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Eine Niherungsformel fiir die Schwingungsdauer eines Pendels

Im folgenden kann man prinzipiell die Verhiltnisse am mathematischen Pendel
studieren, dessen Schwingungsdauer proportional ist dem vollstindigen elliptischen
Integral 1. Gattung,

T=4 l/::;K(k). (1)

Dabei ist / die Lange des Pendels, g die Schwerebeschleunigung und % = sin«/2,
wenn mit « der Amplitudenwinkel des Pendels bezeichnet wird.

Handelt es sich um ein physikalisches Pendel mit der Gesamtmasse m und dem
Trigheitsmoment & beziiglich seiner festen Achse, so hat man in (1) fiir / die redu-
zierte Linge

bt = . (2)
r ms .
(s = Schwerpunktsabstand von der festen Achse) einzusetzen. Uberdies kann man
auch noch das Tragheitsmoment ¢ eliminieren, wenn man zum sogenannten Rever-
sionspendel iibergeht, wie das in der Physik bei der Bestimmung von g iiblich ist [1]%).
Als eine erste Niherung der Gleichung (1) setzt man vielfach

1
n*:z:z]/? 3)

man hat also praktisch die linearisierte Pendelgleichung gelost oder — was hier das-
selbe ist — das erste Glied der Entwicklung von (1) genommen. Fiigt man aus dieser
Entwicklung noch das nichste Glied hinzu, so erhidlt man eine verbesserte Ndherung

T3 -2n:l/—— 1+———oc2 (4)

wenn man sich auf kleine Winkelamplituden o beschrinkt, das heisst & = sin«/2
durch /2 ersetzt.
PuwelN [2] fithrte eine «mutierte » Pendellidnge /, ein,

b= e 5

cosa/2 "’

womit eine weitere Verbesserung erzielt wurde

T = Zn]/%%. (6)

Die Entwicklung dieser Gleichung nach Potenzen von %k (cosa/2 = V1— k) zeigt
eine Ubereinstimmung mit Gleichung (1) bis auf 24/64. Bei Beschriankung auf kleine
ist die relative Genauigkeit also proportional «4/1024.

Ziel dieser Note ist eine im wesentlichen ebenso einfache Nidherungsformel, die
aber bis auf Potenzen von &% mit (1) gleichkommt.

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, S.86.
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Dazu sel an eine aus vielen Lehrbiichern der Integralrechnung bekannte vorziig-

liche Naherungsformel zur Berechnung des Ellipsenumfangs erinnert. Ist der genaue
Umfang
U=4aE(R), (7)

wenn mit & = Va2 -——-ﬁ/a die numerische Exzentrizitit der Ellipse bezeichnet wird,
so lautet diese Ndherungsformel [3]

U*=n(3 Lji—Vﬁ). (8)

Die Entwicklung dieser Gleichung ist bis auf Potenzen von %8 mit Gleichung (7) in
Einklang, wobei insgesamt U* > U ist.

7

a-/

Figur 1
Die Bedeutung der Grossen @ und b in Gleichung (9).

Man kann nun fiir die Schwingungsdauer eines mathematischen Pendels dasselbe

wie beim Ellipsenumfang erreichen, wenn man in (8) das geometrische Mittel Vab
gegen das arithmetische (a + b)/2 vertauscht. Diese Vertauschung liegt (heuristisch
gesehen) nahe, weil von der Theorie der ebenen Kurven her bekannt ist, dass bei den
beiden Brennpunktskurven mit zwei Fixpunkten (Ellipse und Lemniskate) sowohl
das arithmetische als auch das geometrische Mittel eine gewisse Rolle spielen. Da
aber die Bogenlinge der Lemniskate wie hier die Schwingungsdauer auf ein voll-
stindiges elliptisches Integral erster Gattung fiihrt, scheint diese Vertauschung in
(8) immerhin plausibel.
Man setzt nun als neue Niherung an

71 — a+b
I* = %V? s (3 Vab— —‘2—) , 9)
wobei der Analogie zu (8) wegen unter %2 verstanden wird
. g O a?—b?
k= sin®— = —j;

Der Faktor 1/b in (9) muss aus Dimensionsgriinden hinzutreten, was auch aus dem
Vergleich von (7) mit (8) hervorgeht. Dort war durch a dividiert worden, man hat
also auch hier wieder vertauscht. Die Bedeutung der Grossen ¢ und b gibt Figur 1 wieder.
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Entwickelt man diesen Ausdruck (9) nach Potenzen von %, so folgt

1 g 1 / a+b
2}?]/1 T =5y (3Vab - 232)
1 2 — 1 ~1fs
- [3(1*/5) R LR () ’“}] (10)
2 9 4 8 1220 4
=1+ k e BT 256k t qe3ss BT

Zum Vergleich entwickeln wir aus (1) ebenso den Ausdruck

1 g r_ 2 _ 10 9 44 6
T T T g BB =1+ g+ gkt 256k "

1225

8
16 384 Rt (1)

Die ersten vier Glieder zeigen Gleichheit, erst das fiinfte Glied zeigt eine geringe
Abweichung.

Im Gegensatz zur Ellipsenndherung (8) liefert die Ndherung (9) jetzt etwas zu
geringe Werte, was auch zu erwarten war.

Man schitzt den entstehenden Fehler sehr grob nach oben ab, wenn man die
grossere Reihe (11) von £ ab mittels der geometrischen Reihe majorisiert, wihrend
man sich die Reihe (10) der Einfachheit halber bei 2% endend denken mag.

Damit ergibt sich aus
T=T*+R

die folgende Abschitzung fiir den Fehler R,

) T B
R, < 2n|/?m(5+1225 kz) (12)

Diese Uberlegungen gelten aber nur fiir .-Werte, die nicht nahe bei 1 liegen, wie im
spiteren noch ausgefiihrt wird.
Verwendet man die Nédherung (6) von PUWEIN, so lautet damit die neue Nihe-

rung (9) entsprechend
§ ) entsp T = Clo) T, (13

wobei die weitere Verbesserung durch den Faktor

3 1+cosa/2

Clx) = e

(14)

zustande kommt.
Eine andere Schreibweise fiir diese neue Ndherung ist mit sece/2 = 1/(cosa/2)

gegeben [4]: _a V ( Vsec  sec _;_ _ 1)’ (15)

entsprechend dazu der Fehler nach (12)

sinfa/2 o
R,<2n ]/ '16384 5+1225tgz-2-).

Die Niherung (15) liefert fiir « - O richtig
lim T)* = T*.
a-->0
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Doch fiir a - & ergibt sich

lim 7Tj* = —oo0,

oaA—>n
im Gegensatz zur Formel (6) von PUWEIN, die hier — wie es nach (1) sein muss - den
uneigentlichen Grenzwert + oo hat. Dieser Unterschied liegt in der Reihenentwick-
lung (10) begriindet, die fiir hohe Potenzen in % negative Koeffizienten bringt. Das
« Umschlagen» in das Negative macht sich jedoch erst bei Werten %2 nahe der 1
bemerkbar, also dort, wo die Formel ohnehin nicht mehr sinnvoll anwendbar wire.

Um das genau zu untersuchen, geniigt es, den Faktor

o o
fl) =6 Vsec7 —sec - — 1

der Gleichung (15) zu betrachten. Er hat ein relatives Maximum bei sec a/2 = 9,

das heisst « & 167°. Dem entspricht der Wert % = V@ﬁﬂ Von da an sinkt f(a) sehr
rasch ab, doch ist selbst bei diesem Maximum die neue Niherung noch betrichtlich
genauer als (6):

|IT-Tg*|

T— Ty
L a3

Zum Schluss werden in einer Tabelle die Ergebnisse der Ndaherungen T}*, T, T*
und T,* fiir einige Amplitudenwinkel « mit den genauem Wert T verglichen [5].

Amplitudenwinkel o
Niaherungswerte
120° 90° 60° 30° 10°

1 ?T* 1,570796 1,570796 1,570796 1,570796 1,570796
4 )t 279, 15,3% 6,8% 1,79% 0,2%

1] ?T* : 1,865321 1,767146 1,668971 1,597102 1,573779
V7Y 149, 4,79, 19 0,07% 0,0008%

1 ] ?T* 2,221441 1,868 002 1,687931 1,598 262 1,573793
4 V8 39%, 0,8% 0,19% 0,008 9% 0,000079%,

1 /?T* 2,154065 1,853943 1,685746 1,598 142 1,573792
I A 0,19 0,0079, ~ 0,00029, — —
Genaue Werte

_i_ ‘/.% T = K(k) 2,156516 1,854075 1,685750 1,598142 1,573792
1) Fiir die zahlenmissige Berechnung wurde hier entgegen Gleichung (4) verwendet

l/ ! 1
Tg =2m ?(1+‘Z*kz).
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Die Zahlen der Tabelle stellen die Naherungswerte des vollstindigen elliptischen
Integrals K(k) mit k£ = sina/2 dar.

In den oberen Halbzeilen stehen jeweils die errechneten Werte, in den unteren
die prozentualen Abweichungen vom genauen Wert. H.WacGNER, Karlsruhe.
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Ungeloste Probleme

Nr. 12. Herr H. LeNz (Miinchen) macht uns auf das folgende elementargeome-
trische Problem aufmerksam, dessen Losung unseres Wissens noch nicht allgemein
aufgefunden werden konnte: Wie gross kann der Flacheninhalt F eines ebenen kon-
vexen n-Ecks vom Durchmesser D = 1 hochstens sein?

K. REINHARDT!) hat unter anderemgezeigt, dass unter allen #-Ecken mit vorgeschrie-
benem Durchmesser das reguldre n-Eck sicher dann den grosstmoéglichen Flacheninhalt
aufweist, wenn » ungerade ist. Fiir gerade » > 4 ist jedoch die Frage noch ungeklirt.

Fiir den Fldcheninhalt F eines beliebigen #-Ecks vom Durchmesser D =1 gilt die
Ungleichung "

F§2

T t
cos— - tg—— (n =23),
wobei das Gleichheitszeichen dann gilt, wenn # ungerade und das #-Eck regulir ist.
Hierfiir hat H. LNz kiirzlich?) einen iibersichtlichen Beweis veroffentlicht. Die an-
gewandte Methode zur Ermittlung des in unserem Sinne extremalen Polygons schei-
tert fiir gerade » am Umstand, dass es keine gleichseitigen Reuleaux-Polygone mit

gerader Seitenzahl gibt. H. HADWIGER.

Aufgaben

Aufgabe 237. Es seien a, < a, < --- die Zahlen mit hochstens zwei verschie-
denen Primfaktoren. Dann ist zu zeigen, dass es eine Zahl ¢ > 0 gibt, so dass fiir
unendlich viele %

Ap,q— Gy > clogk .
Lisst sich dieser Satz verschirfen ? Kann man also zeigen, dass

fim %1~ %

= ?
k=00 logk o0

P. ErDOs, Jerusalem.

1) K. REINHARDT, Extremale Polygone gegebenen Durchmessers, Jber. dtsch. Math.-Ver. 31, 251-270 (1922).
2) H. LENz, Zerlegung ebener Bereiche in konvexe Zellen von miglichst kleinem Durchmesser, Jber. dtsch.
Math.-Ver. 58, 87-97 (1956).
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