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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts
Organ fiir den Verein Schweizerischer M athematik- und Physiklehrer

El. Math. Band XT Nr.2 Seiten 2548 Basel, 10. Mdrz 1956

Wie man aus einer Kugel zwei zu ihr kongruente
Kugeln herstellen kann

1. Einleitung. Die neuere Entwicklung der Mathematik brachte Ergebnisse zu-
tage, die man sich vor 60 Jahren nicht hitte triumen lassen. Ein solches Resultat ist
der folgende beriihmt gewordene, im Jahre 1947 von R. M. ROBINSON?) bewiesene Satz:

Eine Vollkugel lisst sich in fiinf paarweise punktfremde Teile A, B, C, D, E derart
aufteilen, dass man durch geeignete Drehungen und eine Translation sowohl aus den
zwes Teilen A und C als auch aus den drei Teilen B, D und E je eine zur urspriing-
lichen kongruente Vollkugel erhdlt.

Somit kann man bloss durch Anwenden geeigneter Bewegungen aus einer Voll-
kugel deren zwei gleichgrosse herstellen. Dabei kann man es so einrichten, dass der
eine Teil E nur aus einem Punkte besteht. .

Mit diesem merkwiirdigen Satz kam eine Reihe von Untersuchungen — in erster
Linie von S. BaNacH, A. TArRsky und W. SIERPINSKI — zum Abschluss, die von
einer Arbeit von F. HAUSDORFF2) ausgingen. In der Abhandlung von ROBINSON
werden die Hauptmomente der Entwicklung kurz festgehalten. Es sei hier auch auf
die anregende Arbeit von H. HADWIGER?) hingewiesen, in der diese Entwicklung an-
schaulich geschildert wird.

Das Ziel der folgenden Darstellung, die sich eng an die Arbeit von ROBINSON an-
schliesst, besteht darin, einem grésseren Kreis in ausfiihrlicher, méglichst elementarer
Form vollen Einblick zu vermitteln, wie der angegebene Sachverhalt zustande
kommt. Die Lektiire der bewunderungswerten Abhandlung von RoBINSON, die noch
weitergehende Ergebnisse enthilt, diirfte dann keine Schwierigkeiten mehr bieten.

2. Die von unabhiingigen Rotationen erzeugte Gruppe. Wir betrachten die
Drehungen einer Kugel um ihren Mittelpunkt um irgendwelche Achsen durch
beliebige Winkel. Diese Drehungen bilden eine Gruppe. Bedeuten ¢, ¢ zwei solche
Drehungen, und iibt man auf die Kugel zuerst die Drehung ¢, dann die Drehung o
aus, so ldsst sich das «Produkt» ¢y, was die Endlage jedes Punktes der Kugel
betrifft, durch eine einzige Drehung ersetzen, wobei im allgemeinen die Drehungen
@y und y @ verschieden sind.

1) R. M. ROBINSON, On the Decomposition of Spheres, Fundamenta Mathematicae 34, 246-260 (1947).

2) F. HAUSDORFF, Bemerkung iiber den Inhalt von Punkimengen, Math. Ann. 75, 428-433 (1914).

3) H. HADWIGER, Der Inhaltsbegriff, seine Begriindung und Wandlung in dlterer und neuerer Zeit. Mit:
teilungen der Naturforschenden Gesellschaft Bern, 11. Band, 1954.
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Wie wir spiter zeigen werden, kann man beliebig viele Rotationen, zum Beispiel
vier, etwa @,, @,, @3, @4, angeben, die voneinander unabhdngig sind. Das soll heissen:
Ubt man auf die Kugel irgendeine Folge von Drehungen £, &,, ..., & aus, wobei
jedes & eine der Grossen ¢, ;! (1 =1,2, 3, 4) ist, so ergibt sich niemals die ur-
spriingliche Ausgangslage, es sei denn, das Produkt &, &,:-: &, stelle in den Fak-
toren @,, ;! die Einheit dar.

Wie sich zeigen wird, ist die Existenz solcher unabhingiger Drehungen, die iibri-
gens plausibel erscheint, ein wesentlicher Kern der ganzen Sache.

Wir nehmen an, dass ¢,, @,, @3, @, vier unabhingige Drehungen seien. Die Lage
ihrer Achsen und die Grésse ihrer Drehwinkel sind fiir den Beweisgang nicht wesentlich.

Bei der Drehung ¢, geht ein Punkt » der Kugeloberfliche S in einen bestimmten
Punkt von S iiber, den wir mit # @; bezeichnen. Allgemein ist u & &,--- & der
Punkt, der aus dem Ausgangspunkt » folgendermassen entsteht: % wird der Drehung
&, unterworfen, der erhaltene Punkt dann der Drehung 52 usw Dabei bedeutet hier
wie im folgenden &; immer eine der acht Gréssen ¢!, @ f!, @i, . Durch
Bilden aller Produkte solcher Art erhdlt man die ganze von den Elementen ®; er-
zeugte Gruppe, die mit G bezeichnet werde.

3. Aquivalenzklassen. Ausgehend von einem beliebigen Punkt % der Kugel-
oberfliche S bilden wir alle Punkte # &, &, .-+ &. Zwei Punkte, die mittels irgend-
einer Operation der Gruppe G zusammenhingen, nennen wir dquivalent. Alle paar-
weise dquivalenten Punkte bilden eine Aguivalenzklasse. Zu einem beliebigen Aus-
gangspunkt % von S gehért eine bestimmte Aquivalenzklasse, nimlich diejenige, die
aus den Punkten besteht, welche aus # durch die Wirkung aller Produkte &, &, - &;
entstehen. Eine Aquivalenzklasse enthilt nur abzihlbar viele Punkte.

Nimmt man dann einen ihr nicht angehdrenden Punkt %’ von S als Ausgangspunkt,
so erhilt man aus ihm eine weitere Aquivalenzklasse, usw.

Zwei Aquivalenzklassen sind punktfremd. Denn aus

wE &y & =ub &

wiirde

=u§152“‘5s§r’—1 ;:11 1’—1

folgen, das heisst #' wiirde — gegen Annahme — der durch % bestimmten Klasse an-
gehoren.

Durch die Gruppe G wird somit die Kugeloberfldche in eine Menge von paarweise
punktfremden Aquivalenzklassen zerlegt. Diese Menge aller Klassen ist natiirlich nicht
abzédhlbar. Wir werden spiter aus jeder Klasse einen und nur einen Punkt heraus-
greifen, also das Auswahlaxiom beniitzen.

Ist v ein Punkt von S, der bei der Operation « = &, &, --- §, fest bleibt, so nennen
wir v einen Fixpunkt.

Ist v ein Fixpunkt, etwa fiir «, also v « = v, dann ist auch jeder zu v dquivalente
Punkt ein Fixpunkt. Beweis: Aus vo = v folgt v f-1a f =v g, wobei # eine be-
liebige Operation der Gruppe G ist. Das heisst, v § ist ein Fixpunkt der Operation
f1lap.

Jede Aquivalenzklasse besteht somit entweder aus lauter Nicht-Fixpunkten oder
aus lauter Fixpunkten.
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4. Eindeutige Darstellung der Punkte einer Klasse. Zuerst betrachten wir eine
Aquivalenzklasse von Nicht-Fixpunkten. Ist # irgendein Punkt einer solchen Klasse,
dann ist jeder andere Punkt dieser Klasse eindeutig in der Form # § darstellbar, wobei
p ein Produkt von Faktoren ¢;, ¢ ' darstellt, das in diesen nicht kiirzbar ist.

Beweis: Wire # f# = f’ mit in den ¢; nicht identischen f und f’, so wiirde aus
u=u 3’ f-* folgen, dass » ein Fixpunkt ist oder dass ' -1 die Einheitsoperation
(Ausgangslage) darstellt. Ersteres ist gegen die Annahme, und letzteres wiirde besagen,
dass die G erzeugenden vier Drehungen nicht unabhingig sind.

Etwas komplizierter ist es, eine eindeutige Darstellung der Punkte einer Klasse
von Fixpunkten zu gewinnen.

Wir priifen dazu alle Operationen in G, die in der betrachteten Klasse einen Fix-
punkt haben, auf ihre Linge und nehmen eine unter den kiirzesten. Das heisst, die
ausgewihlte Operation ist eine solche, die moglichst wenig Faktoren ¢! aufweist.
Es sei ¥} eine solche. (Ob es mehrere kiirzeste gibt, interessiert uns nicht.) v sei ein
Fixpunkt von #, also v # = v. Dann gilt:

Jede Kugeldrehung der Gruppe G, die v als Fixpunkt besitzt, hat die Form a =3"
(n ganz).

Beweis: Zunichst stellen wir fest, dass der erste und letzte Faktor von ¢ nicht
invers sein kénnen, da es sonst eine Operation o~ ¢ ¢ gébe, die kiirzer als & wire und
in der betrachteten Klasse auch einen Fixpunkt (ndmlich v ¢) hitte. Somit beginnen
# und ¢! nicht mit demselben Faktor.

Da o nach Voraussetzung wie & den Fixpunkt v hat, somit « und & dieselbe Dreh-
achse besitzen, ist a ¢ = ¢ «, weil das Ergebnis zweier Drehungen mit gleicher Dreh-
achse von deren Reihenfolge unabhéngig ist.

Nun haben wir zwei Moglichkeiten zu priifen: Entweder ist a ¢ in den ¢; kiirzbar
oder nicht kiirzbar.

Nehmen wir zuerst den Fall, dass a9 nicht kiirzbar ist. Dann ist auch ¢« nicht
zu kiirzen, weil sonst a4 =3 « eine nicht-identische Beziehung zwischen den g,
darstellen wiirde, wihrend doch die @; unabhingig sind. Aus a =dad-1=3da
ersieht man, dass in diesem Falle die Drehung « jedenfalls mit dem Block ¢ beginnt.
Da ¢ «’ nicht kiirzbar ist, ldsst sich wegen o’ = #a’ auch o’ ¢ nicht kiirzen, wegen
o =9 a’ &1 somit «’ =P a«”. Wiederholen dieser Uberlegung zeigt, dass « = 9" mit
natiirlichem #. (n = 0, das heisst « =1, schliessen wir aus.)

Im andern Falle, wo a @ kiirzbar ist, nehmen wir « ¢ -1, das dann nicht kiirzbar
ist, weil erster und letzter Faktor von & nicht invers sind. Mit derselben Schlussweise
wie vorhin ergibt sich wegen a ¢ "' = &' «, dass « = ¢ ~" mit natiirlichem #. Damit
1st der Satz bewiesen. Aus ihm ergibt sich:

Jeder Punkt einer Klasse von Fixpunkten kann eindeutig in der Form v § geschrzeben
werden, wobet f nicht mit dem Block © beginnt und auch nicht mit dem Inversen des
letzten Faktors von . v bedeutet dabei einen Fixpunkt einer kiirzesten Operation 4
der Klasse.

Beweis: Wegen v #™ = v (m ganz) kénnten wir einen oder mehrere eventuell vor-
handene Blécke # am Anfang von f einfach weglassen. Wiirde ¢ # kiirzbar sein, so
koénnten wir statt 8 das Produkt #” g mit geniigend grossem m zu Hilfe nehmen,
wiirden kiirzen und die schliesslich sich ergebende Form als unser 8 nehmen. Dieses
hat die gewiinschte Eigenschaft.
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Es bleibt noch zu zeigen, dass diese Darstellung eindeutig ist. Aus v =vf’,
wobei § und g’ die genannten Eigenschaften haben, folgt v ' f~1= v, somit gemiss
dem eben Bewiesenen ' f-1= 9" Fiir n > 0 zeigt B’ = 9" B, dass 8’ gegen Voraus-
setzung mit dem Block & beginnen miisste, da ¢ f nicht kiirzbar ist. #» > 0 ist somit
nicht méglich. Fiir » < 0 betrachten wir § =& ~" f’; aus denselben Griinden ist auch
dies, also #» < 0, nicht moglich. Es bleibt » = 0, das heisst ' =, was zu beweisen
war.

5. Gefordertes System von Kongruenzen. Wir werden die Oberfliche S als
Punktmenge in vier Teilmengen A4,, 4,, 4;, A, aufteilen, wobei jeder Punkt von
S einer und nur einer der Teilmengen A; angehért: S =A4,+A4,+A4;+4,. Wir
werden also jedem Punkt von S genau eine der Nummern 1, 2, 3, 4 zuweisen. Es
wird sich als moglich erweisen, die Zerlegung so vorzunehmen, dass zwischen den
Teilen die folgenden, sonderbar genug erscheinenden Kongruenzen bestehen:

A=A, +A,, somit auch A,+A;+A,=A4;+ 4,,
A,=2A,+A,, somit auch 4,4+ A;+A,=A;+ A4,,
As=~=A,+A,, somit auch 4,+A,+A,=A4,+ 4,,
Ay=~=A;+ A,, somit auch 4, +A,+A;==A4,+ 4,.
Eine solche Kongruenz ist wie folgt zu verstehen: Es gibt eine Drehung ¢,, durch

welche 4, genau in 4, + 4, iibergeht, ferner eine Drehung ¢,, durch welche 4, genau

in A,+ A, tibergeht, usw. Es gibt also vier Drehungen, welche diese Kongruenzen
bewirken:
Ay =A,+4,, Azps=A45+4,,

Aypy=41+4,, Aypy=A5+4,.
Selbstverstdandlich gilt dann auch zum Beispiel
(Ag+ A3+ A, p=A43+A4,; ferner A;=~=4,, A;~A,.

Die Kugeloberfliche S erscheint so in zwei Teile A, + A, und A+ A, zerlegt, wobei
jeder dieser beiden Teile in je zwei thm selbst kongruente Teile aufgespalten werden
kann.

Man kann also von S =A;+A,+ A,+ A, zum Beispiel die Teile 4, und 4,

entfernen und aus dem Rest 4,, A; durch zwei Drehungen wieder die ganze Ober-
fliche gewinnen!

Durch Komplementbildung und Verbinden erhélt man aus den vier zunéchst bloss
geforderten Kongruenzen

A=A, +4,, Ay==A;+4, A;=A3+4, A,=A;+4, (1)
. das folgende vollstindige System:

A A=A+ Ay A+ Ag+ A=A+ A3+ A,
A A, A+ A=A, + A+ A, =2 A, + A3+ A,
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Es erweist sich als niitzlich, zum Beispiel zur Kongruenz 4,2~ 4,+ 4, und der
gleichbedeutenden 4,4+ A;+ A,~A;+ A, eine Relation R, einzufiihren, die den
Ziffern des Bereiches {1, 2, 3, 4} Ziffern desselben Bereiches zuordnet :

1 >12
"l 2134 >3[4

Das soll heissen: Der Ziffer 1 ist die Ziffer 1, aber auch 2 zugeordnet, der Ziffer 2 sind
3 und 4, der Ziffer 3 auch 3 und 4, der Ziffer 4 auch 3 und 4 zugeordnet. Die durch R,
vermittelten Zuordnungen schreiben wir einzeln auch wie folgt:

1R,1, 1R,2, 2R,3, 2R,4, 3R,3, 3R,4, 4R,3, 4R4.

Allgemeiner sei eine Relation R folgendermassen erklirt: Jeder der vier Ziffern
1, 2, 3, 4 werden durch R eine oder mehrere der Ziffern 1, 2, 3, 4 zugeordnet; dabei
sollen in den zugeordneten Ziffern wirklich alle Ziffern 1, 2, 3, 4 vorkommen.

Die einer Kongruenz zwischen den Teilmengen A4; entsprechende Relation R heisse

normal. Sie hat die Form
K >L

K*»L*’

wobei K und L je die Mengen aus einer, zwei oder drei der Ziffern 1, 2, 3, 4 bedeuten;
K* und L* sind die Komplemente von K und L beziiglich {1, 2, 3, 4}.

Den vier geforderten Kongruenzen (1) entsprechen die folgenden vier normalen
Relationen R:

1 >1|2 2 >1|2 [ 3 >34 4 >34
1 ’ R2 { ’ R3 ’ R4 .
2|34 >34 1)3]4>3|4 l1)2)4>1|2 1)2|3> 1|2
Es gelten somit beispielsweise die Zuordnungen
1R,3, 1R,4, 3R;4, 2R,1 usf.

Gilt 2 R; %, so heisst & eine Fixziffer von R;.
6. Produkte von R-Relationen. Die zu einer Relation R inverse Relation R-1
sei folgendermassen definiert: Wenn 2 R/, dann / R—1k. Somit:

lju2+ 1 (2> 2 (34> 3 L[ 3]4> 4
RS l , Ry , Ry , Ry :
3|4 >2|3|4 3|4>1|3]4 1)2>1|2]4 112>1|2|3

Das Produkt R R’ zweier Relationen R, R’ erkldren wir wie folgt:

Es gilt RRR'! dann und nur dann, wenn es ein x gibt, fiir welches 2 R x und
% R’ [ richtig sind.

Diese Multiplikation ist assoziativ, aber im allgemeinen nicht kommutativ; ferner
ist R R-1 im allgemeinen nicht die Identitit (das heisst ¢ >+ fiir: =1, 2, 3, 4).

Eine Relation R heisse vereinend, wenn k R gilt fiir mindestens ein festes / und
k=1,2,3,4.
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Wir brauchen die beiden folgenden Sitze, die fast selbstverstindlich sind:
a) Multipliziert man zwei Relationen, von denen mindestens eine vereinend ist, so
ist auch das Produkt vereinend.
b) Das Produkt zweier normaler Relationen ist entweder normal oder vereinend.
Beweis zu a): Es sei R eine vereinende Relation, R’ irgendeine:
R { 1|2[3[4—>z” R {
Also j Rz fiir =1, 2, 3, 4. Durch R’ werden der Ziffer ¢ eine oder mehrere der Ziffern
1, 2, 3, 4 zugeordnet, zum Beispiel die Ziffer /. Also R R’l fiir jedes 7, das heisst
R R’ ist vereinend. Aber auch R’ R vereinend, da 7 R’ R+ fiir jedes j.
Beweis zu b) : Es seien
K >L M >N
Herr |
K* > [* M* > N*

zwei normale Relationen. K, L, M, N bedeuten also irgendwelche echte Teilmengen
des Bereiches {1, 2, 3, 4} und K*, L*, M*, N* die Komplemente von K bzw. L, M, N
beziiglich {1, 2, 3, 4}. Zum Beispiel K =1|3 und K*=2|4.

Erster Fall: M =L, also auch M* = L*. Dann ergibt sich als Produkt die normale

Relation
[ K >N
RR

]K*—>N*'

Zweiter Fall: M =1*, also auch M* = L. Dann erhilt man als Produkt die nor-
male Relation
| K > N*
R R’

]K*+N '

Dritter Fall: M ist weder mit L noch mit L* identisch. Dann hat aber M oder M*
sowohl mit L als auch mit L* mindestens je eine gemeinsame Ziffer. Es geniigt, den
ersten Fall zu priifen. x sei eine gemeinsame Ziffer von M und L, y eine gemeinsame
Ziffer von M und L*. Wegen KR x, x R°"N und K*R vy, yR'N gilt somit jRR'N
fiir jedes 7 =1, 2, 3, 4. R R" ist somit vereinend, womit b) bewiesen ist.

Wir werden jetzt, ausgehend von R;, R,, R;, R, Produkte

R=X,X, X, (3)

bilden, wobei jeder Faktor X; eine der acht Gréssen R*!, R} R*!, RE! ist. Der
folgende Satz ist nun entscheidend:

Jedes Produkt (3) besitzt mindestens eine Fixziffer. Beweis: Jede vereinende Relation
besitzt eine Fixziffer. Wegen der Sitze a) und b) brauchen wir somit nur den Fall zu
priifen, in welchem das Produkt zweier normaler Relationen wieder normal ist. In
diesem Falle bedeutet nun die Produktbildung genau das Verbinden zweier Kon-
gruenzen zu einer neuen Kongruenz. Zum Beispiel: Aus 4,2=A4,+ 4, und
A+ A=A, folgt A, == A, sowie Ay+A;+A,==A,+ A5+ A,.
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Dem entspricht exakt die Bildung des Produkts R, R, ':

1 —>1]2 12> 2 1 > 2
R, , RT , also R, R;! .
| 2|34 > 3|4 3|4 >1|3[4 2|3|4>1|3]4

Ein solches Produkt kénnte somit nur dann keine Fixziffer haben, wenn sich aus den
den Relationen R,, R,, R;, R, entsprechenden Kongruenzen (1) durch Komplement-
bildung und Verbinden eine Kongruenz zwischen komplementiren Teilen von S her-
leiten liesse. Zum Beispiel 4,4+ A3==A4,+ A,. Nun sind aber alle durch Komple-
mentbildung und Verbinden aus (1) hervorgehenden Kongruenzen im System (2)
gegeben und keine fordert die Kongruenz komplementirer Teile von S. (Eine solche
ist iibrigens unmaglich.) Dieser Fall kann also nicht eintreffen. Demnach hat jedes
Produkt (3) mindestens eine Fixziffer. (Man kénnte diesen Sachverhalt ohne Zuriick-
greifen auf die Kongruenzen auch durch direktes Ausrechnen der Produkte aus
unseren Faktoren R;, R; ! bestitigen. Dieses Verfahren ist aber fiir die Untersuchung
allgemeiner Kongruenzsysteme nicht ohne weiteres anwendbar und lisst den eigent-
lichen Grund der Sache nicht sichtbar werden.)

7. Herstellen der geforderten Kongruenzen. Es ist jetzt nicht mehr schwie-
rig, die Kugeloberfliche S so in vier Teilmengen 4,, 4,, 45, 4, aufzuteilen, dass
die Kongruenzen (1) bestehen. Wir denken uns dazu beliebige vier unabhingige Rota-
tionen @, @,, @3, ¢, gegeben. G sei die von ihnen erzeugte Gruppe.

Zuerst betrachten wir die Aquivalenzklassen, die aus Nicht-Fixpunkten bestehen.
Aus jeder greifen wir einen beliebigen Punkt heraus, den wir mit 1 belegen. Alle
diese Punkte rechnen wir zur Teilmenge A4, . Die weiteren Punkte einer solchen Klasse
werden nun ausgehend vom gewihlten Anfangspunkt # nach folgender Vorschrift
sukzessive verteilt: I'st a irgendeine Operation von G, und gehort der Punkt uo zu Ay,
so werfe man den Punkt uoa @' (1 =1, 2, 3, 4), wobei o @t nicht kiirzbar sei, in eine
Teilmenge A,, fiir welche k R*'1 gilt. u o ! liegt also nur dann in 4,, wenn 2 R*!/
gilt. '

Ausgehend von « in 4, also zum Beispiel: u ¢, in 4, (oder in 4,), 4 ¢, ¢, in Ay
oder 4, (bzw. in 4, oder 4,) usf.

Die Verteilung kann somit auf verschiedene Arten erfolgen. Wir wéhlen bei jedem
Schritt eine der Moglichkeiten. Wesentlich ist nur, dass die Bedingung % R*'l
beachtet wird.

Damit sind simtliche Punkte aller Klassen von Nicht-Fixpunkten in den Teil-
mengen A,, A,, A5, A, untergebracht. Da jeder solcher Punkt eindeutig in der Form
u f§ erhalten werden kann, ist ein Widerspruch ausgeschlossen.

Eine gewisse Schwierigkeit bietet die Verteilung der Fixpunkte. Es sei irgendeine
Aquivalenzklasse von Fixpunkten gegeben. v sei ein Punkt in ihr, der Fixpunkt einer
kiirzesten Operation ¢ der Klasse ist. Es sei & = &; &, - -+ &, wobei dieses Produkt als
nicht kiirzbar angenommen wird. Wir bilden aus v, =v den Zyklus von Punkten

'0151:‘02, v2£2:v3, ey vtft:vl. (4‘)

Letzteres gilt wegen v ¢ =v. Das Produkt R =X, X,... X, der entsprechenden
Relationen R; hat mindestens eine Fixziffer, etwa k. Somit gibt esZiffern x,, x5, ..., %;,
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fiir welche
RX x5, %3X9%3, ..., %X,k

gilt. Wir werfen nun v; = v in 4;, v, in die Teilmenge mit der Nummer x,, v, in die
Teilmenge mit der Nummer x; usw., schliesslich v, in die Teilmenge mit der Nummer
%;. Damit sind die Punkte des Zyklus (4) untergebracht. Ausser diesem Zyklus enthilt
die betrachtete Klasse keinen weiteren, da jeder Punkt der Klasse gemiss Abschnitt 4
eindeutig in der Form v 8 erhalten wird, wobei f die dort angegebenen Eigenschaften
hat. (Aus v’ = v § wiirde namlich § = #" 8’ folgen; f besitzt aber nicht diese Form.)
Die iibrigen Punkte der Klasse konnen wir somit nach der Vorschrift fiir die Nicht-
Fixpunkte verteilen.

Damit ist jeder Punkt von S in eine der Teilmengen A4; untergebracht. Wie wir die
Vorschrift auch anwenden, ist keine der Teilmengen leer. 4, ist von vornherein nicht
leer, wegen 1R;!2 auch A4, nicht. Nun kénnen wir 2R,3 oder 2 R,4 nehmen.
Waihlen wir 2 R, 3, dann ist 44 nicht leer, wegen 3 R;'4 auch A, nicht. Wihlen wir
aber 2 R, 4, so ist A, nicht leer und wegen 4 R3 '3 auch A4, nicht.

Die Verteilung ist so beschaffen, dass genau die Kongruenzen (1) gelten: Die
Rotation ¢, fithrt 4, genau in 4, + 4, iiber usw. Es ist selbstverstindlich, dass man
aus A4, durch ¢, wirklich alle Punkte von 4, und A4, erhilt. Priifen wir das zum Bei-
spiel an irgendeinem Nicht-Fixpunkt @, aus 4,. a, hat seine Nummer 2 auf Grund
von a, = u f§ erhalten. Endet nun § mit ¢,, also a,=u ' ¢,, so ist u 8’ genau der-
jenige Punkt in 4,, aus dem durch ¢, der Punkt a, hervorgeht. Endet § nicht mit
@, so ist es aber der nach Ry!in A4, enthaltene Punkt « 8 ¢; !, aus dem a, hervor-
geht. Ahnlich iiberlegt man fiir einen Fixpunkt a,.

Damit ist der Satz iiber die Zerlegung von S vollstindig bewiesen.

8. Der Satz iiber die Vollkugel. Die Oberfliche S einer Kugel vom Radius 7
werde in der beschriebenen Art in vier Teilmengen A4, zerlegt. Alle Punkte auf dem
Radius, der nach einem Punkte in 4, fithrt — ausser dem Kugelmittelpunkt O — be-
legen wir wie den Endpunkt mit der Nummer ¢. Damit ist die Vollkugel, abgesehen
von O, in vier Teilmengen B,, B,, B;, B, aufgeteilt. Nennen wir eine Vollkugel, aus
der man den Mittelpunkt entfernt hat, mittenleer, so gilt also:

Eine mittenleere Vollkugel kann in vier Teilmengen B,, B,, B,, B, aufgeteilt werden,
so dass man sowohl aus den Teilen B, und B, als auch aus den Teilen B, und B, durch
1e zwei Drehungen je eine zur urspriinglichen Rongruente mittenleere Vollkugel erhiilt.

Der Mittelpunkt O erfordert eine besondere Behandlung. Durch eine geeignete
Anderung unserer fritheren Aufteilung l4sst sich auch O einbeziehen.

Wir gehen zuriick auf unsere Zerlegung der Kugeloberfliche S und nehmen eine
geringfiigige Abidnderung vor. Es wird davon nur eine einzige Klasse von Nicht-
Fixpunkten betroffen. Es sei # irgendein Punkt dieser Klasse, den wir auch mit £
bezeichnen, E = u. Diesen belegen wir mit keiner Nummer, hingegen werfen wir

u@,in A;oder A, wu@ilin 4,,
@y, in Agoder 4,, wu@;'in 4,,
# @y in A; oder A,, wu@z'in A, oder A, oder 4,,

# @y in Ay oder Ay, wu@;'in A, oder A, oder 4,.
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Ausser diesen acht Punkten erfolge die weitere Verteilung genau wie frither. Dann gilt -
Aypr=4,+4,+E, Azps=4;3+4,,

Aypy=A,+4,+E, A p,=A43+4,.

Denn # @; ! geht durch die Drehung ¢, in E iiber, ebenso # @5 ! durch ¢,.

Nehmen wir jetzt eine Vollkugel mit dem Mittelpunkt O und dem Radius 7. Alle
Punkte, deren Abstand von O zwischen O und 7 liegt, numerieren wir mit 1, 2, 3, 4
wie zu Beginn dieses Abschnitts. Die Punkte von S tragen ausser E die soeben er-
klarte Numerierung. Alle Punkte mit der Nummer 1 fassen wir in die Menge 4 zu-
sammen, entsprechend sind B, C’, D die Mengen der Punkte mit der Nummer 2 bzw.
3 und 4. Die Vollkugel ist so in die sechs Teile 4, B, C’, D, E und O aufgeteilt. Nach
Konstruktion gilt '

Ap,=A+B+E, Be,=4+B+E, Ce@;=C+D, De¢g,=C+D.

Da O bei jeder Rotation in sich iibergeht, ist auch (C'+ 0) p3=C’'+ 0 + D, mit
C'+ 0 = C somit C g3= C + D. Die Vollkugel erscheint so in die fiinf Teile 4, B,
C, D, E zerlegt, so dass man aus 4 und C durch die Drehungen ¢, und ¢, wieder eine
gleichgrosse Vollkugel erhilt, aber ebenso aus B, D und E durch die Drehung ¢, von
B, die Drehung ¢, von D und die Translation von E nach O. Damit ist unser Satz
bewiesen. Es ldsst sich, wie ROBINSON zeigte, unschwer einsehen, dass fiir eine solche
Zerlegung mindestens fiinf Teile notig sind.

9. Riickblick. Die Hauptmomente des Beweises fiir die merkwiirdigen Sachver-
halte sind die folgenden: Die Existenz unabhidngiger Rotationen und die daraus sich
ergebende Moglichkeit der eindeutigen Darstellung der Punkte einer Aquivalenz-
klasse, das Auswahlaxiom und der Satz iiber das Vorhandensein einer Fixziffer eines
Produktes von R-Relationen, der sich daraus ergibt, dass die geforderten Kongruen-
zen nicht die Kongruenz komplementérer Teile einer Kugelfliche zur Folge haben
konnen.

Es bleibt zu wiinschen, vier méglichst einfache unabhingige Rotationen zu finden,
fiir die man die dquivalenten Punkte auf der Kugelfliche und deren Numerierung
mit 1, 2, 3, 4 einigermassen anschaulich iiberblicken kénnte.

10. Existenz unabhingiger Rotationen. Wir werden zuerst die Existenz von
zwei unabhingigen Rotationen beweisen. Diesen Fund verdankt man in der Haupt-
sache HAUSDORFF?).

In die z x-Ebene eines rechtwinkligen x y z-Systems legen wie die Gerade g, welche
mit der z-Achse den Winkel 7/2 bildet und dem ersten und dritten Quadranten der
x 2-Ebene angehort. Uber die Grosse v verfiigen wir spiter. Es sei ¢ die Drehung
um g durch 180°, y die Drehung um die z-Achse — im positiven Sinne der x y-Ebene -
durch 120°. Diese Drehungen werden dargestellt durch

@: ¥ = —xcost + zsint, Yy = -y, 2 = xsinT+ 2COST;

(%)

’

p: ¥ =Ax—puy, ¥Y=px+1iy, 2=z

Y} F. HAUSDORFF, Bemerkung tiber den Inhalt von Punktmengen, Math, Ann. 75, 428—433 (1914).
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Dabei ist A= —1/2 und u = V3/2.
Die Rotationen der von ¢ und y erzeugten Gruppe haben wegen ¢?=1 und p3=1
eine der folgenden vier Formen:

-

T=@yTeyT @yt

oder m=9p"ne oder my=nmn@ oder mz=y"m,

wobei m und m; (1 = 0,1, ..., h) entweder 1 oder 2 sind.

Keines dieser Produkte kann die Identitdt darstellen, das heisst, zwischen @ und
y bestehen einzig die Relationen ¢?= y3=1, sofern man v geeignet wihlt. Es geniigt,
dies fiir die Form 7z zu zeigen. Denn aus 7, =1 wiirde ¢ ;¢ =2" =1 folgen, aus
my=1 auch g myp =m; =1 und aus my=1 ergibe sich p* " m,p"=n"=1, wobei
7’ und 7z Produkte der gleichen Art wie st bzw. 74 sind.

Es geniigt also, zu zeigen, dass bei geeignetem 7 das Produkt s niemals die Identitéat
darstellt. zz ist ein Produkt aus Faktoren der Form y, = ¢ y und g, = ¢ 92

Nach (5) erhdlt man, wenn cos7 und sinz mit ¢ und s abgekiirzt werden:

x'=—Acx+puy+Aisz ¥=—Acx—uy+Asz
Vi)Y =—pcx—Ay+usz, y\ ¥y =+pcx—Ay—pusz. (6)
Z=sx4+cz d=sx-+cz

1, und y, unterscheiden sich nur dadurch, dass x4 und — u vertauscht sind. Wir unter-
suchen, in welchen Punkt die Operation 7z als Produkt der Faktoren y, und vy, den
Ausgangspunkt F, (0, 0, 1) iiberfiihrt.

P, gehe bei Wirken des ersten Faktors in P;, P, bei Wirken des zweiten Faktors
in P, usw. iiber. Nach (6) gilt:

Pp: xy=1s, y,=Hdus, z-=-c.
* Allgemein ergeben sich fiir P, die Koordinaten
Kp=S (@pch 14 +0), Yp=s(bpct 14 0), z=cuek4 .-, (7)

Hier sind die Klammern Polynome in ¢ vom Grade £ — 1 und z; ist ein Polynom in ¢
vom Grade %. In der Tat ist dies fiir £ =1 richtig mit

dll‘:l, b]_:il", CI::]..
Nach Einsetzen von (7) in (6) erhdlt man fir B, ;:
Xpr1=S [A(cr—ap) ¢F 4 -],

Yesr =3 [ (cx—ap) ¢+ --1],

B (o= ) P
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Somit haben auch die Koordinaten von P, ; die Form (7) mit

A1 =4 (Ck —ay), bp= +u (e —ag), Cry1=Cp— a.

Also

3 F3\k+1
Chi1— @ri1=(1—4) (cr — @) = 2 (cr— az) = (7) .
Die Koordinate z, des Punktes P, ist also ein Polynom von #-tem Grade in ¢:
"3 \n-1
£, =i (,2)) (cosT)" + - --

Ein Produkt 7 kann somit den Punkt P, nur dann wieder in F, iiberfiihren, wenn
das genannte Polynom den Wert 1 hat. Das ist aber nur fiir héchstens » Werte von
¢ = cos T moglich. Wir denken uns fiir jedes # diese Werte von cost ausgeschlossen,
womit nur abzdhlbar viele Werte betroffen werden. Da der Wertevorrat von cos<t
nicht abzdhlbar ist, gibt es beliebig viele, sogar nicht-abzdhlbar viele cosz, also
auch z, fiir welche kein Produkt = die Identitidt darstellt. Damit ist bewiesen, dass
zwischen ¢ und 9 ausser ¢?= 3 =1 tatsichlich keine Relation besteht, sofern v
entsprechend gewidhlt wird.

Die Rotationen y; = ¢ 9 und y, = ¢ 9?2 sind selbst nicht unabhingig voneinander;
zum Beispiel gilt

(peyi')*= (o g)°=1.

Hingegen stellen w; = 9{ und w, = w3 zwei vollstindig unabhingige Rotationen
dar.

Betrachten wir ndmlich irgend ein Produkt aus den Faktoren w,, w;?}, w,, w; !, das
in diesen nicht kiirzbar ist, und setzen fiir diese die Form in den ¢, y ein, also

=Yooy, o] =pieyie, w,=eyiey? wil=yeye,

kiirzen in den ¢, y, soweit man kiirzen kann, so bleiben der Produktanfang und das
Produktende von den Formen ¢ v, v ¢, ¢ 9%, w?¢ davon unberiihrt.
Die vier Operationen

2 3 4
0 =0y, Op=wiw;, O=ww;, 0= 0,

sind nicht unabhingig, wie die Relation 654, d;'d, =1 zeigt. Hingegen stellen

Pr1= 0 Wy 01 Wy, Q= 0 OF O 0F, Py= 0,00, 05, @= w0, 00 0;
vier unabhingige Rotationen dar, wie wir sie frither voransgesetzt haben. Der Grund
ist derselbe wie der soeben fiir die Unabhingigkeit von w; und w, angegebene.

Wie sich in diesem Abschnitt herausstellte, ist unser Satz somit letzten Endes eine
Folge der Nichtabzdhlbarkeit des Wertevorrats (—1, +1) von cost. Auch hier
erweist sich die Nichtabzdhlbarkeit des Kontinuums, dieses unerschépflichen Borns
der Geometrie, als wesentlich. L. LocHER-ERNST.
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