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Ungelöste Probleme

Nr. 13. Es ist eine triviale Tatsache, dass ein ebener polygonaler Bereich im Sinne
der Elementargeometrie in endlich viele rechtwinklige Dreiecke zerlegt werden
kann. Lässt sich ein räumlicher polyedrischer Bereich analog in rechtwinklige Tetraeder

zerlegen
Um diese Frage exakt und für beliebige Dimensionen formulieren zu können, ist es

erforderlich, zunächst das Orthogonalsimplex des ß-dimensionalen euklidischen
Raumes zu definieren, das unter den Simplexen die nämliche Sonderstellung
einnimmt wie im ebenen Fall das rechtwinklige Dreieck unter den beliebigen Dreiecken.

Figur 1 Figur 2

Das Orthogonalsimplex1) T lässt sich durch die vektorielle Parameterdarstellung
* — ai ai + a2 a2 H + a* ak (1 2^ <*i ^ <*2 — ' *" — a* — 0) seiner Punkte t € T
charakterisieren, wobei at (i l,2,...,k)k paarweise orthogonale Vektoren bezeichnen.
Orthogonalsimplexe im ebenen und räumlichen Fall (k 1, 2) sind in Figur 1 dargestellt.

Dass die einleitend erwähnte Zerlegung ebener Polygone immer möglich ist, ergibt
sich mit der Bemerkung, dass sich bereits ein beliebiges Dreieck auf einfachste Art
in der gewünschten Weise zerlegen lässt.

Eine im Hinblick auf die mehrdimensionale Erweiterung instruktive Zerlegung
eines Dreiecks in 6 rechtwinklige Teildreiecke ist in Figur 2 gezeigt; sie ergibt sich
dadurch, dass man vom Inkreismittelpunkt des gegebenen Dreiecks die Lote auf die
drei Seiten fällt.

Die Angabe bei P. H. Schoute2), dass die analoge Konstruktion auch im ß-dimen-
sionalen Fall zu einer Zerlegung eines beliebigen Simplex in (k +1)! Orthogonalsimplexe

führt, ist unrichtig.
Dieser Zerlegungsprozess ist nur dann erfolgreich, wenn die Fusspunkte der vom

Inkugelmittelpunkt auf die k(k + l)/2 eindimensionalen Kanten gefällten Lote alle
in den Kanten selbst liegen.

*) Nach der von L. Schläfli in seiner Theorie der vielfachen Kontinuität verwendeten Terminologie
kann dieses Simplex «Orthoschem% genannt werden. Vgl. Gesammelte Mathematische Abhandlungen, Bd. I
(Basel 1950), S. 243.

2) P. H. Schoute, Mehrdimensionale Geometrie, II. Teil (Leipzig 1905), S. 123.
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Während nun im ebenen Fall jedes Dreieck einen konvexen Teilbereich aufweist
(der mindestens einen Eckpunkt und sicher den Inkreismittelpunkt enthält), dessen

Punkte die Eigenschaft haben, dass die Fusspunkte der Seitenlote den Seiten selbst

zugehören, gibt es im räumlichen Fall Tetraeder, die überhaupt keinen Punkt der
entsprechenden Eigenschaft besitzen. Figur 3 zeigt ein solches von Herrn H. Kummer
(Bern) konstruiertes Tetraeder in Grund- und Aufriss. Die Eckpunkte sind A (01010),
B(a\0\0), C(b\a\0) und D(c\a\a), wobei 0 < 2a <n + b <2c < 2 b- 2a <2b
vorausgesetzt ist.

D"
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Figur 3

Mit diesem Befund ist aber die Frage der Zerlegung eines Polyeders in Orthogonalsimplexe

allgemein problematisch geworden. Mit anderen Worten ist für k > 2

ungeklärt, ob die Orthogonalsimplexe universelle Bausteine der Polyeder des Raumes
sind. H. Hadwiger.

Aufgaben

Aufgabe 242. Ein Rotationshyperboloid sei gegeben durch den Radius R des
Kehlkreises K und den Radius q des Scheitelkrümmungskreises der erzeugenden Hyperbel.
Das Hyperboloid wird von einem geraden Kreiszylinder mit dem Radius r ^ q, dessen
Achse in der Ebene von K liegt, berührt. Man bestimme den Winkel, um den der
Zylinder um die Normale des Berührungspunktes (nach einer Seite) gedreht werden
kann, ohne sich von K abzuheben. E. Trost, Zürich.

Lösung: Steht die Zylinderachse senkrecht zur Bildebene, dann stimmt der scheinbare

Umriss des Hyperboloids mit der erzeugenden Hyperbel H überein. Die Daten
von H sind: a =i?, b YRq, c J/i?(i? + q). Dreht man jetzt das Hyperboloid um die
Zylinderachse in die gewünschte Lage, dann ist der Radius r des Kreiszylinders gleich
dem Radius des Scheitelkrümmungskreises der scheinbaren Umrisshyperbel Hx. Somit
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