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Eine Näherungsformel für die Schwingungsdauer eines Pendels

Im folgenden kann man prinzipiell die Verhältnisse am mathematischen Pendel
studieren, dessen Schwingungsdauer proportional ist dem vollständigen elliptischen
Integral 1. Gattung,

T 4]/JK(k). (1)

Dabei ist / die Länge des Pendels, g die Schwerebeschleunigung und k sin a/2,
wenn mit a der Amplitudenwinkel des Pendels bezeichnet wird.

Handelt es sich um ein physikalisches Pendel mit der Gesamtmasse m und dem
Trägheitsmoment # bezüglich seiner festen Achse, so hat man in (1) für / die
reduzierte Länge

hei — (2)rea m s
#

v '

(s — Schwerpunktsabstand von der festen Achse) einzusetzen. Überdies kann man
auch noch das Trägheitsmoment # eliminieren, wenn man zum sogenannten
Reversionspendel übergeht, wie das in der Physik bei der Bestimmung von g üblich ist [l]1).

Als eine erste Näherung der Gleichung (1) setzt man vielfach

r1* 2rc]/|, (3)

man hat also praktisch die linearisierte Pendelgleichung gelöst oder - was hier
dasselbe ist - das erste Glied der Entwicklung von (1) genommen. Fügt man aus dieser

Entwicklung noch das nächste Glied hinzu, so erhält man eine verbesserte Näherung

T*=27t]/}(1 + T6«2)- <4>

wenn man sich auf kleine Winkelamplituden a beschränkt, das heisst k sin a/2
durch a/2 ersetzt.

Puwein [2] führte eine « mutierte » Pendellänge la ein,

/= l-vr, (5)a cosa/2 ' v ;

womit eine weitere Verbesserung erzielt wurde

r3*=2,rj/y. (6)

Die Entwicklung dieser Gleichung nach Potenzen von k (cosa/2 Kl — k2) zeigt
eine Übereinstimmung mit Gleichung (1) bis auf £4/64. Bei Beschränkung auf kleine a
ist die relative Genauigkeit also proportional a4/1024.

Ziel dieser Note ist eine im wesentlichen ebenso einfache Näherungsformel, die
aber bis auf Potenzen von k? mit (1) gleichkommt.

*) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, S. 86.
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Dazu sei an eine aus vielen Lehrbüchern der Integralrechnung bekannte vorzügliche

Näherungsformel zur Berechnung des Ellipsenumfangs erinnert. Ist der genaue
Umfang

U 4aE(k), (7)

wenn mit k Va2— b2/a die numerische Exzentrizität der Ellipse bezeichnet wird,
so lautet diese Näherungsformel [3]

U* n(3^-*--lfcb). (8)

Die Entwicklung dieser Gleichung ist bis auf Potenzen von k8 mit Gleichung (7) in
Einklang, wobei insgesamt U*>U ist.

ö-

Figur 1

Die Bedeutung der Grössen a und 6 in Gleichung (9).

Man kann nun für die Schwingungsdauer eines mathematischen Pendels dasselbe

wie beim Ellipsenumfang erreichen, wenn man in (8) das geometrische Mittel Va b

gegen das arithmetische (a -f b)/2 vertauscht. Diese Vertauschung liegt (heuristisch
gesehen) nahe, weil von der Theorie der ebenen Kurven her bekannt ist, dass bei den
beiden Brennpunktskurven mit zwei Fixpunkten (Ellipse und Lemniskate) sowohl
das arithmetische als auch das geometrische Mittel eine gewisse Rolle spielen. Da
aber die Bogenlänge der Lemniskate wie hier die Schwingungsdauer auf ein
vollständiges elliptisches Integral erster Gattung führt, scheint diese Vertauschung in
(8) immerhin plausibel.

Man setzt nun als neue Näherung an

,,^4(3^-^i). W

wobei der Analogie zu (8) wegen unter k2 verstanden wird

&2=sin2- a2-62
a2

Der Faktor Ijb in (9) muss aus Dimensionsgründen hinzutreten, was auch aus dem
Vergleich von (7) mit (8) hervorgeht. Dort war durch a dividiert worden, man hat
also auch hier wieder vertauscht. Die Bedeutung der Grössen a und b gibt Figur 1 wieder.
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Entwickelt man diesen Ausdruck (9) nach Potenzen von k, so folgt

iVf^^(3^-°±A)
i[3(i-Ar>/*-i{i+(i-*v/*}]

-1 I

1
k2 I

9
k* I 25t«l 122°

A» l-i+ 4 * + 64 * + 256 * + 16384
Ä + '

Zum Vergleich entwickeln wir aus (1) ebenso den Ausdruck

L1/TT_ ir/M-i^ 1Hi.' i*^ 25 W.L. 1225

(10)

2 ji f-r ~^) i + ^+^ + ^+1^*° + (ii)

Die ersten vier Glieder zeigen Gleichheit, erst das fünfte Glied zeigt eine geringe
Abweichung.

Im Gegensatz zur Ellipsennäherung (8) liefert die Näherung (9) jetzt etwas zu
geringe Werte, was auch zu erwarten war.

Man schätzt den entstehenden Fehler sehr grob nach oben ab, wenn man die
grössere Reihe (11) von k10 ab mittels der geometrischen Reihe majorisiert, während
man sich die Reihe (10) der Einfachheit halber bei kB endend denken mag.

Damit ergibt sich aus
T Ti*+Ri

die folgende Abschätzung für den Fehler i?4

**<2*^7-^(5 + 1225T^)- d2)

Diese Überlegungen gelten aber nur für k-Werte, die nicht nahe bei 1 liegen, wie im
späteren noch ausgeführt wird.

Verwendet man die Näherung (6) von Puwein, so lautet damit die neue Näherung

(9) entsprechend
r4* c(a) r3*, (13)

wobei die weitere Verbesserung durch den Faktor

4 - i±^ (14)
z 4 ycos a/2

zustande kommt.
Eine andere Schreibweise für diese neue Näherung ist mit sec a/2 1/(cosa/2)

gegeben [4]:

^ f|/{(6|/sec|--sec|--l), (15)

entsprechend dazu der Fehler nach (12)

*<*«Vf ¦££(' +¦*"»¦*)¦
Die Näherung (15) liefert für a -> 0 richtig

limTZ-r/.
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Doch für a -> tt ergibt sich
lim jT4* — oo,
a—>tc

im Gegensatz zur Formel (6) von Puwein, die hier - wie es nach (1) sein muss - den
uneigentlichen Grenzwert + oo hat. Dieser Unterschied liegt in der Reihenentwicklung

(10) begründet, die für hohe Potenzen in k negative Koeffizienten bringt. Das
«Umschlagen» in das Negative macht sich jedoch erst bei Werten k nahe der 1

bemerkbar, also dort, wo die Formel ohnehin nicht mehr sinnvoll anwendbar wäre.
Um das genau zu untersuchen, genügt es, den Faktor

/(«) 6 1/sec | sec- 1

der Gleichung (15) zu betrachten. Er hat ein relatives Maximum bei sec a/2 9,

das heisst a ^ 167°. Dem entspricht der Wert k ^80/81. Von da an sinkt /(a) sehr
rasch ab, doch ist selbst bei diesem Maximum die neue Näherung noch beträchtlich
genauer als (6):

ir-r.« T-Tf

Zum Schluss werden in einer Tabelle die Ergebnisse der Näherungen T*, T*, T3*

und J4* für einige Amplitudenwinkel a mit den genauem Wert T verglichen [5].

Näherungswerte
Amphtudenwinkel a

120° 90° 60° 30° 10°

tVT* 1,570796
27%

1,570796
15,3%

1,570796

6,8%
1,570796

1,7%
1,570796

0,2%

iVfT-- ¦>
1,865321

14%
1,767146

4,7%
1,668971

1%
1,597102

0,07%
1,573779

0,0008%

tKF* 2,221441

3%
1,868002

0,8%
1,687931

0,1%
1,598262
0,008 %

1,573793
0,0000 7%

iYir, 2,154065
0,1%

1,853943
0,007%

1,685746
- 0,0002%

1,598142 1,573792

Genaue Werte

lj/-fr *W 2,156516 1,854075 1,685750 1,598142 1,573792

*) Für die zahlenmassige Berechnung wurde hier entgegen Gleichung (4) verwendet

T**=2nYr(1 + Tk*)-
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Die Zahlen der Tabelle stellen die Näherungswerte des vollständigen elliptischen
Integrals K(k) mit k — sin a/2 dar.

In den oberen Halbzeilen stehen jeweils die errechneten Werte, in den unteren
die prozentualen Abweichungen vom genauen Wert. H. Wagner, Karlsruhe.
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Ungelöste Probleme

Nr. 12. Herr H. Lenz (München) macht uns auf das folgende eiementargeome-
trische Problem aufmerksam, dessen Lösung unseres Wissens noch nicht allgemein
aufgefunden werden konnte: Wie gross kann der Flächeninhalt F eines ebenen
konvexen w-Ecks vom Durchmesser D 1 höchstens sein

K. Reinhardt1) hat unter anderem gezeigt, dass unter allen w-Ecken mit vorgeschriebenem

Durchmesser das reguläre n-Eck sicher dann den grösstmöglichen Flächeninhalt
aufweist, wenn n ungerade ist. Für gerade n > 4 ist jedoch die Frage noch ungeklärt.

Für den Flächeninhalt F eines beliebigen n-Ecks vom Durchmesser D l gilt die
Ungleichung

F <J -£- cos — tg -^- (n 2> 3),

wobei das Gleichheitszeichen dann gilt, wenn n ungerade und das w-Eck regulär ist.
Hierfür hat H. Lenz kürzlich2) einen übersichtlichen Beweis veröffentlicht. Die
angewandte Methode zur Ermittlung des in unserem Sinne extremalen Polygons scheitert

für gerade n am Umstand, dass es keine gleichseitigen Reuleaux-Polygone mit
gerader Seitenzahl gibt. H. Hadwiger.

Aufgaben

Aufgabe 237. Es seien ax < a2 < • • • die Zahlen mit höchstens zwei verschiedenen

Primfaktoren. Dann ist zu zeigen, dass es eine Zahl c > 0 gibt, so dass für
unendlich viele k

ak+i- ak> clo8k •

Lässt sich dieser Satz verschärfen Kann man also zeigen, dass

A-oo logk
P. Erdös, Jerusalem.

*) K. Reinhardt, Extremale Polygone gegebenen Durchmessers, Jber. dtsch. Math.-Ver. 31, 251-270 (1922).
2) H. Lenz, Zerlegung ebener Bereiche in konvexe Zellen wn möglichst kleinem Durchmesser, Jber. dtsch.

Math.-Ver. 58, 87-97 (1956).
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