leicht erkennt - sowohl sf wie auch £".

Für jj, — 1 geht die (1 — p)-Zwischenevolute (16) über in die Spurkurve (9) der
Tangentenfläche, was obige Aussagen über Schraublinien und Schraubtorsen der
Grundschraubung liefert.

In analoger Weise lassen sich die verschiedenartigsten, mit einer Schraubung
verknüpften Probleme untersuchen, wie etwa die Netzabbildung von Schraubflächen,
das mit einer Schraubung verbundene kubische Nullsystem sowie die automorphen
involutorischen Korrelationen koaxialer Schraubungen, ferner Netzumrisse von
Drehflächen mit lotrechter Achse usw. Über diese den hier gesteckten Rahmen
überschreitenden Fragen wird an anderer Stelle berichtet werden.

R. Bereis und H. Brauner, Wien
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Ungelöste Probleme

Nr. 16. Es sei K ein eigentlicher ebener Eibereich. Für einen inneren Punkt
P £ K bilde man das Integral des reziproken Stützabstandes

B(P)=ff.
wobei ds das Längendifferential der Randkurve von K und p den Abstand der
zugehörenden Stützgeraden von P bedeuten und die Integration über den gesamten
Rand von K erstreckt werden soll. Es existiert dann die untere Grenze

B inf B(P) [PeK],

wo P alle inneren Punkte von K durchläuft.
In der von G. Polya1) und seinen Mitarbeitern behandelten Theorie der

physikalischen Eibereichsfunktionale spielt die Grösse

0 A*BI~\

wo A den Flächeninhalt und / das auf den Schwerpunkt bezogene Trägheitsmoment
von K bezeichnen, eine wichtige Rolle als Vergleichsfunktional.

Nach einer durch zahlreiche Sonderuntersuchungen gestützten Vermutung von
Herrn G. Polya2) gilt die Ungleichung

36 < 0^54,
wo rechts Gleichheit für das reguläre Dreieck besteht, während die Schranke links
durch sehr schmale gleichschenklige Dreiecke angenähert wird. Spezielle Zwischenwerte
des interessanten Funktionais sind ferner:

0 4ti2 [K Ellipse]; 0 48 [K Parallelogramm].

Von verschiedenen Seiten wurde bisher vergeblich versucht, die obenstehende

Ungleichung zu beweisen. H. Hadwiger

Aufgaben

Aufgabe 258. Von einer rationalen, bizirkularen Quartik q mit dem Doppelpunkt D
kennt man eine der beiden (als reell vorausgesetzten) Doppelpunkttangenten sowie die
beiden restlichen ausD an q legbaren Tangenten tx, t2 samt ihren Berührungspunkten
Tx, T%. Man konstruiere die Quartik, wenn tx, t% ebenfalls reell sind.

R. Bereis und H. Brauner, Wien

*) Vergleiche G. Pölya und G. Szegö, Isoperimetric Inequahties in Mathematicai Physics (Princeton
University Press 1951).

*) Brief von G. Pölya an den Unterzeichneten vom 3. Juli 1956.
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