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H. ScHiLt: Ubersicht iiber die Nullstéllen einer Funktion zweiten und dritten Grades 51

Wenn unsere Voraussetzung richtig ist, so sind die folgenden Reihen konvergent:
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Die Summe absolut konvergenter Reihen ist auch konvergent Somit wiirde die
harmonische Reihe: 1+1/2+ --- +1/s +1/(s + 1) + - - - konvergieren.
Das ist aber offenbar ein Wlderspruch Damit ist d1e Divergenz der Reihe 2 1/p,

bewiesen. Ericu Dux, Szolnok (Ungarn)

Ubersicht iiber die Nullstellen einer Funktion
zweiten und dritten Grades

Jede ganze Funktion hat bekanntlich in der komplexen Zahlenebene so viele Null-
stellen wie der Grad der Funktion angibt. Es ist reizvoll, die Verdnderungen dieser
Nullstellen zu betrachten, wenn die Parameter, die in der Funktion vorkommen,
gedndert werden. Dazu ist es bequem und anschaulich, die komplexen Zahlen durch
Vektoren darzustellen.

a) Quadratische Funktion. Wir beginnen mit einer Vorbetrachtung iiber die Funk-

tion zweiten Grades:
n==E§+2af+0. (1)

a und b seien komplexe Zahlen; a # 0. Durch eine Drehstreckung in den komplexen
Ebenen der % und der &:
n=a%w, &E=al (2)
kann man die Form:
w=14t*+2¢t—¢q 3)
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erreichen. Die Nullstellen dieser Funktion sind:

t,=—1+Vit+gq; t. =-1-Vitgq. (4)

Diese Nullstellen liegen auf einer Geraden g durch den Punkt P, der zur Zahl ¢ = —1
gehort; der Winkel dieser Geraden mit der reellen Achse ist halb so gross wie das
Argument ¢ der komplexen Zahl 1+ ¢ (Figur 1).
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Figur 1

Lage der Nullstellen der Gleichung ¢24+ 2¢ — ¢ = 0 in der Gaussschen Ebene der .

Jedem Strahl s der Ebene ¢ entspricht eine Gerade g durch P. Wenn im besonderen
Fall g reell ist und —1 < g < oo, so fillt die entsprechende Gerade mit der reellen
Achse der ¢ zusammen, denn der Vektor 1 + ¢ hat dann das Argument 0. Falls aber
—oo0 < ¢< —1, so hat der Vektor 1+ ¢ das Argument & und die Gerade g ein
solches von 7/2; sie ist also parallel zur imaginidren Achse der ¢. Die Nullstellen sind
dann komplex konjugiert.

Damit ist eine Ubersicht iiber die Nullstellen der speziellen Funktion (3) bei
komplexer Zahl ¢ gewonnen. Es bietet keine Schwierigkeiten, diese Ergebnisse auf
die allgemeine Funktion (1) zu iibertragen. Durch die Substitution (2) werden die
Nullstellen von w in solche von # iibergehen; & = a ¢ bedeutet eine Streckung der
t-Ebene um den Faktor 7 und zugleich eine Drehung um den Winkel a,, wenn a = r ¢*“.

b) Funktion dritten Grades. Die allgemeine Funktion dritten Grades:

n=E8+AE+BE+C (3)

kann man durch eine Schiebung in der &-Ebene (§ =x —A4/3) in die einfachere

Form:
n=x%+bx+c

bringen. Wenn ¢ + 0, kénnen wir weiter durch die Transformation:
n==~kYy, x=kFkz
die Form:
y=234+3pz2+42 (6)

erreichen. Diese Funktion hingt nur vom Parameter  ab; das Verhalten ihrer Null-
stellen kann deshalb verhéltnismassig leicht iiberblickt werden.
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Zur Bestimmung der Nullstellen von (6) benutzen wir das Verfahren von CARDANO;
wir machen den Ansatz z = u + v, setzen diesen in (6) ein und ordnen zweckmissig,

so dass wir erhalten:
y=ud+v3+ 243 (u+v) (wv+p). (7)

Um die Nulistellen von y zu finden, kann man verlangen, dass # und v den Bedin-
gungen :

uv+p=0, (8a)

ud4+v34+2=0 (8b)

geniigen sollen. Aus der Gleichung (8a) findet man:

udv3= —p3; (9a)
aus der Gleichung (8b)
ud 4 v3=—2. (9b)

Die Gleichungen (9a) und (9b) legen es nahe, %3 und v3 als Losungen £, und ¢_ einer
quadratischen Gleichung aufzufassen; diese Gleichung lautet:

24 2¢— p3=0. (10)

Man nennt (10) die quadratische Resolvente der kubischen Gleichung. Sie hat die
gleiche Form wie die oben untersuchte quadratische Funktion, wenn dort an Stelle
von ¢ die Zahl $3 gesetzt wird. Zu einem bestimmten 43 findet man aus der Glei-
chung (10) zwei bestimmte Zahlen, ¢, und ¢_. Aus diesen ergeben sich # und v, und

zwar ist _ .
u=3Vt+, v =i/t_.

Es gibt je drei Losungen fiir # und v. Fiir z = % + v erhalten wir daher neun mégliche
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Figur 2. Lage der p; und von $® in der komplexen Zahlenebene fiir den Fall —oco < p3< —1.
Figur 3. Lage der Losungen ¢, und #_ fir —oo <14 p3<0.

Kombinationen dieser Losungen. Unter diesen neun Kombinationen fallen sechs weg,
weil noch die Bedingungen (8a): # v + p = 0 erfiillt sein muss. Wir erhalten dann,
wie erwartet, zu einem bestimmten p genau drei Nullstellen der kubischen Gleichung.

Sieht man von der Bedingung (8a) ab, so fiithren drei verschiedene p zur gleichen
quadratischen Resolventen (10); je ein bestimmtes Tripel der neun Kombinationen
gehort zu einem dieser 2.
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Um einen Uberblick iiber die Losungen zu gewinnen, gehen wir von folgendem Fall
aus: Es sei 3 reell und —oco < 3 < —1.

P1, Ps, P5 in der Figur 2 sind diejenigen p, die zum gleichen 3 fithren. Nach den
Uberlegungen von oben ergeben sich fiir alle diese p die gleichen Losungen der quadra-
tischen Resolvente, und zwar so, wie sie aus Figur 3 ersichtlich sind.
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Figur 4

Lage der Lésungen #; und v fir —oo <1+ p3<0.

In der komplexen Zahlenebene der # und v sehen die Lésungen folgendermassen
aus (Figur 4):

Verindert man p3 zwischen den Grenzen —oo und —1, so bewegen sich die
Losungen # und v auf hyperbeldhnlichen Kurven, so wie es in der Figur 4 angedeutet
ist. Um die richtigen Lésungen der kubischen Gleichung zu erhalten, sind die #; und v,
entsprechend der folgenden Tabelle zu kombinieren.

? %) X9 X3

Pr| wtvy | Ut vy | Ugtug
Pa | Ug+vg | UtV | U+ U4
Py | ug+vy | vy | U+ vy

Da alle # und v den gleichen absoluten Betrag aufweisen, ergeben die angefiihr-
ten Kombinationen Losungstripel, deren 3 Losungen x; auf einer Geraden liegen
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(vergleiche Aufgabe 252, El. Math. 70, 114 [1955]), jedoch sind nur fiir —oco < p, < —1
alle drei Losungen reell.

Die dem Nullpunkt am nichsten liegenden Punkte e, , ¢,, e;1) der Kurven gehéren
zu p% = —1, entsprechen also der Doppellésung der Gleichung (10) und sind somit
auch diejenigen, fiir die je ein # und ein v zusammenfallen. Auch die ¢; sind entspre-

f/.

Figur 5
Lage der Losungen ¢, und ¢_, wenn die p; gegeniiber der Figur 2 etwas gedreht sind.

chend der Tabelle zu kombinieren; so erhidlt man im Falle p,= —1:
Xy =eg+ €g= —2,
Xo=1¢€g+¢e;=+1,
X3=¢e,+ eg= +1.

Wenn man nun einen komplexen Koeffizienten p der kubischen Gleichung (6)

unsern Betrachtungen zugrunde legt, so bedeutet das, dass sich der Dreistrahl p,, p,,
P4 etwas dreht. In der Ebene der ¢ erhilt man Figur 5.
. 3 variiere nun so, dass 1+ % auf ein und demselben Strahle bleibe, der das
Argument o haben moge; dann bewegen sich nach Abschnitt a) die Lésungen £, und
¢_ auf einer Geraden durch —1, die mit der reellen Achse den Winkel «/2 einschliesst.
Die Kurven %, v gehen immer noch durch die Punkte ¢;, ihre Asymtoten sind aber um
«/6 abgedreht und ihre Minimaldistanz von Null ist kleiner geworden, weil auch die
Gerade ¢, ¢_ ndher beim Nullpunkt vorbeigeht (Figur 6).

Falls man nun #2 in die reelle Achse dreht und- —1 < % < oo ist, kommt die Ge-
rade ¢ ¢_ ebenfalls in die reelle Achse zu liegen und dann degenerieren die Kurven «, v
in die Schenkel der Winkel von 60° (Figur 7).

Wenn man beachtet, dass fiir diesen Fall p, in die positive reelle Achse fillt, gibt
uns die Tabelle wieder die richtige Zuordnung der Losungen. Insbesondere ist
%y = Uy + vy die einzige reelle Losung, wenn —1 < p3 < oo ist.

Durch weiteres Drehen von 1 + $% wandern. die Kurven von den Winkelrdumen:
0 <@ <60°; 120° < @ < 180°; 240° < ¢ < 300° in die Winkelraume 60° < ¢ < 120°

1) Esist ef= —1, also ¢, =05 (1+i}/3), eg=—1, e3==0,5(1—-1'l/§);




56 Kleine Mitteilungen

usw.; jedoch immer so, dass die entsprechenden Kurven durch die Punkte ¢,, ¢, ¢,

gehen. In diesem Falle gehoren die Paare u, v3; u, v;; %3 v, zu je einem Kurvenast
und werden je von einem ¢; getrennt, genau wie die neue Stellung der p; und unsere

Zuordnungstabelle es verlangen.
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Figur 7

Figur 6
Figur 6. Lage der Losungen #; und v, fiir die gleichen Voraussetzungen wie Figur 5.

Figur 7. Lage der Losungen u; und v, fiir positive 1 + p3.

Aus den Figuren diirfte ersichtlich sein, wie die kardanische Losungsmethode der
kubischen Gleichung eine Symmetrie in das Problem hineinbringt, die die Lésungen

x; an sich nicht besitzen. Nur dieser Symmetrie ist es zu verdanken, dass die Auf-
H. ScHiLT, Biel.

l6sungsmethode so elementar ist.

Kleine Mitteilungen

Eine Modifizierung der Simpsonschen Regel

Wenn wir zur Berechnung eines bestimmten Integrals auf numerische Methoden
angewiesen sind, so stehen uns zahlreiche Formeln zur Verfiigung. Eine der bekannte-
sten ist die sogenannte Simpsonsche Regel, die iiber eine gerade Anzahl Intervalle
gleicher Breite zu integrieren gestattet. Sie beruht darauf, dass man iiber je zwei auf-
einanderfolgende Intervalle einen quadratischen Parabelbogen spannt, der durch die
drei zugehorigen Ordinatenpunkte geht. Indem man die Flichen unter den einzelnen

Parabelbogen berechnet und dann addiert, erhdlt man den Ausdruck

h
F=—7 (9+401+2y:+ 453+ 29+ +4Yn_1+ ) +Rs, (1)
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