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usw., jedoch immer so, dass die entsprechenden Kurven durch die Punkte ex, e2, e3

gehen. In diesem Falle gehören die Paare ux v3, u2 vx, u3 v2 zu je einem Kurvenast
und werden je von einem e% getrennt, genau wie die neue Stellung der pt und unsere
Zuordnungstabelle es verlangen.
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Uj

Figur 6 Figur 7

Figur 6 Lage der Losungen ut und v^ fur die gleichen Voraussetzungen wie Figur 5

Figur 7 Lage der Losungen ut und v^ fur positive 1 + pz

Aus den Figuren durfte ersichtlich sein, wie die kardanische Losungsmethode der
kubischen Gleichung eine Symmetrie in das Problem hineinbringt, die die Losungen
x% an sich nicht besitzen. Nur dieser Symmetrie ist es zu verdanken, dass die
Auflosungsmethode so elementar ist. H. Schilt, Biel.

Kleine Mitteilungen

Eine Modifizierung der Simpsonschen Regel

Wenn wir zur Berechnung eines bestimmten Integrals auf numerische Methoden
angewiesen sind, so stehen uns zahlreiche Formeln zur Verfugung Eine der bekanntesten

ist die sogenannte Simpsonsche Regel, die über eine gerade Anzahl Intervalle
gleicher Breite zu integrieren gestattet Sie beruht darauf, dass man über je zwei
aufeinanderfolgende Intervalle einen quadratischen Parabelbogen spannt, der durch die
drei zugehörigen Ordmatenpunkte geht. Indem man die Flachen unter den einzelnen
Parabelbogen berechnet und dann addiert, erhält man den Ausdruck

F ä t (n+4 yi+ 2y*+*y*+2 y«+ ¦ ¦+ 4 y#-i+?¦)+#.. (1)
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wo h die Intervallbreite bezeichnet und n als gerade angenommen ist. Das Restglied
lautet

*s=-W/IVfe) <a^^6)- (2)

Die Simpsonsche Regel liefert das zu berechnende Integral mit erstaunlicher Genauigkeit,

ist doch das Restglied Rs vierter Ordnung, das heisst sogar Polynome dritten
Grades werden noch genau integriert, während wir ja zur Herleitung der Regel nur
quadratische Parabeln verwendet haben1).

Die Simpsonsche Regel weist leider zwei Schönheitsfehler auf: Erstens ordnet sie den
einzelnen Ordinaten verschiedene Gewichte zu und zeichnet so gewisse vor den andern
aus. Dies wird insbesondere dann störend, wenn es sich um Werte handelt, die empirisch
gefunden und deshalb mit statistischen Schwankungen behaftet sind. Zum andern zeigt
schon die Herleitung, dass die Simpsonsche Regel versagen muss, wenn wir es mit
einer ungeraden Zahl von Intervallen zu tun haben. Im folgenden soll ein Weg gezeigt
werden, diese beiden Schönheitsfehler auszumerzen. Die Integrationsregel, die wir
erhalten, wird also für beliebiges n anwendbar sein und sämtlichen Ordinaten in
genügendem Abstand von den Enden der Integrationsstrecke <a, by das gleiche
Gewicht 1 zuordnen. Allerdings ist dies nur auf Kosten der Genauigkeit möglich; das
Restglied bleibt zwar von derselben Ordnung, wird sich aber um einen unter 5
bleibenden Faktor vergrössern.

Wir unterscheiden zunächst zwei Fälle:
a) n gerade: Wir berechnen zunächst nach (1) die Integrale über <a, 6> und über

<ä + h, b — hy und addieren. Wir erhalten so eine Näherung der Fläche

F*~2F-Fx-Fn,
woFx oder Fn die beiden Flächenstücke an den Enden des Intervalles (a, by bezeichnen.
Das Koeffizientenschema lautet dann offenbar

F*~\(y,+ $y1+6y2 + 6yz+~> + 6yn_2+5yn_1+yn)+R*. (3)

ß) n ungerade: Wir berechnen zunächst nach (1) die Integrale über <a, b — hy und
über <a + Ä, by und addieren. Wir erhalten so eine Näherung derselben Fläche

F*=2F-Fx-Fn.
Das Koeffizientenschema lautet wiederum

F* 4 (^o+ 5 y%+ 6 y2+ 6 y3+ + 6 yw_2+ 5 yn_x+ yn) +R*. (3)

Auch das Restglied hat beide Male dieselbe Gestalt

*«-- (n~l)h* !>*{$*) («<!*< 6). (4)

Nun müssen wir für sich die Flächen über den Endintervallen berechnen. Die New-
tonsche Interpolationsformel, auf zwei Intervalle angewandt, lautet2)

/(*) y»+ *Vo+ Q ^y.+*»/"(« (3).

*) Siehe zum Beispiel A. Ostrowski, Vorlesungen über Differential- und Integralrechnung, Bd. 2

(Birkhauser, Basel 1951), S.320.
a) A.Ostrowski, Vorlesungen über Differential- und Integralrechnung, Bd.2 (Birkhauser, Basel 1951),

S.302.
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wo (x — x0)/h — * gesetzt ist und xQ ^ £ ^ x0 + 2 h. Integration über das erste Teilintervall
liefert

x0 + h 1

f f(x) dx h ff(x0 +ht)dt

[t2 l tz t2\ l1
<yo + -2- (yi-y«) + {-^ - -4-) (y«>- 2 yt+ y.)J^

1

+ -£-/h*)'('-1)('-2)*-

Im letzten Integranden ist £ eine Funktion von t. Da weiter P(t) =>t(t — 1) (t — 2)
im Innern des Integrationsintervalles keine Nullstellen aufweist, lässt sich auf dieses
Integral der erweiterte Mittelwertsatz anwenden, so dass es sich folgendermassen
schreiben lässt

1 1

-%-fnt) t(t-l)(t-2)dt~~ f'"(^)f(tz- 3t2+2t)dt.
o o

Man erhält somit
x0 + h

Pi-j /(*) **-*(iy y»+4 yi-^ y*) + ^ /'"(li)> (5-1)

wo #0 ^ |x ig x0 + 2 A.
Analog ergibt die Integration über das letzte Teilintervall

Fn~ Jf(x)dx~h(-± ^l+{yÄ.1+^-yll)-~Hü, (5.2)

wo %— 2h^in^xn.
Ergänzt man nun F* durch die Flächen über den beiden Endintervallen zu 2 F, so

erhält man nach (3) und (5) folgendes Koeffizientenschema

2F -A. (9y0+ 28 yx+ 23 y2 + 24 y3 + 24 y4+ •••

+ 24 yn_3+ 23 yM_2 + 28 yw_x+ 9 yn) + 2Ä.

Daraus ergibt sich, wenn wir die nach der Trapezregel erhaltene Fläche

h (t y°+yi+?«+••• + y»-i+-j y>)

mit Fr bezeichnen l

F Fr+A(_3y0+4y1-y2-yn„2+4yw_1-3yn)+i?. (6)

Gemäss (4) und (5) beträgt das Restglied der so berechneten Fläche

2 r=- (%01}*5 /IV(f*>+It r<^> - ¦£ n«

wo/«=m-4#, 0^*^1.

(7)
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Da für n > 4 beide Koeffizienten in (7) positiv sind, können wir den Mittelwertsatz mit
Gewichten anwenden und schreiben

2R " ~ w/IV(lo) (19 n ~60 * ~4)'
und somit

180 /IV(lo)(-^--15|-A) («£*,«£ 6). (8)

Der Vergleich mit (2) zeigt, dass das Restglied der hier abgeleiteten Integrationsregel
höchstens 19/4mal so gross ist wie das Simpsonsche Restglied.

(6) kann nun, wie man leicht nachrechnet, folgendermassen umgeschrieben werden

F Ft ~ TT {Ay»-1 ~ Ay"] ~ 1Ä {J,y--«+ A%y^ •

Dies zeigt, dass die hier abgeleitete Integrationsregel mit der sogenannten Gregoryschen
Formel, genommen mit zwei Korrekturgliedern, übereinstimmt. Diese lautet nämlich

F-Fr-^2 (Ayn-i-AyJ- i (^y—i+^yt)

-w (J8y«-3- A3y») - -ilö (^y»-4+4*y.) - -
und leitet sich aus der Euler-Maclaurinschen Integrationsformel

h h* Z; 5

F FT-~ (y;-y{) + ~ M-yS') - ^^ (y» -yY) + "'
ab3). Es überrascht, dass wir auf diesem ganz andern Wege auf die Gregorysche Formel
gestossen sind. Christian Blatter, Basel.

Über unstetige Funktionen von zwei Veränderlichen

Eine Funktion f(x, y) der beiden Veränderlichen x, y heisse im Punkte (|, rj) partiell
stetig, wenn die beiden Funktionen /(! + *, rj), /({, tj + t) von t im Nullpunkt stetig
sind. Allgemeiner heisse f(x, y) im Punkte ({, rf) linear stetig, wenn für beliebiges a die
Funktion /(£ + t cosa, rj +1 sina) von t im Nullpunkt stetig ist.

Offenbar folgt aus der Stetigkeit von f(x, y) im Punkte (|, rj) dort ihre lineare Stetigkeit,

und aus der linearen Stetigkeit die partielle. Beide Aussagen sind aber nicht
umkehrbar. Zum Beispiel ist die Funktion

f(*'y)-^rfp für (*.y)*(o.o), /(o.o)-o (i)

im Nullpunkt partiell stetig, aber nicht linear stetig. Und die Funktion

g(*>y)-~Jr^~r für (*.y)*(°.°). *(o.o)-o (2)

ist im Nullpunkt linear stetig, aber nicht stetig. Beide Funktionen (1), (2) sind übrigens
in allen anderen Punkten stetig. - Das Beispiel (1) findet man in jedem Lehrbuch der
Differential- und Integralrechnung, das Beispiel (2) stammt von Genocchi-Peano
(vgl. Enzykl. math. Wiss. 2, AI, Seite 48, Fussnote 254).

8) Siehe zum Beispiel E. T. Whittaker und G.Robinson, The Calculus of Observations (1926), S.134L
(Euler-Maclaurin), und S. 143 (Gregory).
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Alle bisher bekannten Beispiele solcher Funktionen f(x, y) haben aber, wie die
überall stetigen Funktionen, die beiden folgenden Eigenschaften:

1. Sie sind in jedem abgeschlossenen Quadrat \x\, \y\^c beschränkt.
2. Sie nehmen in jedem abgeschlossenen Quadrat \x\, \y\<^c ihre dortige untere

Grenze inf f(x, y) und obere Grenze sup/(#, y) als Funktionswerte an.
Es dürfte daher die Bemerkung von Interesse sein, dass keine dieser beiden

Eigenschaften für alle Funktionen der betrachteten Art gilt. Das soll durch zwei einfache,
durch leichte Abänderung der Funktion (2) gebildete Beispiele belegt werden.

Zunächst ist die Funktion

F{*. V) - (xf+yy4)a für (*,y) + (0,0), F(0, 0) 0 (3)

wieder im Nullpunkt linear stetig, aber nicht stetig, und in allen anderen Punkten
stetig. Wegen

F(y\y) ~ für y*0

ist sie aber in keinem Quadrat \x\, \y | ^c beschränkt.
Ebenfalls ist die Funktion

G(*y>-(;H+y.Hi + ,.+y) für (*.y)*(°.°)' G(0,0)~0 (4)

im Nullpunkt linear stetig, aber nicht stetig, und in allen anderen Punkten stetig.
Weiter gilt wegen

\G(x,y)\<~, lim G(±y2, y) - ± 4

in jedem abgeschlossenen Quadrat \x\, \y\^Lc

- ~ inf G(x, y) < G(x, y) < supG(#, y) — ;

die Funktion (4) nimmt also weder ihre untere noch ihre obere Grenze als Funktionswert

an. Heinz König, Würzburg.

Ungelöste Probleme

Nr. 11. Herr Martin Kneser machte bei verschiedenen Gelegenheiten auf ein

Problem aufmerksam, das nach erstem Augenschein einen fast elementaren Charakter
zu haben scheint, dessen Lösung aber, wie wir von verschiedener Seite vernehmen,
noch nicht restlos glückte. Es handelt sich hierbei um folgendes: Es sollen Px,..., Pn;

Qi* ••• i Qn 2n Punkte des A-dimensionalen euklidischen Raumes bezeichnen, und
für die Distanzen gelte d(Pit Pj) <J d(Qif Q-) für jedes Indizespaar 1 <£ h j ^ »•

Bedeutet A bzw. B die Vereinigungsmenge der n Einheitskugeln mit den
Mittelpunkten P4 (i 1,..., n) bzw. Qi(i=*l>..., n) und V(A) bzw. V(B) ihre Volumina,
so gilt vermutlich V(A) ^ V(B).

Diese Aussage würde, falls sichergestellt, innerhalb der Masstheorie nützliche
Dienste als Hilfssatz leisten.

Beispielsweise würde sich mühelos folgern lassen, dass das untere Minkowskische
Mass einer beliebigen beschränkten Punktmenge sich bei dehnungsloser Abbildung
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