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Joukowski?) angegeben worden. In der Folge sind dann Verfahren entwickelt wor-
den, die in der Theorie der Tragfliigel wirklich verwendet werden kénnen. Es ist leicht
ersichtlich, dass durch diese konforme Abbildung w, auch die einfachen Strémungs-
verhiltnisse um einen Kreis (Zylinder) abgebildet werden konnen in die sehr kompli-
zierten Stromungsverhiltnisse um einen Tragfliigel, jedoch erscheint es uns nicht
zweckmissig, auf diese einzugehen. P. BUCHNER, Basel.

Sur I’équation @(x) = m

L’équation ¢(x) = m, o# m est un nombre naturel donné et ¢(x) est la fonction
connue de EULER-GAUSS (qui exprime le nombre de nombres naturels < x et pre-
miers avec x) a été étudiée par plusieurs auteurs. En particulier on a examiné combien
de solutions peut admettre cette équation pour m donnés.

M. M. G. BEUMER a posé le probléme de démontrer qu'il existe une infinité de
nombres naturels pairs m pour lesquels I’équation ¢(x) = m n’a pas de solutions?).

%) N. Joukowsk1, Uber die Konturen der Tragflichen der Drachenflieger. Z. Flugtech. 1, 281 (1910).
1) El Math. 10, 22 (1955), probléme 230.
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M. W. SiERPINSKI a démontré?) que tels sont par exemple les nombres 2 - 5%*, ol
n=1,2,... et aussi les nombres m = 2 $, oll $ est un nombre premier =1 (mod 3),
et que, dans1’état actuel dela science nous ne savons pas résoudre le probléme s’il existe
une infinité de nombres premiers p pour lesquels I’équation ¢(x) = 2 p a des solutions.

Or, je démontrerai un théoréme qui résout une généralisation du probléme de
M. G. BEUMER.

Théoréme 1. Quel que soit le nombre naturel n, il existe une infinité de nombres
naturels m qui sont des multiples de n, tels que I'équation @(x) = m n’a pas de solutions.

Démonstration. Soit » un nombre naturel, d,,d,, ..., d, tous les diviseurs naturels
de n. D’aprés le théoréme connu de LEJEUNE-DIRICHLET il existe une infinité de
nombres premiers p tels que

p=1(modd,+1) (=12 ...,5). (1)

Soit p un de ces nombres premiers et supposons que le nombre naturel x satisfait
a l'équation ¢(x) =p*n, ol k est un nombre naturel. S'il était p|x, on aurait
p —1|@(x), d’ou, d’aprés notre équation, p —1|n, ce qui est impossible, vu que
d’aprés (1) on a p =1 (mod # + 1). On a donc (x,p) =1. Soit x =g g --- ¢ le
développement du nombre x en facteurs premiers. On a donc

¢ N —1) g G —1) g g, — 1) =

et, comme (x,p) =1, il existe un indice 7+ <7 tel que p|¢;—1, d’ott ¢;—1=p"d;,
o/ =1 et d; est un diviseur du nombre #. On a donc, d’apres (1),

gi=p'd+1=1-d,+1=0 (mod d,+1)

et, comme ¢;=p'd;+1>d;+1 et ¢; est un nombre premier, on aboutit & une
contradiction. £ pouvant étre un nombre naturel quelconque, le théoréme 1 se
trouve démontré.

Sin=2 p=70nady=1d,=2 s=2 et la formule (1) est vérifiée, d’ou il
résulte (d’aprés notre démonstration) que I’équation ¢(x) = 2- 7¥ n’a pas de solutions
pour % naturels. Or, comme on sait, pour 2=0 cette équation n’a que trois solutions:
¥ =3, 4 ou 6. On a ainsi ce

Corollaire 1. L’équation @(x) =2-7* a des solutions seulement si k=0 (et alors
x =3, 4 ou 6).

On connait I’hypothése de R.D. CARMICHAEL qu’il n’existe aucun nombre naturel
m pour lequel I’équation ¢(x) =m aurait une et une seule solution, ce qui a été vérifié
par V.L.KLEE jr. pour m < 10%03), Or, M. W. SIERPINSKI a démontré qu’il existe
une infinité de nombres naturels m pour lesquels ’équation ¢(x) = m a précisément
deux solutions: tels sont par exemple les nombres m = 2-3%+! (k =1, 2,...). Or,
je démontrerai la généralisation suivante de cette proposition:

Théoréme 2. Si p est un nombre premier de la forme 4 ¢ + 3 et st k est un nombre
naturel, U'équation @(x) = p%**1(p —1) a seulement deux solutions: x =p%* 2 et
x =2 pek+2.

) Voir solution du probléme 230, El. Math. 11, 37 (1956).
8) Voir V.L. KLEE, jr.: On a Conjecture of Carmichael, Bull. Amer. math. Soc. 53, 1183 (1947).
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Démonstration. Soit k£ un nombre naturel donné et » un nombre premier de la forme
4 ¢ + 3. On vérifie sans peine que les nombres x = p®**2 et x = 2 p°*+2 gatisfont 2
I’équation @(x) = p®**1(p —1). Supposons maintenant que x est un nombre naturel
tel que

(P(x) —_ p6k+](i) . 1)) X+ P6k+2 et X+ 2P6k+2. (2)
S'il était x = 2%, ol « est un nombre naturel, on aurait p%**1(p —1) = p(x) =2*"1,
ce qui est impossible, puisque p = 2. On a donc x = 2%pXpJe--. p%, ou r est un
nombre naturel, p,, p,, ..., P, sont des nombres premiers, 2 < p, < p, < -+ < p,,
«=0,a>0(=1,2,...,7), ce qui donne

@(x) = p2%) pP By — 1) B (B — 1) - BB, 1)

et, comme 2|p;—1 (¢=1,2,...,7) on trouve ¢(2% 2" | p(x) = p***1(p —1), d’on
«<1,7=1donc x = 2%p™ et @p(x) = p2~1(p, — 1) = p**1(p — 1). S'il était p, = ,
on aurait a; —1=6%+1 et x =2%*p%+2 ol « =0 ou « = 1, contrairement A (2).
On a donc p; + p. S'il était «, > 1, on aurait donc p,|p —1 et p|p,— 1, ce qui est
impossible. On a donc a; =1, d’oll p, — 1= p8**1(p —1) et

pr=p"" o =) +1>p7H1>p7—p + 1,
et comme, d’autre part
pr=p"" T —p™ 1= p (P —p +1) — (p% - 1),
pP—1lp® =1, pP—1=("=1) (p+1) "~ p+1),

onal<(p2—p+1)|p,, ce qui est impossible, vu que le nombre p; est premier.

Le théoréme 2 se trouve ainsi démontré. Il en résulte immédiatement ce

Corollaire 2. L’éguation @(x) =6-72%*1 on k est un nombre naturel, a préci-
sément deux solutions: x = 7V2F+2 et x =2.712k+2,

Théoréme 3. ! existe une infinité de nombres naturels m pour lesquels I’équation
@(x) = m a précisément trois solutions. Tels sont, par exemple, les nombres m =12 - 712+ +1
omk=12,....

Démonstration. Soit £ un nombre naturel et m =12 - 7'2¥*1, On vérifie sans peine

que m:(p(3.712k.+2) =¢(4'712k+2) =(p(6-712k+2).
Supposons maintenant que

Qlx) =m, x+3.7IRFL x4 TRI2 ot g 46712002, 3)

D’aprés ¢(x) = m il ne peut pas étre x = 2% ol « est un entier =0.
S’il était ¥ = 2%y, ot 0 = 2 et (y, 2) =1, on aurait

(P(x) — 20:»1 (P(y) =12. 712k+1, donc =2 et (P(y) =6 712k+1,

et, d’apres le corollaire 2 on aurait y = 7'2%+2 [puisque (y, 2) = 1], d’on

x:4y:4_712k+2’
contrairement a (3).
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Donc, le nombre x n’est pas divisible par 4 et on a x = 2%pMpSs... p% o1 7 est
un nombre naturel, p,, $,, ..., p, sont des nombres premiers impairs distincts,
a<leto;=21(z=1,2,...,7). On a donc

@(x) = @) @(ps) -+~ @(pyr) =12 TFHL,

S’il était » = 3, on aurait 8| g(x) =12 - 7'2**1, ce qui est impossible. On a donc » < 2.

S’il était » = 2 alors, les nombres p(p*) et p(pg*) étant pairs, un d’eux, soit p(pX)
serait égal 4 2- 7%, ol ] est un entier =0, d’ot1, d’aprés le corollaire 1, I = 0 et P =3,
donc p(p) = 2 et p(pg?) = 6 - 7'2++! et, d’aprés le corollaire 2 on aurait pfz= 712#+2,
d’olt x =2%.3.712%+2 contrairement a (3).

On a donc r=1 et @(x) =g@(p®) =12.7'2k+1 ¢t évidemment on a p,+3 et
pr#+7, donc ;=1 et p,—1=12.712k1 Jot p;=12.712%*1 41 1> 5, ce qui
est impossible, vu que le nombre 12-72%*14 1 est divisible par 5 (puisque
7%=5¢t+1et12-7=5u—1).

Nous avons ainsi démontré que 1’équation ¢(x) = m a précisément trois solutions.
Le théoréme 3 est ainsi démontré.

M. W. SIERPINSKI a exprimé 'hypothése que, quel que soit le nombre naturel
s > 1, il existe une infinité de nombres naturels » pour lesquels I’équation @(x) = m
a précisément s solutions. Or, nous ne savons pas démontrer méme que pour tout
nombre naturel s > 1 il existe au moins un nombre naturel m tel que l’équation
@(x) = m a précisément s solutions.

Il est encore a remarquer que dans une communication présentée au Congres des
mathématiciens tchécoslovaques a Prague en 1955 j’ai démontré d’une fagon tout-a-
fait élémentaire que, quel que soit le nombre naturel s, il existe un nombre naturel m
tel que 1'équation @(x) = m a plus que s solutions. Tel est, par exemple, le nombre
m=(p,—1) (py—1) --- (ps—1), ol p; désigne le i-éme nombre premier. (L’équation
@(x) = m est ici vérifiée par les nombres

c— 1
Xo=1pP1P2 - b, et xi:xopipi )

our=1,2...,s) ANDRE SCHINZEL, Varsovie.

Sur les tétracdres équivalents 4 un cube

Rappelons que deux polyédres sont dits équivalents lorsque I'on peut décomposer
I'un en polyédres partiels avec lesquels on peut construire 'autre. En 1900, Hiv-
BERT [1]1) posait la question qui donna essor a I’étude de I'équivalence: Existe-t-il un
tétraédre qui ne soit pas équivalent a un cube? Peu aprés, DEHN [2] établissait des
conditions algébriques nécessaires pour que deux polyédres soient équivalents, ce qui
permettait de montrer que le tétraédre régulier n’est pas équivalent & un cube. Dés
lors, la question inverse gagnait en intérét : Existe-t-il un tétra¢dre qui soit équivalent
a un cube?

1) Les chiffres entre crochets renvoient a la Bibliographie, p.81.
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