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Merkwiirdiges vom Kontinuum

A: Das lineare Kontinuum, etwa die reellen Zahlen x mit 0 < x <1, ist, wie wir
bewiesen haben, als eine geordnete Menge C mit den folgenden drei Eigenschaften
charakterisierbar?!):

1. Es gibt ein erstes und ein letztes Element;

2. es gibt keine Liicken, das heisst die Menge ist stetig;

3. es gibt eine abzidhlbare Teilmenge R derart, dass zwischen zwei beliebigen Ele-
menten von C stets mindestens ein Element der Teilmenge R zu finden ist.

Wir haben eine Teilmenge R dieser Eigenschaft als eine Skelettmenge von C be-
zeichnet und nannten die iibrigen Elemente von C irrational in bezug auf R.

B: Ein Umstand gibt mir noch zu denken. Zwischen zwei beliebigen Elementen
von C liegt mindestens ein Element » von R. Das » kann ich somit als eine « Liicke »
innerhalb der irrationalen Elemente betrachten. Nun sind diese nicht abzdhlbar.
Wie soll es moglich sein, dass die Liicken zwischen den nicht zum Skelett gehérenden
Elementen abzdhlbar sind, wihrend doch die liickenbildenden Elemente nicht abge-
zdhlt werden koénnen?

A: Zugegeben, das ist eine Schwierigkeit. Im Bereich des Transfiniten bestehen
eben Tatsachen, die im Finiten unmdéglich sind. Zum Beispiel enthélt jede unendliche
Menge echte Teilmengen, deren Elemente denjenigen der ganzen Menge umkehrbar
eindeutig zugeordnet werden kénnen. Durch diese Eigenschaft kann man das Unend-
liche geradezu definieren.

B: Damit ist mein Bedenken nicht behoben. Soll ich mir vorstellen, dass jedes
Skelettelement 7 gleichsam mit einem Klumpen von irrationalen Elementen behaftet
sei, um die Nichtabzihlbarkeit dieser Elemente gegeniiber der Abzdhlbarkeit der »
zu verstehen?

A: Das geht nicht. Gemiss Eigenschaft 3 ldsst sich ein solcher Klumpen sofort
auflésen, indem zwischen zwei beliebigen irrationalen Elementen doch mindestens
ein Skelettelement liegt.

B: Dann gibt es keine Antwort auf meine Frage?

A: Es ist in der Tat nicht so leicht, sich vom Sachverhalt ein richtiges Bild zu
machen. Zunichst miissen wir festhalten, dass die Skelettelemente » zwar abzahlbar

1) Siehe zum Beispiel A. FRAENKEL, Einleitung in die Mengenlehre (Verlag Springer und Dover Publica-
tions, New York 1946), S.154f.
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50 E. Dux: Ein kurzer Beweis der Divergenz der unendlichen Reihe ' 1/p,
r=1

sind, bei jeder Abzéhlung 7, , 7,, 75, ... wird jedoch die natiirliche Ordnung vollkommen
zerstort. Das heisst, die Ordnung innerhalb der abzihlenden Folge 7,,7,,7,, ... hat
nichts zu tun mit der Ordnung, welche die 7, innerhalb C besitzen.

B: Das ist mir klar, aber was hilft es zur Abklirung meiner Frage?

A: Wie bereits bemerkt, hat man sich im Transfiniten mit Tatsachen abzufinden,
die im Finiten unmoglich sind. Hierzu gehort nun auch der folgende Sachverhalt:
Die Elemente einer nicht abbrechenden Folge ry,7,,75, ... lassen sich derart umordnen,
dass sie 1n der neuen Anordnung nichtabzihlbar viele Liicken aufweisen. In der Tat, einer-
seits kann man die rationalen Zahlen r mit 0 <7 <1 zum Beispiel durch die Folge
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abzihlen, anderseits ergeben dieselben Zahlen, nach ihrer Grosse geordnet, eine
lineare Ordnung mit den irrationalen Zahlen zwischen O und 1 als nichtabzihlbar
vielen Liicken. Ein merkwiirdiges, kaum in die Anschauung zu fassendes Phinomen.

B: Jetzt wird mir auch klar, was meiner Frage unausgesprochen zugrunde liegt,
ndmlich die Annahme, die Liicken und die liickenbildenden Elemente irgendwie in
umkehrbar eindeutige Beziehung setzen zu kénnen, was aber weder bei den »-Liicken
zwischen den irrationalen Elementen noch bei der komplementiren Menge der Liicken
zwischen den r moglich ist, weil eine Liicke sich nie unmittelbar an ein Element der
betreffenden Menge anschliessen lésst. L. LocHER-ERNST.

Ein kurzer Beweis der Divergenz der unendlichen Reihe 2?':‘—
r=1 7

Schon EukLID hat bewiesen, dass die Zahl der Primzahlen nicht endlich ist. EULER

bewies, dass die unendliche Reihe J}'1/p, divergiert, wo $,, p,, ..., p,, ... die Folge
der Primzahlen ist. 7=t

Die folgende Beweisfithrung wird vom Begriff des unendlichen Produktes keinen
Gebrauch machen.

Nehmen wir an, dass die gegebene Reihe konvergent ist. Dann gibt es eine natiir-
liche Zahl £, so dass
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Wir teilen jetzt die natiirlichen Zahlen in drei Klassen:

Klasse A enthilt alle natiirlichen Zahlen, deren Primfaktoren alle die Ungleichung
p; = s befriedigen. Wir bezeichnen die Elemente dieser Klasse mit n;, 5, ..., n;,....

Klasse B enthilt alle natiirlichen Zahlen, deren Primfaktoren alle die Ungleichung
p: < p; befriedigen. Wir bezeichnen die Elemente dieser Klasse mit »y, #3, ..., n{, ....

Klasse C enthilt alle natiirlichen Zahlen, die weder in A noch in B zu finden sind.
Wir bezeichnen die Elemente dieser Klasse mit »ny, ny, ..., nr, .... Die Zahl 1 ist
Element der Klasse C. Wenn 7. von 1 verschieden ist, so ist #) = n, n).
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