Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 11 (1956)

Heft: 6

Rubrik: Ungelöste Probleme

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

senheit dieser Marke kann beim Drucken zum Beispiel durch einen Stern zur Anzeige gebracht werden. Wird nun festgestellt, dass die zuletzt berechnete Mantisse von der ersten der gleichen Zeile in den ersten drei Stellen abweicht, so wird die betreffende Zahl vor dem Drucken mit der Marke versehen.

Zum Schluss noch einige Angaben, welche den Umfang des Problems charakterisieren: Unser Programm enthält 127 Befehle und 33 Konstanten. Es benötigt ferner 12 Rechenzellen für Zwischenresultate. Rechenaufwand und Geschwindigkeit der Maschine stehen in einem solchen Verhältnis, dass die Schreibmaschine ständig drucken kann, ohne auf die Berechnung des nächsten Wertes warten zu müssen. Das Vollschreiben einer Seite mit 50 Zeilen dauert etwa eine Viertelstunde.

P. Läuchli, Zürich.

Ungelöste Probleme

Nr. 14. Herr W. Sierpiński (Warschau) macht uns auf folgendes Problem aufmerksam, das von W. Mnich gestellt wurde und anscheinend bisher noch keine Lösung gefunden hat:

Können Summe und Produkt von drei rationalen Zahlen gleichzeitig gleich 1 sein? Für mehr als drei rationale Zahlen ist dies sogar auf unendlich viele Arten möglich, wie Herr A. Schinzel (Warschau) festgestellt hat, dem wir die folgenden Bemerkungen verdanken.

Es seien a_0 , a_1 , a_2 , ..., a_{s-4} s -3 von Null verschiedene rationale Zahlen, welche den Bedingungen

$$g = a_1 + a_2 + \cdots + a_{s-4} = 1$$
, $h = a_0^2 a_1 a_2 \cdots a_{s-4} = 1$, $s > 3$

genügen. Wir setzen

$$x_{i} = a_{i} \ (i = 1, 2, \dots, s - 4), \qquad x_{s-3} = \frac{g-1}{h-1},$$

$$x_{s-2} = -\frac{h (g-1)}{h-1}, \qquad x_{s-1} = \frac{(h-1) a_{0}}{h (g-1)}, \qquad x_{s} = \frac{(1-h) a_{0}}{h (g-1)}.$$

Man überzeugt sich leicht, dass jedes derartige System x_1, x_2, \ldots, x_s die Gleichungen

erfüllt.
$$x_1 + x_2 + \cdots + x_s = x_1 x_2 \cdots x_s = 1$$

Für s=4 kann man folgende Lösungsformeln verwenden, wo a_0 eine von Null verschiedene rationale Zahl mit $a_0^2 \neq 1$ bedeutet:

$$x_1 = -rac{1}{a_0^2-1}$$
, $x_2 = rac{a_0^2}{a_0^2-1}$, $x_3 = rac{1-a_0^2}{a_0}$, $x_4 = rac{a_0^2-1}{a_0}$.

Für s = 5 gibt es eine ganzzahlige Lösung: $x_1 = x_2 = x_3 = 1$, $x_4 = x_5 = -1$. Man kann beweisen, dass ganzzahlige Lösungen nur für s = 4 n + 1 existieren.

W. Sierpiński hat bewiesen, dass das Problem von Mnich äquivalent ist mit der Frage, ob die diophantische Gleichung

$$a^3 + b^3 + c^3 = a b c$$

Lösungen in ganzen, nicht verschwindenden Zahlen a, b, c besitzt.

Aufgaben 135

Bemerkenswert ist, dass die Gleichung

$$x_1 + x_2 + \cdots + x_s = x_1 x_2 \cdots x_s$$

für jedes natürliche s wenigstens eine Lösung in natürlichen Zahlen x_1, x_2, \ldots, x_s besitzt; für s > 2 hat man nur $x_1 = x_2 = \cdots = x_{s-2} = 1$, $x_{s-1} = 2$, $x_s = s$ zu setzen. Bezeichnen wir mit n_s die Anzahl der Lösungen in ganzen Zahlen $x_1 \le x_2 \le \cdots \le x_s$, so ist $n_2 = n_3 = n_4 = 1$, $n_5 = 3$, $n_6 = 1$. Man kann mühelos zeigen, dass n_s für s > 1 endlich ist und dass die Abschätzung

$$n_{2^{2k}+1} > k$$
 $(k = 1, 2, ...)$

gilt. Hingegen ist es eine offene Frage, ob die Zahlen n_s mit s unbeschränkt wachsen. E. Trost.

Nachtrag zu Nr. 8 [El. Math. 10, 130-132 (1955)]: Der dort als Vermutung formulierte Satz, wonach eine auf der Kugelfläche definierte stetige Funktion in den drei Eckpunkten eines sphärischen Dreiecks, das mit einem beliebig vorgegebenen Dreieck auf der Kugelfläche kongruent ist, gleiche Werte annimmt, ist tatsächlich richtig. Die Aussage wurde kürzlich von E. E. Floyd [Real-Valued Mappings of Spheres, Proc. Amer. math. Soc. 6, 957-959 (1955)] bewiesen. H. Hadwiger.

Aufgaben

Aufgabe 248. Man beweise: Jede der beiden Beziehungen

$$\rho^{i} + \rho^{i}_{a} + \rho^{i}_{b} + \rho^{i}_{c} = a^{i} + b^{i} + c^{i}$$
 (i = 1, 2)

stellt eine notwendige und hinreichende Bedingung dafür dar, dass das Dreieck mit den Seiten a, b, c, dem Inkreisradius ϱ und den Ankreisradien ϱ_a , ϱ_b , ϱ_c rechtwinklig ist.

E. Trost, Zürich.

Lösung: Wir benützen die bekannten Formeln (s halber Dreiecksumfang, r Umkreisradius):

$$\varrho = 4 r \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}, \qquad \varrho_a = 4 r \sin \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2},$$

$$\varrho_b = 4 r \cos \frac{\alpha}{2} \sin \frac{\beta}{2} \cos \frac{\gamma}{2}, \qquad \varrho_c = 4 r \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \sin \frac{\gamma}{2},$$

$$s = 4 r \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}, \qquad s - a = 4 r \cos \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2},$$

$$s - b = 4 r \sin \frac{\alpha}{2} \cos \frac{\beta}{2} \sin \frac{\gamma}{2}, \qquad s - c = 4 r \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \cos \frac{\gamma}{2}.$$

Für alle natürlichen i gilt dann

$$\begin{split} &(\varrho^i + \varrho^i_a + \varrho^i_b + \varrho^i_c) - [s^i + (s-a)^i + (s-b)^i + (s-c)^i] \\ &= (4 r)^i \left(\sin^i \frac{\alpha}{2} - \cos^i \frac{\alpha}{2} \right) \left(\sin^i \frac{\beta}{2} - \cos^i \frac{\beta}{2} \right) \left(\sin^i \frac{\gamma}{2} - \cos^i \frac{\gamma}{2} \right). \end{split}$$

Für i = 1, 2 gilt aber

$$s^{i} + (s-a)^{i} + (s-b)^{i} + (s-c)^{i} = a^{i} + b^{i} + c^{i}$$

woraus die Aussage der Aufgabe unmittelbar folgt. A. BAGER, Hjørring (Dänemark).