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F. Steiger: Über die Grundlösungen der Gleichung a2+ b2+ c2 d2 105

Interessant sind diese Beobachtungen für uns deswegen, weil die Beweisführung
unseres Satzes (IX 20) bei Euklid eindeutig transfinit ist. Es wird aus der
Tatsache, dass die als Beispiel geprüfte Menge der Primzahlen nicht vollständig ist, auf
die Existenz unendlich vieler Primzahlen geschlossen. Kein Zweifel, diese Schlussweise

ist intuitionistisch unzulässig! - O. Becker wollte also mit der Bemerkung,
dass der Satz IX 20 in der ganzen antiken Arithmetik isoliert dastünde, wohl eben
diese Tatsache unterstreichen. - Aber ist denn dieser Satz in der antiken Wissenschaft

wirklich so vollkommen isoliert? - Nehmen wir jenen einzigen Ausnahmefall
der aristotelischen Ersten Analytik, in dem ein Verstoss gegen die intuitionistische
Denkweise zu beobachten ist. Es handelt sich hier16) um den Satz von der Inkommen-
surabilität der Quadratdiagonale zur Seite, als Beispiel einer Deductio ad absurdum.
Becker schreibt darüber folgendes:

«Auch in diesem Fall hegt eine eigentliche transfinite Schlussweise nicht vor.
Allerdings ist die Disjunktion zwischen messbaren und unmessbaren Strecken nicht
endlich entscheidbar, im Gegensatz etwa zu der zwischen geraden und ungeraden
Zahlen. Insofern besteht hier schon ein Ausnahmefall, merkwürdigerweise auch sonst
bei diesem mathematischen Problem, denn in der Deductio ad absurdum der Messbarkeit
der Diagonale werden leere Begriffe verwandt; die Klasse der messbaren Diagonale ist
ja die Nullklasse.»

Man muss dazu nur bemerken, dass der Satz von der Inkommensurabilität der
Quadratdiagonale zur Seite ebenso pythagoreischen Ursprungs ist17), wie nach

unserer Vermutung auch der Satz Euclid IX 20.

Die bisher bekannten beiden auffallendsten Verstösse der antiken Mathematik
gegen den Intuitionismus stammen also von den Pythagoreern. Man wäre also

geneigt anzunehmen, dass die transfinite Schlussweise in der ältesten Periode der
griechischen Mathematik bei den Pythagoreern des 5. Jahrhunderts noch nicht
verpönt war, sie wurde erst im 4. Jahrhundert von Eudoxos ab vermieden. Die
Logik des 5. Jahrhunderts wäre also noch nicht dieselbe wie später diejenige des

Aristoteles. Ärpäd Szabo, Budapest.

Über die Grundlösungen der Gleichung

Von einer ((Grundlösung)) unserer Gleichung sprechen wir, wenn a, b, c, d natürliche
Zahlen mit dem grossten gemeinschaftlichen Teiler 1 sind. Lösungen, die sich nur
durch Permutation von a, b, c unterscheiden, gelten als dieselbe Lösung.

Man erhält jede Grundlösung der pythagoreischen Gleichung (G) a2+ b2+cz=d2,
und zwar jede genau einmal, wenn man in den nachfolgenden Formeln (A), (B), (C)

und (D) für die Parameter 5, t, u und v alle ganzen Zahlen einsetzt, die mit den

16) Analytica priora I 31 (46 b, 28 35).
17) Vgl. O. Becker, Quell. Gesch. Math. [B.] 3, 544ff. (1936).
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beigefügten Bedingungen (I), (II), (VII) verträglich sind:

a 2(sv + tu), (A)

b 2(su~tv), (B)

c (s2+t*)- (u2+v2), (C)

d=(s2+t2) + (u2+v2), (D)

s^l; *^0; u^l; v^O; t + v^l, (I)

s + t + u + v l (mod 2), (II)

s2 + t2>u2+v2, (III)

su> tv, (IV)

(s2+12, u2+ v2, sv + tu)=l (V)

(das heisst, der grosste gemeinschaftliche Teiler der drei in der Klammer stehenden
Zahlen soll 1 sein).

Mit t 0 gelte v ^ u. (VI)

Mit v 0 gelte t ^ s. (VII)

(V) ist nur dann erfüllt, wenn (s, t, u, v) 1. Dass diese letzte Bedingung nicht
hinreicht, wenn wir Grundlösungen erhalten wollen, zeigt das Beispiel {s; t; u; v]

{3; 1; 2; l}, das auf {a; b; c; d} {lO; 10; 5; 15} führen würde.
Unser Formelsystem geht, wenn wir gleichzeitig t 0 und v 0 setzen, genau in

dasjenige über, das man für die Ermittlung der teilerfremden pythagoreischen
Zahlentripel braucht1).

Bei der Herstellung einer Tafel der Grundlösungen von (G) liessen wir

k s + t + u + v,

von k 3 an aufsteigend, alle ungeraden Zahlen durchlaufen [siehe (I) und (II)!].
Jede mit den Bedingungen verträgliche Darstellung eines Wertes k durch vier
Summanden, wobei auch deren Permutationen zu berücksichtigen waren, lieferte
eine Lösung. Die doppelte Ungleichung

Vd<k<2Vd ¦ (VIII)

ermöglichte es, eine nach aufsteigendem d geordnete, lückenlose Tafel zu berechnen.
Ein Beweis der angegebenen Formeln wird demnächst in der Zeitschrift «Der
mathematische und naturwissenschaftliche Unterricht» (Dümmler, Bonn) erscheinen.

Für d g 99 hat (G) folgende 347 Grundlösungen:

x) Helmut Hasse, Proben mathematischer Forschung in allgemeinverständlicher Behandlung (Otto Salle
Verlag, Frankfurt a.M. 1955).
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