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56 Kleine Mitteilungen

usw.; jedoch immer so, dass die entsprechenden Kurven durch die Punkte ¢,, ¢, ¢,

gehen. In diesem Falle gehoren die Paare u, v3; u, v;; %3 v, zu je einem Kurvenast
und werden je von einem ¢; getrennt, genau wie die neue Stellung der p; und unsere

Zuordnungstabelle es verlangen.
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Figur 7

Figur 6
Figur 6. Lage der Losungen #; und v, fiir die gleichen Voraussetzungen wie Figur 5.

Figur 7. Lage der Losungen u; und v, fiir positive 1 + p3.

Aus den Figuren diirfte ersichtlich sein, wie die kardanische Losungsmethode der
kubischen Gleichung eine Symmetrie in das Problem hineinbringt, die die Lésungen

x; an sich nicht besitzen. Nur dieser Symmetrie ist es zu verdanken, dass die Auf-
H. ScHiLT, Biel.

l6sungsmethode so elementar ist.

Kleine Mitteilungen

Eine Modifizierung der Simpsonschen Regel

Wenn wir zur Berechnung eines bestimmten Integrals auf numerische Methoden
angewiesen sind, so stehen uns zahlreiche Formeln zur Verfiigung. Eine der bekannte-
sten ist die sogenannte Simpsonsche Regel, die iiber eine gerade Anzahl Intervalle
gleicher Breite zu integrieren gestattet. Sie beruht darauf, dass man iiber je zwei auf-
einanderfolgende Intervalle einen quadratischen Parabelbogen spannt, der durch die
drei zugehorigen Ordinatenpunkte geht. Indem man die Flichen unter den einzelnen

Parabelbogen berechnet und dann addiert, erhdlt man den Ausdruck

h
F=—7 (9+401+2y:+ 453+ 29+ +4Yn_1+ ) +Rs, (1)
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wo h die Intervallbreite bezeichnet und » als gerade angenommen ist. Das Restglied
lautet

Re= - 2K V) @<e<0). (2)

Die Simpsonsche Regel liefert das zu berechnende Integral mit erstaunlicher Genauig-
keit, ist doch das Restglied R; vierter Ordnung, das heisst sogar Polynome dritten
Grades werden noch genau integriert, wiahrend wir ja zur Herleitung der Regel nur
quadratische Parabeln verwendet haben?).

Die Simpsonsche Regel weist leider zwei Schonheitsfehler auf: Erstens ordnet sie den
einzelnen Ordinaten verschiedene Gewichte zu und zeichnet so gewisse vor den andern
aus. Dies wird insbesondere dann stérend, wenn es sich um Werte handelt, die empirisch
gefunden und deshalb mit statistischen Schwankungen behaftet sind. Zum andern zeigt
schon die Herleitung, dass die Simpsonsche Regel versagen muss, wenn wir es mit
einer ungeraden Zahl von Intervallen zu tun haben. Im folgenden soll ein Weg gezeigt
werden, diese beiden Schoénheitsfehler auszumerzen. Die Integrationsregel, die wir
erhalten, wird also fiir beliebiges » anwendbar sein und sdmtlichen Ordinaten in
geniigendem Abstand von den Enden der Integrationsstrecke (a, b)> das gleiche
Gewicht 1 zuordnen. Allerdings ist dies nur auf Kosten der Genauigkeit moglich; das
Restglied bleibt zwar von derselben Ordnung, wird sich aber um einen unter 5 blei-
benden Faktor vergrossern.

Wir unterscheiden zunichst zwei Fille:

o) n gevade: Wir berechnen zundchst nach (1) die Integrale iiber <a, b> und iiber
(& +h, b —h> und addieren. Wir erhalten so eine Niherung der Fliche

F*=2F —F,—F,,

wo F, oder F, die beiden Flachenstiicke an den Enden des Intervalles <a, b) bezeichnen.
Das Koeffizientenschema lautet dann offenbar

h
Fll:? (Yo+ 591+ 693 +6Y5+ - +6Yy_s+5Vy_1+ ¥s) + E*. (3)

B) m ungerade: Wir berechnen zundchst nach (1) die Integrale iiber <a, b — k) und
tiber (a4 A, b) und addieren. Wir erhalten so eine Naherung derselben Fliche
F*=2F—_F,—F,.

Das Koeffizientenschema lautet wiederum
h
F* = 3 (Yo+591+693+6 Y3+ +6Yy_o+5Yy_1+ ¥s) +R*. (3)

Auch das Restglied hat beide Male dieselbe Gestalt

(n —1) A

. _
R 90

fV(EY) (a<é*<b). (4)

Nun miissen wir fiir sich die Flichen iiber den Endintervallen berechnen. Die New-
tonsche Interpolationsformel, auf zwei Intervalle angewandt, lautet?)

1) = 90 (1) 490+ () 2w+ 170 (5).

1) Siehe zum Beispiel A. OsTROWsSKI, Vorlesungen tiber Differential- und Integralrechnung, Bd. 2 (Birk-
hiuser, Basel 1951), S.320.

%) A.OsTROWSKI, Vorlesungen aber Differential- und Integralrechnung, Bd.2 (Birkhiuser, Basel 1951),
S.302.
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wo (¥ — x,)/h =1t gesetzt ist und ¥y < £ < x,+ 2 k. Integration iiber das erste Teilintervall
liefert
X+ h

/ f(x)dx=h /f(xo+ht) dt
%o 0

22 48 2 1
=h[tyo+7(y1—yo)+(6 )(3’0 2y1+3’2)]0

1
+o [1r@e-ne-2a
0

Im letzten Integranden ist & eine Funktion von ¢. Da weiter P(t) =¢(t —1) (¢ — 2)
im Innern des Integrationsintervalles keine Nullstellen aufweist, lisst sich auf dieses
Integral der erweiterte Mittelwertsatz anwenden, so dass es sich folgendermassen
schreiben ldsst

X : pt :
o[-y e-2a =5 e [e-serzga
0 0
Man erhilt somit
X+ h
5 2 1 ht
= [ 1o ax=h (5 3+ 5 1= 15 ) + 5 11D, (5.1)

%

WO %S E, S v+ 2h.
Analog ergibt die Integration iiber das letzte Teilintervall

2 5 h* "
/f(x dx— 2 yn 2+ 3 yn 1+ 12 yn) _‘sz (En): (5.2)

Zy—h

WO ¥y— 20 S &, %,,.
Erginzt man nun F* durch die Flichen iiber den beiden Endintervallen zu 2 F, so
erhdlt man nach (3) und (5) folgendes Koeffizientenschema

h
2F =37 (990+ 289,423y, + 24 y5+ 24 94+ -

+24y, 3+23y, 2 +28y, ;+9y,) +2R.

Daraus ergibt sich, wenn wir die nach der Trapezregel erhaltene Fliache

1 1
: h(_z“Yo+y1+y2+"'+yu—1+7 Yn)
mit Fr bezeichnen . :

h
F=Fr+ 5 (=35%0+451— Y= Yn_at 4 Yn_1—3%s) +R. (6)

Gemaiss (4) und (5) betragt das Restglied der so berechneten Fliche

2R == DB pvien) B ey - B e

[V

=—[-—-—~‘” ’ e + b )],

“

wo u=n—48, 081
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Da fiir » > 4 beide Koeffizienten in (7) positiv sind, konnen wir den Mittelwertsatz mit
Gewichten anwenden und schreiben

2R = *ggo—f“’(fo) (197 — 609 — 4),
und somit
19 & 1
R=— 2 frve (-1 —5) @=&=y). (8)

Der Vergleich mit (2) zeigt, dass das Restglied der hier abgeleiteten Integrationsregel
hochstens 19/4mal so gross ist wie das Simpsonsche Restglied.
(6) kann nun, wie man leicht nachrechnet, folgendermassen umgeschrieben werden

1
F=FT““1? (AYn_1—A4Y0) — 51 (A Yn—a+ A%y, .

Dies zeigt, dass die hier abgeleitete Integrationsregel mit der sogenannten Gregoryschen
Formel, genommen mit zwei Korrekturgliedern, iibereinstimmt. Diese lautet nimlich

1 1
F=Fp— 12 (4yp_1—Ay,) — 24 (A%y,y _o+ A%y,)
19 3
_72—6 (A3y”—3_A3yo) 160 (A y” 4+A yO) -

und leitet sich aus der Euler-Maclaurinschen Integrationsformel

8 " n G V V
(yn yO) 30240 (yn_y0)+"'

h ’ ’
F=FT‘“1—2 (yn“yo)‘*‘

ab?). Es iiberrascht, dass wir auf diesem ganz andern Wege auf die Gregorysche Formel
gestossen sind. CHRISTIAN BLATTER, Basel.

Uber unstetige Funktionen von zwei Veridnderlichen

Eine Funktion f(#, ¥) der beiden Verdnderlichen #, y heisse im Punkte (§, n) partiell
stetig, wenn die beiden Funktionen f(&+t, 1), f(& n+¢) von ¢ im Nullpunkt stetig
sind. Allgemeiner heisse f(x, ) im Punkte (&, ) linear stetig, wenn fiir beliebiges a die
Funktion f(&§ + £ cosa, n + ¢sina) von ¢ im Nullpunkt stetig ist.

Offenbar folgt aus der Stetigkeit von f(x, ¥) im Punkte (&, 5) dort ihre lineare Stetig-
keit, und aus der linearen Stetigkeit die partielle. Beide Aussagen sind aber nicht um-
kehrbar. Zum Beispiel ist die Funktion

#(x, y)=?"+—y§s— fir (%, ¥) (0, 0), £(0,0)=0 (1)

im Nullpunkt partiell stetig, aber nicht linear stetig. Und die Funktion

x y?

Aige T (59)#(0,0), g0,0=0 (2)

g(x’ y) =

ist im Nullpunkt linear stetig, aber nicht stetig. Beide Funktionen (1), (2) sind iibrigens
in allen anderen Punkten stetig. — Das Beispiel (1) findet man in jedem Lehrbuch der
Differential- und Integralrechnung, das Beispiel (2) stammt von GENOCCHI-PEANO
(vgl. Enzykl. math. Wiss. 2, A1, Seite 48, Fussnote 254).

3) Siehe zum Beispiel E.T. WaITTAKER und G. RoBinson, The Calculus of Observations (1926), S.134f.
(EULER-MACLAURIN), und S. 143 (GREGORY).
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Alle bisher bekanntenh Beispiele solcher Funktionen f(x, ¥) haben aber, wie die
iiberall stetigen Funktionen, die beiden folgenden Eigenschaften:

1. Sie sind in jedem abgeschlossenen Quadrat | x|, |y | = ¢ beschriankt.

2. Sie nehmen in jedem abgeschlossenen Quadrat | x|, |y| =c¢ ihre dortige untere
Grenze inf f(#, ¥) und obere Grenze sup f(¥, y) als Funktionswerte an.

Es diirfte daher die Bemerkung von Interesse sein, dass keine dieser beiden Eigen-
schaften fiir alle Funktionen der betrachteten Art gilt. Das soll durch zwei einfache,
durch leichte Abinderung der Funktion (2) gebildete Beispiele belegt werden.

Zunichst ist die Funktion
x2 438
F(5,9) = apyos 100 (£9)%(0,0), F(0,0)=0 3)
wieder im Nullpunkt linear stetig, aber nicht stetig, und in allen anderen Punkten
stetig. Wegen

1
F(y% y) = ren fir y+0

ist sie aber in keinem Quadrat | x|, |y | = ¢ beschrinkt.
Ebenfalls ist die Funktion

G(#, y) = T flyj_ AT fiir (#, v) =f=_(o, 0), G(0,0) =0 (4)

im Nullpunkt linear stetig, aber nicht stetig, und in allen anderen Punkten stetig.
Weiter gilt wegen

1 ) 1
il 2 _
G, 9) <, yILmOG(iy,y) + 5

in jedem abgeschlossenen Quadrat |x|, |y| =S¢
1 . 1
—5 = infG(x»,y) < G(», y) <supG(#,y) = 5

die Funktion (4) nimmt also weder ihre untere noch ihre obere Grenze als Funktions-
wert an. HEeinz Ko6N1G, Wiirzburg.

Ungeloste Probleme

Nr. 11. Herr MARTIN KNESER machte bei verschiedenen Gelegenheiten auf ein
Problem aufmerksam, das nach erstem Augenschein einen fast elementaren Charakter
zu haben scheint, dessen Losung aber, wie wir von verschiedener Seite vernehmen,
noch nicht restlos gliickte. Es handelt sich hierbei um folgendes: Es sollen Py, ..., B,;
Qy,...,0Q, 2n Punkte des k-dimensionalen euklidischen Raumes bezeichnen, und
fiir die Distanzen gelte d(P;, P) < d(Q;, Q;) fiir jedes Indizespaar 1 =<+, = n.

Bedeutet 4 bzw. B die Vereinigungsmenge der # Einheitskugeln mit den Mittel-
punkten P, (1 =1, ...,7n) bzw. Q; (1 =1, ..., n) und V(4) bzw. V(B) ihre Volumina,
so gilt vermutlich V(4) < V(B).

Diese Aussage wiirde, falls sichergestellt, innerhalb der Masstheorie niitzliche
Dienste als Hilfssatz leisten. ‘

Beispielsweise wiirde sich miihelos folgern lassen, dass das untere Minkowskische
Mass einer beliebigen beschrinkten Punktmenge sich bei dehnungsloser Abbildung
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