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Eine Anwendung der Theorie der komplexen Zahlen

Die Theorie der Abbildung, vermittelt durch eine Funktion einer komplexen Ver-
dnderlichen, .
w=f(z) =f(x +1i9)

wird im Unterricht eben noch gestreift. Nach den Lehrmitteln des Vereins schweize-
rischer Mathematik- und Physiklehrer!) werden die Funktionen

1
w=2+c¢, w=a-+bz und w=—

besprochen. Unser Beispiel bewegt sich ganz in diesem Anwendungsbereich und soll
dem Schiiler zeigen, wie die Theorie der komplexen Zahlen zur Losung technischer
Probleme verwendet werden kann.

1. Der Kreis % mit dem Zentrum M (i) und dem Radius 7 = V2 soll durch die Funk-
tion w, =1/z abgebildet werden (Figur 1). Da bei der Abbildung durch reziproke
Radien Kreise wieder in Kreise iibergehen, hat man von der Bildkurve %, nur drei
Punkte zu ermitteln. Der Kreis % geht durch die Fixpunkte 4-1 der Abbildung. Fiir
den Schnittpunkt S von & mit der Achse der imagindren Zahlen fithrt man entweder
die im Leitfaden angegebene Konstruktion durch oder berechnet, dass z = (1 + VE) 7

in w,=1/z= (1 — VE)z ibergeht, den Schnittpunkt 7" von k& mit der imagindren
Achse. Bei der Abbildung geht der Kreis % als Ganzes, nicht aber punktweise, in
sich iiber.

2. Jetzt bilden wir denselben Kreis 2 durch die Funktion
1

ab. Der Punkt 4 (1) geht nach 4,(2) und B(—1) nach By(— 2). Der Punkt S ( ( 1+ Vg) L)
geht durch w, nach T((l —V2 ) z’) und durch w,, wegen (1 + l/2) 1+ (1 - I/Z) 1=21,
nach S,(24). Ebenso wird aber auch der Punkt T nach S, iibergefiihrt. Fiir beliebige
Punkte C und D auf % wurde die Konstruktion der Bildpunkte angegeben. C geht

1) P. BucuNER, Leitfaden der Algebra, vierter Teil, 2. Aufl., und F. StAnrr und F. MEYER, Aufgaben-
sammlung der Algebra, vierter Teil (Orell Fiissli Verlag, Ziirich).
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zunichst nach C, auf & = %,, wobei der Winkel ¢ von C in — ¢ iibergeht. Jetzt sind
noch die Vektoren, die zu den Punkten C und C, gehéren, zu addieren, und man gelangt
nach C,. Der Kreis 2 wird durch die Funktion w, in den Halbkreis 4,S5,B, iiber-
gefiihrt, der zweimal durchlaufen wird. Unser Problem verlangt nicht, dass man von
der zweibldtterigen Riemannschen Fldche w, spricht.

S| (142)i

Figur 1

Als Resultat unserer Abbildung erhalten wir eine Kurve mit zwei Spitzen. Wir
wollen nun die Abbildung so abidndern, dass die Spitze bei B, bleibt, hingegen die-
jenige bei A, abgerundet wird.

3. Dazu bilden wir durch dieselbe Funktion w, einen Kreis ¢ ab, der sich nur wenig
von k unterscheidet. Er soll 2'im Punkte B(—1) beriihren, aber A(1) im Innern ent-
halten. Sein Zentrum Z liegt auf der Geraden BM in der Nachbarschaft von M
(Figur 2). Der Kreis ¢ wird zunichst durch die Funktion w, =1/z in den Kreis ¢,
verwandelt, dabei ist wiederum B(—1) Fixpunkt. Da % und ¢ sich in B beriihren,
liegt das Zentrum Z, von ¢, ebenfalls auf der Geraden BM. Die Punkte C, D, E, ...
auf ¢ gelangen nach C,, D,, E,, ... auf ¢,.

4. Nunmehr ist es einfach, die Bildkurve von ¢ bei der Abbildung durch die Funk-
tion wy, = z + 1/z zu konstruieren. Die Punktfolge B, C, D, ... auf dem Kreis ¢ geht
durch w; =1/z in die Folge B,, C,, D,, ... auf dem Kreis ¢, iiber. Da der Kreis ¢,
bereits bekannt ist, so ist zum Beispiel fiir die Konstruktion des dem Punkte C
entsprechenden Punktes C; nur zu beriicksichtigen, dass der Winkel ¢ der C zuge-
ordneten komplexen Zahl in — ¢ iibergeht. Um C, auf der gesuchten Kurve ¢, zu
erhalten, hat man lediglich noch die zu C und C, gehorenden Vektoren zu addieren.
Der Kreis ¢ wird dadurch in eine Kurve ¢, abgebildet, die in erster Ndherung als das
Profil eines Tragfliigels betrachtet werden kann. Diese Abbildung ist zuerst von
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Joukowski?) angegeben worden. In der Folge sind dann Verfahren entwickelt wor-
den, die in der Theorie der Tragfliigel wirklich verwendet werden kénnen. Es ist leicht
ersichtlich, dass durch diese konforme Abbildung w, auch die einfachen Strémungs-
verhiltnisse um einen Kreis (Zylinder) abgebildet werden konnen in die sehr kompli-
zierten Stromungsverhiltnisse um einen Tragfliigel, jedoch erscheint es uns nicht
zweckmissig, auf diese einzugehen. P. BUCHNER, Basel.

Sur I’équation @(x) = m

L’équation ¢(x) = m, o# m est un nombre naturel donné et ¢(x) est la fonction
connue de EULER-GAUSS (qui exprime le nombre de nombres naturels < x et pre-
miers avec x) a été étudiée par plusieurs auteurs. En particulier on a examiné combien
de solutions peut admettre cette équation pour m donnés.

M. M. G. BEUMER a posé le probléme de démontrer qu'il existe une infinité de
nombres naturels pairs m pour lesquels I’équation ¢(x) = m n’a pas de solutions?).

%) N. Joukowsk1, Uber die Konturen der Tragflichen der Drachenflieger. Z. Flugtech. 1, 281 (1910).
1) El Math. 10, 22 (1955), probléme 230.
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