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50 E. Dux: Ein kurzer Beweis der Divergenz der unendlichen Reihe ' 1/p,
r=1

sind, bei jeder Abzéhlung 7, , 7,, 75, ... wird jedoch die natiirliche Ordnung vollkommen
zerstort. Das heisst, die Ordnung innerhalb der abzihlenden Folge 7,,7,,7,, ... hat
nichts zu tun mit der Ordnung, welche die 7, innerhalb C besitzen.

B: Das ist mir klar, aber was hilft es zur Abklirung meiner Frage?

A: Wie bereits bemerkt, hat man sich im Transfiniten mit Tatsachen abzufinden,
die im Finiten unmoglich sind. Hierzu gehort nun auch der folgende Sachverhalt:
Die Elemente einer nicht abbrechenden Folge ry,7,,75, ... lassen sich derart umordnen,
dass sie 1n der neuen Anordnung nichtabzihlbar viele Liicken aufweisen. In der Tat, einer-
seits kann man die rationalen Zahlen r mit 0 <7 <1 zum Beispiel durch die Folge
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abzihlen, anderseits ergeben dieselben Zahlen, nach ihrer Grosse geordnet, eine
lineare Ordnung mit den irrationalen Zahlen zwischen O und 1 als nichtabzihlbar
vielen Liicken. Ein merkwiirdiges, kaum in die Anschauung zu fassendes Phinomen.

B: Jetzt wird mir auch klar, was meiner Frage unausgesprochen zugrunde liegt,
ndmlich die Annahme, die Liicken und die liickenbildenden Elemente irgendwie in
umkehrbar eindeutige Beziehung setzen zu kénnen, was aber weder bei den »-Liicken
zwischen den irrationalen Elementen noch bei der komplementiren Menge der Liicken
zwischen den r moglich ist, weil eine Liicke sich nie unmittelbar an ein Element der
betreffenden Menge anschliessen lésst. L. LocHER-ERNST.

Ein kurzer Beweis der Divergenz der unendlichen Reihe 2?':‘—
r=1 7

Schon EukLID hat bewiesen, dass die Zahl der Primzahlen nicht endlich ist. EULER

bewies, dass die unendliche Reihe J}'1/p, divergiert, wo $,, p,, ..., p,, ... die Folge
der Primzahlen ist. 7=t

Die folgende Beweisfithrung wird vom Begriff des unendlichen Produktes keinen
Gebrauch machen.

Nehmen wir an, dass die gegebene Reihe konvergent ist. Dann gibt es eine natiir-
liche Zahl £, so dass
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2—;~=q<1.

r=k F7

Wir teilen jetzt die natiirlichen Zahlen in drei Klassen:

Klasse A enthilt alle natiirlichen Zahlen, deren Primfaktoren alle die Ungleichung
p; = s befriedigen. Wir bezeichnen die Elemente dieser Klasse mit n;, 5, ..., n;,....

Klasse B enthilt alle natiirlichen Zahlen, deren Primfaktoren alle die Ungleichung
p: < p; befriedigen. Wir bezeichnen die Elemente dieser Klasse mit »y, #3, ..., n{, ....

Klasse C enthilt alle natiirlichen Zahlen, die weder in A noch in B zu finden sind.
Wir bezeichnen die Elemente dieser Klasse mit »ny, ny, ..., nr, .... Die Zahl 1 ist
Element der Klasse C. Wenn 7. von 1 verschieden ist, so ist #) = n, n).



H. ScHiLt: Ubersicht iiber die Nullstéllen einer Funktion zweiten und dritten Grades 51

Wenn unsere Voraussetzung richtig ist, so sind die folgenden Reihen konvergent:
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Die Summe absolut konvergenter Reihen ist auch konvergent Somit wiirde die
harmonische Reihe: 1+1/2+ --- +1/s +1/(s + 1) + - - - konvergieren.
Das ist aber offenbar ein Wlderspruch Damit ist d1e Divergenz der Reihe 2 1/p,

bewiesen. Ericu Dux, Szolnok (Ungarn)

Ubersicht iiber die Nullstellen einer Funktion
zweiten und dritten Grades

Jede ganze Funktion hat bekanntlich in der komplexen Zahlenebene so viele Null-
stellen wie der Grad der Funktion angibt. Es ist reizvoll, die Verdnderungen dieser
Nullstellen zu betrachten, wenn die Parameter, die in der Funktion vorkommen,
gedndert werden. Dazu ist es bequem und anschaulich, die komplexen Zahlen durch
Vektoren darzustellen.

a) Quadratische Funktion. Wir beginnen mit einer Vorbetrachtung iiber die Funk-

tion zweiten Grades:
n==E§+2af+0. (1)

a und b seien komplexe Zahlen; a # 0. Durch eine Drehstreckung in den komplexen
Ebenen der % und der &:
n=a%w, &E=al (2)
kann man die Form:
w=14t*+2¢t—¢q 3)
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