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Ungeloste Probleme

Nr.13. Es ist eine triviale Tatsache, dass ein ebener polygonaler Bereich im Sinne
der Elementargeometrie in endlich viele rechtwinklige Dreiecke zerlegt werden
kann. Lisst sich ein rdumlicher polyedrischer Bereich analog in rechtwinklige Tetra-
eder zerlegen?

Um diese Frage exakt und fiir beliebige Dimensionen formulieren zu kénnen, ist es
erforderlich, zundchst das Orthogonalsimplex des k-dimensionalen euklidischen
Raumes zu definieren, das unter den Simplexen die ndmliche Sonderstellung ein-
nimmt wie im ebenen Fall das rechtwinklige Dreieck unter den beliebigen Dreiecken.
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Das Orthogonalsimplex?!) T ldsst sich durch die vektorielle Parameterdarstellung
b=y a,+agas+ - +opap(l=ay =0y =+ =a = 0) seiner Punkte ¢€ T charak-
terisieren, wobei a; (1 =1, 2, ..., k) k paarweise orthogonale Vektoren bezeichnen. Ortho-
gonalsimplexe im ebenen und rdumlichen Fall (2 =1, 2) sind in Figur 1 dargestellt.

Dass die einleitend erwdhnte Zerlegung ebener Polygone immer méglich ist, ergibt
sich mit der Bemerkung, dass sich bereits ein beliebiges Dreieck auf einfachste Art
in der gewiinschten Weise zerlegen lisst.

Eine im Hinblick auf die mehrdimensionale Erweiterung instruktive Zerlegung
eines Dreiecks in 6 rechtwinklige Teildreiecke ist in Figur 2 gezeigt; sie ergibt sich
dadurch, dass man vom Inkreismittelpunkt des gegebenen Dreiecks die Lote auf die
drei Seiten fillt.

Die Angabe bei P. H. ScHOUTE?), dass die analoge Konstruktion auch im %-dimen-
sionalen Fall zu einer Zerlegung eines beliebigen Simplex in (%#+1)! Orthogonal-
simplexe fiithrt, ist unrichtig.

Dieser Zerlegungsprozess ist nur dann erfolgreich, wenn die Fusspunkte der vom
Inkugelmittelpunkt auf die % (k + 1)/2 eindimensionalen Kanten gefillten Lote alle
in den Kanten selbst liegen.

1) Nach der von L. ScHLAFLI in seiner Theorie der vielfachen Konmtinuitét verwendeten Terminologie
kann dieses Simplex ¢« Orthoschem» genannt werden. Vgl. Gesammelte Mathematische Abkiandlungen, Bd.1
(Basel 1950), S. 243.

2) P. H. ScHOUTE, Mehrdimensionale Geometrie, 11. Teil (Leipzig 1905), S.123.
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Wihrend nun im ebenen Fall jedes Dreieck einen konvexen Teilbereich aufweist
(der mindestens einen Eckpunkt und sicher den Inkreismittelpunkt enthilt), dessen
Punkte die Eigenschaft haben, dass die Fusspunkte der Seitenlote den Seiten selbst
zugehoren, gibt es im raumlichen Fall Tetraeder, die iiberhaupt keinen Punkt der ent-
sprechenden Eigenschaft besitzen. Figur 3 zeigt ein solches von Herrn H. KUMMER
(Bern) konstruiertes Tetraeder in Grund- und Aufriss. Die Eckpunkte sind 4(0|0]0),
B(a|0]0), C(b|a|0) und D(c|a|a), wobei 0<2a<a+b<2c<2b—2a<2b vor-
ausgesetzt ist.

DII

Figur 3

Mit diesem Befund ist aber die Frage der Zerlegung eines Polyeders in Orthogonal-
simplexe allgemein problematisch geworden. Mit anderen Worten ist fiir £ > 2 un-
geklirt, ob die Orthogonalsimplexe universelle Bausteine der Polyeder des Raumes
sind. H. HADWIGER.

Aufgaben

Aufgabe 242. Ein Rotationshyperboloid sei gegeben durch den Radius R des Kehl-
kreises K und den Radius g des Scheitelkriimmungskreises der erzeugenden Hyperbel.
Das Hyperboloid wird von einem geraden Kreiszylinder mit dem Radius » < g, dessen
Achse in der Ebene von K liegt, beriihrt. Man bestimme den Winkel, um den der
Zylinder um die Normale des Beriihrungspunktes (nach einer Seite) gedreht werden
kann, ohne sich von K abzuheben. E.TrosT, Ziirich.

Losung: Steht die Zylinderachse senkrecht zur Bildebene, dann stimmt der schein-
bare Umriss des Hyperboloids mit der erzeugenden Hyperbel H iiberein. Die Daten
von Hsind: a=R, b=} Rp, c=}R(R +g). Dreht man jetzt das Hyperboloid um die
Zylinderachse in die gewiinschte Lage, dann ist der Radius » des Kreiszylinders gleich
dem Radius des Scheitelkriimmungskreises der scheinbaren Umrisshyperbel H,. Somit
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