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78 J.-P. SYpLER: Sur les tétraédres équivalents 2 un cube

Donc, le nombre x n’est pas divisible par 4 et on a x = 2%pMpSs... p% o1 7 est
un nombre naturel, p,, $,, ..., p, sont des nombres premiers impairs distincts,
a<leto;=21(z=1,2,...,7). On a donc

@(x) = @) @(ps) -+~ @(pyr) =12 TFHL,

S’il était » = 3, on aurait 8| g(x) =12 - 7'2**1, ce qui est impossible. On a donc » < 2.

S’il était » = 2 alors, les nombres p(p*) et p(pg*) étant pairs, un d’eux, soit p(pX)
serait égal 4 2- 7%, ol ] est un entier =0, d’ot1, d’aprés le corollaire 1, I = 0 et P =3,
donc p(p) = 2 et p(pg?) = 6 - 7'2++! et, d’aprés le corollaire 2 on aurait pfz= 712#+2,
d’olt x =2%.3.712%+2 contrairement a (3).

On a donc r=1 et @(x) =g@(p®) =12.7'2k+1 ¢t évidemment on a p,+3 et
pr#+7, donc ;=1 et p,—1=12.712k1 Jot p;=12.712%*1 41 1> 5, ce qui
est impossible, vu que le nombre 12-72%*14 1 est divisible par 5 (puisque
7%=5¢t+1et12-7=5u—1).

Nous avons ainsi démontré que 1’équation ¢(x) = m a précisément trois solutions.
Le théoréme 3 est ainsi démontré.

M. W. SIERPINSKI a exprimé 'hypothése que, quel que soit le nombre naturel
s > 1, il existe une infinité de nombres naturels » pour lesquels I’équation @(x) = m
a précisément s solutions. Or, nous ne savons pas démontrer méme que pour tout
nombre naturel s > 1 il existe au moins un nombre naturel m tel que l’équation
@(x) = m a précisément s solutions.

Il est encore a remarquer que dans une communication présentée au Congres des
mathématiciens tchécoslovaques a Prague en 1955 j’ai démontré d’une fagon tout-a-
fait élémentaire que, quel que soit le nombre naturel s, il existe un nombre naturel m
tel que 1'équation @(x) = m a plus que s solutions. Tel est, par exemple, le nombre
m=(p,—1) (py—1) --- (ps—1), ol p; désigne le i-éme nombre premier. (L’équation
@(x) = m est ici vérifiée par les nombres

c— 1
Xo=1pP1P2 - b, et xi:xopipi )

our=1,2...,s) ANDRE SCHINZEL, Varsovie.

Sur les tétracdres équivalents 4 un cube

Rappelons que deux polyédres sont dits équivalents lorsque I'on peut décomposer
I'un en polyédres partiels avec lesquels on peut construire 'autre. En 1900, Hiv-
BERT [1]1) posait la question qui donna essor a I’étude de I'équivalence: Existe-t-il un
tétraédre qui ne soit pas équivalent a un cube? Peu aprés, DEHN [2] établissait des
conditions algébriques nécessaires pour que deux polyédres soient équivalents, ce qui
permettait de montrer que le tétraédre régulier n’est pas équivalent & un cube. Dés
lors, la question inverse gagnait en intérét : Existe-t-il un tétra¢dre qui soit équivalent
a un cube?

1) Les chiffres entre crochets renvoient a la Bibliographie, p.81.
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Selon nous, il y a deux fagons de procéder pour trouver de tels polyédres. La
premiére se base sur le lemme suivant [3]: On peut décomposer un polyédre quel-
conque en un cube et en # polyédres semblables au polyédre initial. Par conséquent,
si I'on peut décomposer un polyédre équivalent a4 un cube en un certain nombre de

Figure 1
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Figure 2

tétraédres semblables entre eux, ces tétraédres sont équivalents A un cube. Considé-
rons par exemple un parallélépipéde losangique: Soient Z, b, ¢ trois vecteurs de méme
longueur faisant entre eux des angles égaux ; les huit points 0, @ =04, b, ¢, @+ b = OB,
b+¢ é+4d @+ b+ &=0C déterminent le parallélépipéde, équivalent & un cube
comme tous les prismes. Les six plans menés par la diagonale principale OC et par
chacun des sommets déterminent six tétraédres semblables & OABC, qui sont donc
équivalents & un cube (figure 1). On obtient ainsi une infinité de tétraédres qui sont
connus sous le nom de tétraédres de HiLL de premiére espéce. Soient M et N les
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milieux de OC et de AB. Les tétraédres OCNA et ABMO sont également équivalents
a un cube et forment les tétraédres de HiLL de deuxiéme et troisiéme espéces. Ces
tétraédres, trouvés par HiLL en 1896 [4] étaient les seuls tétraédres équivalents & un
cube qui nous soient connus.

Le plus répandu de ces tétraédres est celui que ’on obtient en partant d’un cube.
Dans ce cas, 04 =AB =BC, 0A 1. AB 1 BC 1. OA. Nous avions trouvé une
décomposition de ce tétraédre en 4 polyédres partiels avec lesquels on peut construire
un prisme. Nous I'indiquons a la figure 2 comme exemple d’un autre probléme pour
ainsi dire inabordé: Quel est le nombre minimum de polyédres partiels nécessaires
pour transformer 'un dans I'autre deux polyédres équivalents?

La seconde fagon de procéder pour trouver d’autres polyédres équivalents a un
cube est moins commode; elle consiste 4 chercher des tétraédres qui vérifient les
conditions nécessaires de DEHN et & trouver, éventuellement, une construction géo-
métrique adéquate qui les transforme en un cube. Un excellent exemple en est
donné par le probléme irrésolu N°9 que M. HADWIGER a proposé derniérement [5]:

On porte sur les axes d'un systéme orthogonal les segments 0A, OB, OC de lon-

gueurs a, b, c:
8

[ JPp— L J—
1°a=[/%; b=V18; ¢ = V/18;
. — 8, 8 _
2°a=V3(Vs+2); 5=V3l¥s5-2): c=V3.
Dans ces deux cas, tous les angles diédres des tétraédres 04 BC sont rationnels et
vérifient les conditions de DEHN. Ces polyédres sont-ils équivalents & un cube?
La proposition est effectivement vraie.
1° Considérons le tétraédre OA’'B'C’ semblable & 0ABC obtenu en prenant a =1,
b=V2,c=V2.8i M désigne le milieu de B’C’, on voit que les tétraé¢dres A'OM'B’
et A’'OM’C’ sont symétriques (donc équivalents) et que A'O =0M' = M'B’ =1. Ces
tétraédres sont donc deux tétraédres de HiLL de premiére espéce.
2° Comme (VS il)a——: 28 (VS + 2), on peut supposer a = Vs+1,b=V5-1,¢c=2.
Les diédres le long de AC, CB et BA sont égaux a 7/5, 2 /5, 7/3. Soit C’ le symétrique
de C par rapport au plan O4AB. En assemblant le long de AB trois tétraédres égaux
a BACC’, on obtient un pentaédre ABCC'C" que nous nommerons P,

a) BC=BC'=BC"; AC=AC'=AC"; CC'=C'C"=C"C;
b) Diédres CC’, C'C", C"C: n/2; Diédres AC, AC', AC": 2n/5;
Diédres BC, BC’, BC": 4 n/5.

Assemblons 5 polyédres P autour de chaque aréte AC, AC’, AC". Le polyédre
formé par ces 10 pentaédres P a, le long des arétes issues de 4, 6 diédres alternati-
vement égaux a 47:/5 et 6 /5. En lui ajoutant son symétrique par rapport a 4, on
obtient alors un polyédre convexe semi-régulier ayant 32 sommets, 60 arétes de
diedres 4 7/5 et 30 faces losangiques.

Ce polyédre est équivalent @ un cube. 11 suffit en effet de considérer les prismes
tronqués déterminés par les faces du polyédre et leurs projections orthogonales sur
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un plan quelconque; chacun de ces prismes tronqués est équivalent a un cube puisque
les faces sont losangiques; leur somme (algébrique) 1'est donc aussi.

D’aprés le lemme cité, on peut décomposer le tétraedre OABC en 60 tétraédres
semblables avec lesquels on construit un polyédre équivalent & un cube, ce qui
démontre la proposition.

Remarque: Le tétraédre 7, de ce deuxiéme cas n’appartient 4 aucune des classes
de tétraédres de Hirr; il en est de méme du tétraedre 7,=ABCC’.

Sil’on constate que les faces AOC et COB du tétraédre T, sont semblables, on peut
ajouter ou retrancher de 7; un tétraédre semblable 7] en faisant coincider les
faces OA’C’ et OCB. Les tétraedres T; et T, ainsi obtenus sont également équivalents
a des cubes. Nous avons donc 4 nouveaux exemplaires dont les caractéristiques sont
les suivantes:

Tl T2 T3 T4

s aréte diedre aréte digédre aréte diédre aréte diedre
AB |)5+1 m2 | Y2z 243\ Vio+2y5 a5 | Vio+2)5 |as5
4c |yY5-1 m2 | Vio+2)5 | a5 | yiz a3 | yiz /3
AD |2 m2 | Viot+2)5 [a5 | 4 a2 | 2y5—-2  |a2
BC |yiz a3 | Vio—z2y5 |25 | Vio—2y5 [3a5|Vi0o—2)5 |5
BD |V10+42)5 |a5 | Vio—2)5 |2a5|Vis—6ys |a3 |Vis—6)5 |23
cD [ Vio—2y5 |2q5] 4 n2 | V20 —10y5 |25 ] V20 —10)/5 |3a/5

Ces quatre tétraédres sont les seuls tétraédres que nous connaissons jusqu’a présent
qui soient équivalents & un cube sans étre des tétraédres de HILL.

Ainsi donc, dans ce cas aussi, les conditions nécessaires de DEHN sont également
suffisantes, ce qui donne un certain intérét au polyédre que nous avions cité dans un
dernier article [6] et qui est notre seul exemple d’un polyédre vérifiant les conditions
nécessaires de DEHN, sans que 1’on sache si, oui ou non, il est équivalent a un cube.

J.-P. SYDLER, Ziirich.
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