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idndern. Man erhilt:

m m m m
E,,,+1=E,,,+(2>, K,,,+1=Km+3(2>, Fm+1=Fm+1+3(2), Rm+1=Rm+1+(2)-

Und hieraus ergibt sich mit E;=1, K;=3, F;3=6, Ry=4:

E,,=(;‘), K,,-_—a(;‘), F,,=3(;’)+n, R,,=(;")+n.

Hingegen ist es schwierig, die Gliederung im einzelnen zu kennzeichnen. Fiir jedes
n>6 ergeben sich jedenfalls wesentlich verschiedene Typen. Es scheint aber heute
noch unmoglich zu sein, iiber die Anzahl der Typen allgemeine Aussagen zu machen.
Der Beweis (Zuriickfiihrung auf die Verkniipfungs- und Anordnungsaxiome) dafiir, dass
der Fall » =6 (der die Topologie der kubischen Raumkurven und kubischen Ebenen-
gewinde begriindet) stets denselben, im Vorangehenden anschaulich beschriebenen
Gliederungstypus liefert, ist recht umstindlich.

(Es folgen am eingangs genannten Orte weitere Bemerkungen und Ubungen zum
Thema.)

L. LocHER-ERNST, Winterthur

Schraubung und Netzprojektion

Unter «Netzprojektion» versteht man jene Abbildung des projektiven Punktraumes
auf die Punkte einer Bildebene, bei der die Strahlen eines Drehnetzes als Projektions-
strahlen fungieren; als Bildebene wird dabei die Mittelebene des Netzes verwendet.
Der Netzriss eines Punktes P ist demnach der Bildspurpunkt des durch P legbaren
Netzstrahles. Dieses Abbildungsverfahren wurde im Anschluss an eine Arbeit von
L. TuscHEL [1]!) von verschiedenen Gesichtspunkten aus untersucht [2], [3]. Das Ziel
dieser Note ist es, die Netzprojektion auf elementarem Weg aus den Gesetzen der
euklidischen Schraubung zu entwickeln und dariiber hinaus einige Beispiele fiir die
Fruchtbarkeit dieses Gedankens zu geben. Ausserdem sollen die Verhiltnisse in der
Bildebene konsequent unter Verwendung komplexer Zahlen beschrieben werden und
so aufs neue die Zweckmaissigkeit dieses Kalkiils fiir die ebene Geometrie demonstriert
werden.

Wir legen durch einen Punkt O der lotrecht gedachten Schraubachse z eine
waagrechte Ebene y und betrachten die Schraubtangenten ihrer Punkte in der
Rechtsschraubung mit dem Parameter p (im folgenden kurz «Grundschraubung»
genannt). Ist » der Abstand eines Punktes A der Bildebene x von O und a der Nei-
gungswinkel der Schraubtangente @ von A gegen y, so gilt bekanntlich (Figur 1):

rtga =9p. (1)

Die Gesamtheit dieser Schraubtangenten a ist eine gewisse Strahlkongruenz iR. Dreht
sich die Schraubtangente ¢ um die z-Achse, so iiberstreicht a ein Drehhyperboloid,
dessen Nebenscheitel auf der z-Achse liegen und die Hohenkoten 4-7p besitzen.
N besteht daher aus den rechtsgewundenen Erzeugenden von oo! koaxialen Dreh-

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 40.
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hyperboloiden mit gemeinsamen Nebenscheiteln, ist also ein Drehnetz. Diese kine-
matische Erzeugung eines Drehnetzes ist die Grundlage fiir die folgende kurze Dar-
stellung der Gesetze der Netzprojektion.

Netzriss P% eines Raumpunktes P

Liegt der Raumpunkt P auf der Bahntangente a des Punktes A von y, so ist 4
der Netzriss P” von P. Besitzt P die Hoéhenkote z und bezeichnet man den Abstand

Figur1
Netzriss eines Raumpunktes.

seines Grundrisses P’ von A mit %, so gilt (Figur 1):
tga=pir=2z:u. (2)
Ist { der gerichtete Winkel AOP’, so gilt ferner:

tgl=u:r. (3)
Aus (2) und (3) erhilt man

z=ptgl. (4)

Dieser Winkel { heisst nach E. MULLER die « Winkelkote» von P. P* geht somit aus P’
durch eine Drehstreckung um O durch den Drehwinkel —{ und dem Streckungsver-
hiltnis cos { :1 hervor (Figur 1).

Nimmt man O als Ursprung eines kartesischen Normalkoordinatensystems in der
Ebene g und fasst man die Koordinaten x, y eines Punktes 4 zu einer komplexen
Zahl A = x + ¢ y zusammen (wir bezeichnen im folgenden die Punkte und die ihnen
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zugeordneten komplexen Zahlen mit denselben Grossbuchstaben), so lautet die 4b-
bildungsgleichung der Netzprojektion in komplexer Gestalt:

P?—= P’ cos e ¢, (5)

Jeder Punkt der Bildebene ist naturgemiss sein eigener Netzriss, fiir einen Fern-
punkt jedoch versagt (5). Fasst man nach TH. ScHMID den Endpunkt R der Para-
meterstrecke der Grundschraubung als Auge einer Zentralprojektion nach u auf, so
ist der in u liegende Gratpunkt 4 der Bahntangente a der Drehfluchtpunkt von a [4].
A ist Netzriss simtlicher Punkte von @, mithin auch des Fernpunktes 4, von a

(Figur 1).
Netzriss g% einer Geraden g

Sind G und G; Spur- bzw. Fluchtpunkt einer Geraden g, so ist der Grundriss P’
eines ihrer Punkte P gegeben durch die komplexe Zahl

P'=G—-AG;. (6)
Aus den dhnlichen Dreiecken A GSOR und A GP'P (Figur 2 zeigt die nach x4 umge-

Q
E )

&
Ge

Figur 2

Netzriss einer Geraden.

legten Dreiecke) folgt z = A4, also nach (4) 4 =1tg{. Setzt man P'=G —tg{ G
in (5) ein, so erhilt man bei variablem { den Netzriss g von g als Ort der Punkte P*

P” = (G cos{ — G! sin{) e*%. (7)
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Ist C ein Punkt des Kreises iiber den beiden Punkten 4, B und bedeutet ¢ den orien
tierten Peripheriewinkel 4 BC, so besitzt C die Darstellung

C = (4 cosp — i Bsing) ¢'*. (8)

Durch Vergleich mit (7) erkennt man: Das Netzbild g einer Geraden g ist ein Kreis
tiber dem Durchmesser GG, ; der Peripheriewinkel des Bogens von G zum Netzbild P*
eines Punktes P der Geraden g ist die negative Winkelkote von P.

Der Netzriss einer g-normalen Geraden !/ ist ein Kreis durch O (=LY), fiir eine
u-parallele Gerade jedoch versagt Formel (7). Nach (5) geht der Netzriss eines hori-
zontalen Feldes aus seinem Grundriss durch eine Drehstreckung (0; —{, cos{:1)
hervor; das Netzbild einer horizontalen Geraden 4 ist daher eine Gerade A“ durch
den Lotfusspunkt aus O auf den Grundriss 4’, wobei der Winkel 4”4’ gleich { ist.

Netzumriss 7% einer (nicht waagrechten) Ebene 1

Der Netzumriss #” einer Ebene 7 ist das Netzbild des in & liegenden Projektions-
strahles. Sein Spurpunkt liegt naturgemiss auf der Spur p, sein Drehfluchtpunkt
auf der Drehflucht p;” der Ebene n. Da der Spurpunkt eines Projektionsstrahles
Netzriss seiner Punkte ist, fillt #% in den Schnittpunkt von p mit p2.

Die Ebene z besitzt in der Grundschraubung eine Grattangente ¢, deren Grund-
riss ¢ mit der Drehflucht 4 von & zusammenfillt [4]; der Netzumriss n* von x ist
daher der Spurpunkt T ihrer Grattangente ¢.

Damit sind die Grundlagen einer konstruktiven Behandlung der Netzprojektion
gezeigt. Die kinematische Einfithrung des Abbildungsmittels der Netzprojektion legt
die Netzabbildung einer Schraubung nahe. Dabei ergeben sich nicht uninteressante
Zusammenhinge, wie an einigen Beispielen gezeigt werden soll.

Netzriss eines Schmiegelementes (P, t, ;1) einer Schraublinie s
der Grundschraubung

Ist P ein Punkt der Schraublinie s, ¢ die Tangente in P an s und z die Schmieg-
ebene von s in P, so ist der Grundriss P’ von P der Lotfusspunkt aus O auf den
Grundriss ¢’ der Grattangente ¢ von n (Figur 3). P’ liegt auf dem Grundriss s’ von s,
einem Kreis um O vom Radius g. Der Netzriss ¢* von ¢ ist ein Kreis, der durch den
Spurpunkt T von ¢ (Netzumriss #” von x) und durch P’ (Netzbild 7,” des Fern-
punktes T, von ¢) geht; P'T ist daher ein Durchmesser von ¢”. Die lotrechte Gerade/
durch P besitzt den Kreis mit dem Durchmesser OP’ als Netzbild /*; im Restschnitt
von ¢* und /" liegt das Netzbild P” von P. Da t* die beiden Kreise s’ und {* in P’
normal durchsetzt, liegen die Punkte T = n* und P® invers zum Kreis s . — Durch
Vorgabe des Netzbildes eines Bestandteiles des Schmiegelementes ist dieses zwei-
deutig festgelegt. Gibt man P bzw. T = &* vor, so sind die méglichen Gratpunkte
der zugehérigen Schmiegelemente jene Punkte des Drehzylinders durch s, die auf
dem Strahl des Grunddrehnetzes durch P* liegen. Ist jedoch ¢* als Orthogonalkreis
zu s’ bekannt, so sind jene Punkte des Drehzylinders durch s mogliche Gratpunkte,
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die auf jenem Strahl des zum Grundnetz koaxialen Drehnetzes vom Parameter 2 4
aufgefddelt sind, dessen Spurpunkt die Mitte der gemeinsamen Sehne von ¢” und s’
ist. Dies folgt aus einer kurzen elementaren Uberlegung.

Figur 3
Netzriss einer Schraublinie und Netzumriss einer Schraubtorse der Grundschraubung.

Netzriss s einer Schraublinie s und Netzumriss 2% einer
Schraubtorse 2 der Grundschraubung

Durchliuft der Punkt P eine Schraublinie s der Grundschraubung, so beschreibt
P® ihr Netzbild s®. Die Spurpunkte 7" der Tangenten ¢ von s erfiillen die Evolvente
von s’, die durch die komplexe Gleichung

T=0(—iw)e™ 9)

beschrieben wird, wenn der Bildspurpunkt S von s auf der positiven x-Achse ange-
nommen wird (Figur 3). o bedeutet dabei den Winkel, durch den S um O gedreht
werden muss, um nach P’ zu gelangen. Durch Inversion an s’ geht die Kreisevolvente
(9) iiber in das Netzbild s* von s:

Pr=02:T=—2_(1-iw)e™. (10)

Bei dieser Inversion gehen ferner die Tangenten ¢ von s’ iiber in die s’ beriihrenden
Kreise [ durch O. Da die Evolvente (9) die Gerade ¢#' normal durchsetzt, ist s eine
orthogonale Trajektorie der Kreisschar (/*). s® ist somit eine Kreistraktrix vom
parabolischen Typ, also eine Traktrix complicata [5], [6]. Durchlduft die Ebene x die
Schraubtorse 2 mit der Gratlinie s, so beschreibt ihr Netzumriss #* den Netzumriss
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2w, X* ist daher die Kreisevolvente (9). Fasst man dagegen X' als Tangentenfliche
von s auf, so tritt zur Kreisevolvente 2 noch der Netzriss s¥ der Gratlinie s von 2’
hinzu, gehort doch s zum wahren Umriss von 2. Dies driickt sich auch im Netzbild
aus. Die Kreise £ sind Orthogonalkreise von s’ und beriihren die Kreisevolvente (9)
in den Punkten 7. £* bleibt bei der betrachteten Inversion als Ganzes fest, muss daher
die Kurve s” im Punkt P” beriihren. Die Hiillkurve dieser Kreise ¢ setzt sich daher
aus der Spurkurve der Torse und ihrer Inversen beziiglich s” zusammen.

Netzumriss einer geraden, offenen Strahlschraubfliche &
der Grundschraubung

Die Fliche @ wird von den horizontalen Geraden e iiberstrichen, die den Dreh-
zylinder durch eine Schraublinie s der Grundschraubung in den Punkten P von s be-
rithren. Der Netzumriss @* von @ ist die Hilllkurve der Netzrisse e® der Erzeugenden
e von @. Ein solcher Netzriss e¢” ist eine Gerade durch den Lotfusspunkt P’ aus O
auf den Grundriss ¢’ von e und trigt P” (Figur 4); e” ist daher die Polare des Spur-
punktes T der Schraubtangente ¢ von P beziiglich des Kreises s’. Die Kurve @* ist

Figur 4
Netzumriss einer geraden, offenen Strahlschraubfliche der Grundschraubung.

somit als Polarkurve der Kreisevolvente (9) eine hyperbolische Spirale. DieEvolventen-
tangente in T steht normal zu # und geht im Polarsystem iiber in den Berithrpunkt
E® von @* mit e®. E" liegt also auf der Parallelen zu ¢’ durch O, der Winkel P’ E*0O
ist die Winkelkote { von P. Die Gleichung der Spirale @* lautet daher:

E¥= —igctgle'™. (11)

Da die Héhenkote z von P einerseits p tg{, andererseits (da P auf der Schraublinie s



R. BERrEI1s und H. BRAUNER: Schraubung und Netzprojektion 39

liegt) p w betrigt, gilt w = tg{ und somit

E®=_2 4 (12)

1w

Treffen die Erzeugenden e die Schraubachse z, ist also @ eine Wendelfldche, so bilden
die Geraden e* das Strahlbiischel O.

Netzriss s einer Schraublinie s, und Netzumriss 2/ einer Schraubtorse J,
einer zur Grundschraubung koaxialen Schraubung

Durchlduft der Punkt P, eine Schraublinie s, einer zur Grundschraubung koaxialen
Schraubung vom Parameter p, = 4 und ist P ein Punkt, der dieselbe Hohenkote
wie P, besitzt und auf der Schraublinie s der Grundschraubung liegt, die denselben
Bildspurpunkt S wie s, aufweist, so geht Py aus P’ und F* aus P* durch eine Drehung

( ll|41=-_:-

A=
‘

Figur 5
Netzriss einer Schraublinie und Netzumriss einer Schraubtorse einer koaxialen Schraubung.

um O durch den Winkel .
—o=o(g-1) 13
w—o=o(g (13)
hervor (Figur 5). w bzw. w, ist dabei jener Winkel, durch den S um O gedreht werden
muss, um nach P’ bzw. P, zu gelangen. Die Gleichung des Netzbildes s{* von s, ent-
steht daher aus der Gleichung von s” (10) durch Multiplikation mit exp  (w; — )
und lautet daher:

Pr= fw, (11 w) e*", (14)
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Unterwirft man den Spurpunkt T der Tangente ¢ der Schraublinie s in P derselben
Drehung um O, so ist der gedrehte Punkt T, zu P beziiglich s’ invers. Ist T; der
Spurpunkt der Tangente ¢, der Schraublinie s, in P,, so ist das Teilverhiltnis

LT,:PTi=¢(w—w)iowy=1—pu, (15)

also konstant. P’ ist die Kriimmungsmitte der Evolvente (9) in T, T, durchlduft da-
her die (1 — u)-Zwischenevolute ([5], S.2751f.)

T,=0(1-7w) gtwlr (16)
der Kreisevolvente (9), das heisst: Das Netzbild einer koaxialen Schraublinie der
Schraubung mat dem Parameter pup ist beziiglich ihres Grundrisskreises invers zur
(1 — u)-Zwischenevolute der Spurkurve ihrer Tangentenfliche.

Die Tangentialebene &, der Torse X, von s, lings ¢, besitzt die Tangente in 7] an
die Evolvente (9) als Spur; auf ihr liegt der Netzumriss &y’ von x,. Die Netzflucht
ni von 7, geht zufolge der Parameterrelation aus ¢; durch Streckung aus O im Ver-
hiltnis 1:u hervor. z{® liegt auf =f,, besitzt also von 7; den konstanten Abstand
o (1/p —1). Der Netzumriss 2}’ der Schraubtorse 2

af =5 (1—iw)er (17)

L
u
ist demnach einerseits die g (1/u — 1)-Tangentiale der Spurkurve von 2, andererseits
zur (1 — u)-Zwischenevolute (16) der Spurkurve zentrisch dhnlich. Fasst man da-
gegen 2 als Tangentenfliche von s, auf, so tritt zum Netzumriss 2}’ noch der Netz-
riss sy der Gratlinie s; von X hinzu. Die Kreise ¢ berithren demnach — wie man aus
Figur 5 leicht erkennt — sowohl s}’ wie auch 2.

Fir g =1 geht die (1 — y)-Zwischenevolute (16) iiber in die Spurkurve (9) der
Tangentenfliche, was obige Aussagen iiber Schraublinien und Schraubtorsen der
Grundschraubung liefert.

In analoger Weise lassen sich die verschiedenartigsten, mit einer Schraubung ver-
kniipften Probleme untersuchen, wie etwa die Netzabbildung von Schraubflichen,
das mit einer Schraubung verbundene kubische Nullsystem sowie die automorphen
involutorischen Korrelationen koaxialer Schraubungen, ferner Netzumrisse von
Drehflichen mit lotrechter Achse usw. Uber diese den hier gesteckten Rahmen iiber-
schreitenden Fragen wird an anderer Stelle berichtet werden.

R. BEreis und H. BRAUNER, Wien
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Ungeloste Probleme
Nr. 16. Es sei K ein eigentlicher ebener Eibereich. Fiir einen inneren Punkt
P¢ K bilde man das Integral des reziproken Stiitzabstandes
- [
p I
wobei ds das Langendifferential der Randkurve von K und p den Abstand der zuge-

horenden Stiitzgeraden von P bedeuten und die Integration iiber den gesamten
Rand von K erstreckt werden soll. Es existiert dann die untere Grenze

B=infB(P) [PEK],

B(P)

wo P alle inneren Punkte von K durchlauft.

In der von G. POLYA!) und seinen Mitarbeitern behandelten Theorie der physi-
kalischen Eibereichsfunktionale spielt die Grosse

@ =A2B I,

wo A den Fliacheninhalt und I das auf den Schwerpunkt bezogene Triagheitsmoment
von K bezeichnen, eine wichtige Rolle als Vergleichsfunktional.

Nach einer durch zahlreiche Sonderuntersuchungen gestiitzten Vermutung von
Herrn G. P6LyA?) gilt die Ungleichung

36 < D < 54,

wo rechts Gleichheit fiir das reguldre Dreieck besteht, wihrend die Schranke links
durch sehr schmale gleichschenklige Dreiecke angenihert wird. Spezielle Zwischenwerte
des interessanten Funktionals sind ferner:

® =4 7% [K = Ellipse]; @& =48 [K = Parallelogramm)].

Von verschiedenen Seiten wurde bisher vergeblich versucht, die obenstehende
Ungleichung zu beweisen. H. HADWIGER

Aufgaben

Aufgabe 258. Von einer rationalen, bizirkularen Quartik ¢4 mit dem Doppelpunkt D
kennt man eine der beiden (als reell vorausgesetzten) Doppelpunkttangenten sowie die
beiden restlichen aus D an ¢ legbaren Tangenten ¢,, ¢, samt ihren Beriihrungspunkten
T,, T,. Man konstruiere die Quartik, wenn ¢, ¢, ebenfalls reell sind.

R. Bereis und H. BRAUNER, Wien

1) Vergleiche G. P6LvA und G. Szecd, Isoperimetric Inequalities in Mathematical Physics (Princeton
University Press 1951).
2) Brief von G. P6LvA an den Unterzejchneten vom 3. Juli 1956.
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