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50 E Dux Em kurzer Beweis der Divergenz der unendlichen Reihe £ \\pf
r 1

smd, bei j eder Abzahlung rx ,r2 ,r3,. wird jedoch die natürliche Ordnung vollkommen
zerstört. Das heisst, die Ordnung innerhalb der abzahlenden Folge rx,r2,r3, hat
nichts zu tun mit der Ordnung, welche die r% innerhalb C besitzen

B Das ist mir klar, aber was hilft es zur Abklärung meiner Frage
A Wie bereits bemerkt, hat man sich im Transfimten mit Tatsachen abzufinden,

die im Finiten unmöglich sind. Hierzu gehört nun auch der folgende Sachverhalt
Die Elemente einer nicht abbrechenden Folge rx,r2,rz, lassen sich derart umordnen,
dass sie tn der neuen Anordnung nichtabzahlbar viele Lucken aufweisen. In der Tat, einerseits

kann man die rationalen Zahlen r mit 0 ^ r :£ 1 zum Beispiel durch die Folge
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abzahlen, anderseits ergeben dieselben Zahlen, nach ihrer Grosse geordnet, eine
lineare Ordnung mit den irrationalen Zahlen zwischen 0 und 1 als nichtabzahlbar
vielen Lucken. Em merkwürdiges, kaum m die Anschauung zu fassendes Phänomen.

B Jetzt wird mir auch klar, was meiner Frage unausgesprochen zugrunde hegt,
namhch die Annahme, die Lucken und die luckenbildenden Elemente irgendwie m
umkehrbar eindeutige Beziehung setzen zu können, was aber weder bei den r-Lucken
zwischen den irrationalen Elementen noch bei der komplementären Menge der Lucken
zwischen den r möglich ist, weil eine Lücke sich nie unmittelbar an em Element der
betreffenden Menge anschhessen lasst. L. Locher-Ernst.
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Ein kurzer Beweis der Divergenz der unendlichen Reihe 2J -r-
r-1 r*

Schon Euklid hat bewiesen, dass die Zahl der Primzahlen nicht endlich ist. Euler
oo

bewies, dass die unendliche Reihe HJl/pr divergiert, wo px, p2, pr, die Folge
der Primzahlen ist. f=1

Die folgende Beweisführung wird vom Begriff des unendlichen Produktes keinen
Gebrauch machen.

Nehmen wir an, dass die gegebene Reihe konvergent ist. Dann gibt es eine natürliche

Zahl k, so dass
-22. i

Wir teilen jetzt die natürlichen Zahlen in drei Klassen *

Klasse A enthalt alle naturhchen Zahlen, deren Pnmfaktoren alle die Ungleichung
p1 J> ph befriedigen. Wir bezeichnen die Elemente dieser Klasse mit n'x, n2,..., ris,....

Klasse B enthalt alle naturhchen Zahlen, deren Primfaktoren alle die Ungleichung
p%< pk befriedigen. Wir bezeichnen die Elemente dieser Klasse mit nx,n2t..., nf,

Klasse C enthalt alle natürlichen Zahlen, die weder in A noch in B zu finden sind.
Wir bezeichnen die Elemente dieser Klasse mit wf, n%, ...,nf, — Die Zahl 1 ist
Element der Klasse C. Wenn nr" von 1 verschieden ist, so ist nf nl n".
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Wenn unsere Voraussetzung richtig ist, so sind die folgenden Reihen konvergent:

a) ~h + i, +-+i+--
b) ^ + i + - + ^ + -.
c> ^r+ ~i+--- + ^ + ---'

denn

l + ••• + 4 +---<z-l- + ---+iz;^)s+---
1~? '

1 i i i i+ n'i + • • • + ^7r + • • •
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-4 + 4n"{ n'i
¦ + - + ^r + -

1+fe + i+--- + ^ + ---)(i+i + -•+< +

<1 + * _X__ * 1

Die Summe absolut konvergenter Reihen ist auch konvergent. Somit würde die
harmonische Reihe: 1 +1/2 + ••• + 1/5 + l/(s + 1) + • • • konvergieren. ^

Das ist aber offenbar ein Widerspruch. Damit ist die Divergenz der Reihe 2J ^IPr

Erich Dux, Szolnok (Ungarn).

Übersicht über die Nullstellen einer Funktion
zweiten und dritten Grades

Jede ganze Funktion hat bekanntlich in der komplexen Zahlenebene so viele
Nullstellen wie der Grad der Funktion angibt. Es ist reizvoll, die Veränderungen dieser
Nullstellen zu betrachten, wenn die Parameter, die in der Funktion vorkommen,
geändert werden. Dazu ist es bequem und anschaulich, die komplexen Zahlen durch
Vektoren darzustellen.

a) Quadratische Funktion. Wir beginnen mit einer Vorbetrachtung über die Funktion

zweiten Grades:
*7 f2-f2a£ + &. W

a und b seien komplexe Zahlen; a 4= 0. Durch eine Drehstreckung in den komplexen
Ebenen der rj und der f:

r] a*w, £ at (2)
kann man die Form:

w t% + 2 t - q (3)
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