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ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

Organ fur den Verein Schweizerischer Mathematik- und Physiklehrer

El Math Band XT Nr 2 Seiten 25-48 Basel, 10 März 1956

Wie man aus einer Kugel zwei zu ihr kongruente
Kugeln herstellen kann

1. Einleitung. Die neuere Entwicklung der Mathematik brachte Ergebnisse
zutage, die man sich vor 60 Jahren nicht hatte träumen lassen Em solches Resultat ist
der folgende berühmt gewordene, im Jahre 1947 von R M Robinson1) bewiesene Satz

Eine Vollkugel lasst sich in fünf paarweise punktfremde Teile A, B, C, D, E derart
aufteilen, dass man durch geeignete Drehungen und eine Translation sowohl aus den

zwei Teilen A und C als auch aus den drei Teilen B, D und E ]e eine zur ursprünglichen

kongruente Vollkugel erhalt
Somit kann man bloss durch Anwenden geeigneter Bewegungen aus einer

Vollkugel deren zwei gleichgrosse herstellen Dabei kann man es so einrichten, dass der
eine Teil E nur aus einem Punkte besteht

Mit diesem merkwürdigen Satz kam eine Reihe von Untersuchungen - in erster
Linie von S Banach, A Tarsky und W Sierpinski - zum Abschluss, die von
einer Arbeit von F Hausdorff2) ausgingen In der Abhandlung von Robinson
werden die Hauptmomente der Entwicklung kurz festgehalten Es sei hier auch auf
die anregende Arbeit von H Hadwiger3) hingewiesen, m der diese Entwicklung
anschaulich geschildert wird

Das Ziel der folgenden Darstellung, die sich eng an die Arbeit von Robinson an-
schhesst, besteht dann, einem grosseren Kreis in ausführlicher, möglichst elementarer
Form vollen Einblick zu vermitteln, wie der angegebene Sachverhalt zustande
kommt Die Lektüre der bewunderungswerten Abhandlung von Robinson, die noch

weitergehende Ergebnisse enthalt, durfte dann keine Schwierigkeiten mehr bieten
2. Die von unabhängigen Rotationen erzeugte Gruppe. Wir betrachten die

Drehungen einer Kugel um ihren Mittelpunkt um irgendwelche Achsen durch
beliebige Winkel Diese Drehungen bilden eine Gruppe Bedeuten oo, xp zwei solche

Drehungen, und übt man auf die Kugel zuerst die Drehung od, dann die Drehung xp

aus, so lasst sich das «Produkt» cpxp, was die Endlage jedes Punktes der Kugel
betrifft, durch eine einzige Drehung ersetzen, wobei im allgemeinen die Drehungen
<p xp und xp <p verschieden smd

x) R M Robinson, On the Decomposition of Spheres, Fundamenta Mathematicae 34, 246-260 (1947)
2) F Hausdorff, Bemerkung über den Inhalt von Punktmengen, Math Ann 75, 428-433 (1914)
3) H Hadwiger, Der Inhaltsbegriff, seine Begründung und Wandlung m alterer und neuerer Zeit Mit

teilungen der Naturforschenden Gesellschaft Bern, 11 Band, 1954
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Wie wir später zeigen werden, kann man beliebig viele Rotationen, zum Beispiel
vier, etwa <pt, qj2, 9?3, <p±, angeben, die voneinander unabhängig sind. Das soll heissen:
Übt man auf die Kugel irgendeine Folge von Drehungen |x, f2 > • • • > is aus» wobei
jedes f eine der Grössen cp{, 99 r1 (i 1, 2, 3, 4) ist, so ergibt sich niemals die
ursprüngliche Ausgangslage, es sei denn, das Produkt fx f2 • • • £s stelle in den
Faktoren (p4, <p~rl die Einheit dar.

Wie sich zeigen wird, ist die Existenz solcher unabhängiger Drehungen, die übrigens

plausibel erscheint, ein wesentlicher Kern der ganzen Sache.

Wir nehmen an, dass <px, <p2, yz, <p4 vier unabhängige Drehungen seien. Die Lage
ihrer Achsen und die Grösse ihrer Drehwinkel sind für den Beweisgang nicht wesentlich.

Bei der Drehung <p{ geht ein Punkt u der Kugeloberfläche S in einen bestimmten
Punkt von S über, den wir mit u <p{ bezeichnen. Allgemein ist u fx f2 • • • fs der
Punkt, der aus dem Ausgangspunkt u folgendermassen entsteht: u wird der Drehung
£t unterworfen, der erhaltene Punkt dann der Drehung f2 usw. Dabei bedeutet hier
wie im folgenden £{ immer eine der acht Grössen cp^1, 9?2±1, cp^1, tp^1. Durch
Bilden aller Produkte solcher Art erhält man die ganze von den Elementen <pt

erzeugte Gruppe, die mit G bezeichnet werde.
3. Äquivalenzklassen. Ausgehend von einem beliebigen Punkt u der

Kugeloberfläche S bilden wir alle Punkte u fx £2 • • • fs. Zwei Punkte, die mittels irgendeiner

Operation der Gruppe G zusammenhängen, nennen wir äquivalent. Alle
paarweise äquivalenten Punkte bilden eine Äquivalenzklasse. Zu einem beliebigen
Ausgangspunkt u von S gehört eine bestimmte Äquivalenzklasse, nämlich diejenige, die

aus den Punkten besteht, welche aus u durch die Wirkung aller Produkte |x f2 • • • fs
entstehen. Eine Äquivalenzklasse enthält nur abzählbar viele Punkte.

Nimmt man dann einen ihr nicht angehörenden Punkt u' von S als Ausgangspunkt,
so erhält man aus ihm eine weitere Äquivalenzklasse, usw.

Zwei Äquivalenzklassen sind punktfremd. Denn aus

«'«£•¦•*; «*!*„•••*.
würde

folgen, das heisst u' würde - gegen Annahme - der durch u bestimmten Klasse
angehören.

Durch die Gruppe G wird somit die Kugeloberfläche in eine Menge von paarweise
punktfremden Äquivalenzklassen zerlegt. Diese Menge aller Klassen ist natürlich nicht
abzählbar. Wir werden später aus jeder Klasse einen und nur einen Punkt
herausgreifen, also das Auswahlaxiom benützen.

Ist v ein Punkt von S, der bei der Operation a £t f2 • • • |f fest bleibt, so nennen
wir v einen Fixpunkt.

Ist v ein Fixpünkt, etwa für a, also t/« », dann ist auch jeder zu v äquivalente
Punkt ein Fixpunkt. Beweis: Aus vol v folgt v ß ß'1 aß v ß, wobei ß eine
beliebige Operation der Gruppe G ist. Das heisst, v ß ist ein Fixpunkt der Operation

* Jede Äquivalenzklasse besteht somit entweder aus lauter Nicht-Fixpunkten oder

aus lauter Fixpunkten.
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4. Eindeutige Darstellung der Punkte einer Klasse. Zuerst betrachten wir eine

Äquivalenzklasse von Nicht^Fixpunkten. Ist u irgendein Punkt einer solchen Klasse,
dann ist jeder andere Punkt dieser Klasse eindeutig in der Form u ß darstellbar, wobei
ß ein Produkt von Faktoren ep%, qj'1 darstellt, das in diesen nicht kürzbar ist.

Beweis: Wäre uß uß' mit in den cp% nicht identischen ß und ß', so würde aus

u u ß' ß*1 folgen, dass u ein Fixpunkt ist oder dass ß'ß~x die Einheitsoperation
(Ausgangslage) darstellt. Ersteres ist gegen die Annahme, und letzteres würde besagen,
dass die G erzeugenden vier Drehungen nicht unabhängig sind.

Etwas komplizierter ist es, eine eindeutige Darstellung der Punkte einer Klasse

von Fixpunkten zu gewinnen.
Wir prüfen dazu alle Operationen in G, die in der betrachteten Klasse einen

Fixpunkt haben, auf ihre Länge und nehmen eine unter den kürzesten. Das heisst, die
ausgewählte Operation ist eine solche, die möglichst wenig Faktoren q?^1 aufweist.
Es sei # eine solche. (Ob es mehrere kürzeste gibt, interessiert uns nicht.) v sei ein
Fixpunkt von #, also v & v. Dann gilt:

Jede Kugeldrehung der Gruppe G, die v als Fixpunkt besitzt, hat die Form ol &h

(n ganz).
Beweis: Zunächst stellen wir fest, dass der erste und letzte Faktor von # nicht

invers sein können, da es sonst eine Operation o~Y&o gäbe, die kürzer als & wäre und
in der betrachteten Klasse auch einen Fixpunkt (nämlich v a) hätte. Somit beginnen
& und #-1 nicht mit demselben Faktor.

Da a nach Voraussetzung wie # den Fixpunkt v hat, somit a und & dieselbe Drehachse

besitzen, ist a & & ol, weil das Ergebnis zweier Drehungen mit gleicher Drehachse

von deren Reihenfolge unabhängig ist.
Nun haben wir zwei Möglichkeiten zu prüfen: Entweder ist <x # in den cpt kürzbar

oder nicht kürzbar.
Nehmen wir zuerst den Fall, dass a # nicht kürzbar ist. Dann ist auch # ol nicht

zu kürzen, weil sonst a# #a eine nicht-identische Beziehung zwischen den <pt

darstellen würde, während doch die (pt unabhängig sind. Aus oc #a#-1 #a'
ersieht man, dass in diesem Falle die Drehung a jedenfalls mit dem Block & beginnt.
Da # ol nicht kürzbar ist, lässt sich wegen ot' # # oc' auch ol # nicht kürzen, wegen
a' # <x' #-i somit ol' x9ol". Wiederholen dieser Überlegung zeigt, dass oc #M mit
natürlichem n. (n 0, das heisst oc 1, schhessen wir aus.)

Im andern Falle, wo oc# kürzbar ist, nehmen wir oc#-1, das dann nicht kürzbar
ist, weil erster und letzter Faktor von & nicht invers sind. Mit derselben Schlussweise
wie vorhin ergibt sich wegen ol§~1 /&~1 ol, dass ol &~h mit natürlichem n. Damit
ist der Satz bewiesen. Aus ihm ergibt sich:

Jeder Punkt einer Klasse von Fixpunkten kann eindeutig in der Form v ß geschrieben

werden, wobei ß nicht mit dem Block # beginnt und auch nicht mit dem Inversen des

letzten Faktors von &. v bedeutet dabei einen Fixpunkt einer kürzesten Operation #
der Klasse.

Beweis: Wegen v&m=v (m ganz) könnten wir einen oder mehrere eventuell
vorhandene Blöcke § am Anfang von ß einfach weglassen. Würde # ß kürzbar sein, so

könnten wir statt ß das Produkt #w ß mit genügend grossem m zu Hilfe nehmen,
würden kürzen und die schliesslich sich ergebende Form als unser ß nehmen. Dieses
hat die gewünschte Eigenschaft.



A,i ^,i + A2

A%i~A,i + A2

A3i A,> + A4

A,i A;i + At
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Es bleibt noch zu zeigen, dass diese Darstellung eindeutig ist. Aus v ß v ß',
wobei ß und ß' die genannten Eigenschaften haben, folgt v ß' ß~x= v, somit gemäss
dem eben Bewiesenen ß' ß-1 $n. Für n > 0 zeigt ß' xJn ß, dass ß' gegen Voraussetzung

mit dem Block $ beginnen musste, da & ß nicht kürzbar ist. n > 0 ist somit
nicht möglich. Für n < 0 betrachten wir ß &~nß'; aus denselben Gründen ist auch
dies, also n < 0, nicht möglich. Es bleibt n 0, das heisst ß' — ß, was zu beweisen

war.
5. Gefordertes System von Kongruenzen. Wir werden die Oberfläche S als

Punktmenge in vier Teilmengen Alt A2, Az, A± aufteilen, wobei jeder Punkt von
5 einer und nur einer der Teilmengen At angehört: S =A1-i-A2-}-Az-j-A4t. Wir
werden also jedem Punkt von 5 genau eine der Nummern 1, 2, 3, 4 zuweisen. Es
wird sich als möglich erweisen, die Zerlegung so vorzunehmen, dass zwischen den
Teilen die folgenden, sonderbar genug erscheinenden Kongruenzen bestehen:

somit auch A2 + Az +A±^AZ + AA,

somit auch A1-j-Az-}-A4t^:Az-i-A^,

somit auch A1Jr A2JrA^^:A1-{-A2,

somit auch Ax + A2-\- AZ^:A1 + A2.

Eine solche Kongruenz ist wie folgt zu verstehen: Es gibt eine Drehung q>t, durch
welche Ax genau in Ax -f A2 übergeht, ferner eine Drehung <p2, durch welche A2 genau
in A1JrA2 übergeht, usw. Es gibt also vier Drehungen, welche diese Kongruenzen
bewirken:

A1<p1=^A1 + A2, Az(p3 A3 + At,

A2<p2 A1 + A2, A4c(p4k Az-\-A^.

Selbstverständlich gilt dann auch zum Beispiel

(A2 + Az + At)<p1 Az + Ai', ferner AX^A2, Az^lA±.

Die Kugeloberfläche S erscheint so in zwei Teile Ax + A2 und Az-\~ A± zerlegt, wobei

jeder dieser beiden Teile in je zwei ihm selbst kongruente Teile aufgespalten werden

kann.
Man kann also von S A1 + A2 + Az + A4 zum Beispiel die Teile A2 und A^

entfernen und aus dem Rest AltA3 durch zwei Drehungen wieder die ganze
Oberfläche gewinnen!

Durch Komplementbildung und Verbinden erhält man aus den vier zunächst bloss

geforderten Kongruenzen

A1o*A1 + A2, A2g*A1 + A2, Azg*A9 + AA, Ai^Az-\-Ai (1)

das folgende vollständige System:

A19±A2^A1 + A29*A1 + A2±AiQ£A1 + A2-i-Az,

Azg^A^Az + AA^A2 + Az +A^A^ Az-\-A^.
(2)
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Es erweist sich als nützlich, zum Beispiel zur Kongruenz A1^A1 + A2 und der
gleichbedeutenden A2-\- A3 + Ai^A3 + A± eine Relation Rx einzuführen, die den
Ziffern des Bereiches {l, 2, 3, 4} Ziffern desselben Bereiches zuordnet:

I 2|3|4->3|4

Das soll heissen: Der Ziffer 1 ist die Ziffer 1, aber auch 2 zugeordnet, der Ziffer 2 sind
3 und 4, der Ziffer 3 auch 3 und 4, der Ziffer 4 auch 3 und 4 zugeordnet. Die durch Rx
vermittelten Zuordnungen schreiben wir einzeln auch wie folgt:

1/^1, 1^2, 2R13, 2RX4, 3^3, 37^4, 4^3, 4^4.

Allgemeiner sei eine Relation R folgendermassen erklärt: Jeder der vier Ziffern
1, 2, 3, 4 werden durch R eine oder mehrere der Ziffern 1, 2, 3, 4 zugeordnet; dabei
sollen in den zugeordneten Ziffern wirklich alle Ziffern 1, 2, 3, 4 vorkommen.

Die einer Kongruenz zwischen den Teilmengen A% entsprechende Relation R heisse

normal. Sie hat die Form
\K ->L

R\\K*^L*
wobei K und L je die Mengen aus einer, zwei oder drei der Ziffern 1, 2, 3, 4 bedeuten;
K* und L* sind die Komplemente von K und L bezüglich {l, 2, 3, 4}.

Den vier geforderten Kongruenzen (1) entsprechen die folgenden vier normalen
Relationen R:

i 1 ->1|2 2 ->1|2 | 3 ->3|4 r 4 ->3|4

I2|3|4->3|4 U|3|4->3|4 Il|2|4->1|2 ll|2|3->l|2
Es gelten somit beispielsweise die Zuordnungen

1R23, 1R24, 3RZ4, 2RZ1 usf.

Gilt k Rt k, so heisst k eine Fixziffer von Rt.
6. Produkte von Ä-Relationen. Die zu einer Relation R inverse Relation R-1

sei folgendermassen definiert: Wenn kRl, dann lR~xk. Somit:

(l|2-> 1 (l|2-> 2 (3|4-> 3 (3|4-> 4

l3|4->2|3|4 I 3|4->1|3|4 11|2->1|2|4 ll|2->l|2|3
Das Produkt R R' zweier Relationen R, R' erklären wir wie folgt:
Es gilt kRR'l dann und nur dann, wenn es ein x gibt, für welches kRx und

xR'l richtig sind.
Diese Multiplikation ist assoziativ, aber im allgemeinen nicht kommutativ; ferner

ist RR-1 im allgemeinen nicht die Identität (das heisst i->i für i 1, 2, 3,4).
Eine Relation R heisse vereinend, wenn kRl gilt für mindestens ein festes / und

* 1,2,3,4.
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Wir brauchen die beiden folgenden Satze, die fast selbstverständlich sind
a) Multipliziert man zwei Relationen, von denen mindestens eine vereinend ist, so

ist auch das Produkt vereinend
b) Das Produkt zweier normaler Relationen ist entweder normal oder vereinend
Beweis zu a) Es sei R eine vereinende Relation, Rf irgendeine

fifl|2|3|4->. R,\l+k\

Also i R i fur i 1, 2, 3, 4 Durch R' werden der Ziffer i eine oder mehrere der Ziffern
1, 2, 3, 4 zugeordnet, zum Beispiel die Ziffer / Also j RR'l fur jedes f, das heisst
RR' ist vereinend Aber auch R' R vereinend, da ]R' Ri fur jedes ]

Beweis zu b) Es seien
(K ->Z, [M -+N

R\ R'l
\K*->L* lM*-*N*

zwei normale Relationen K, I, M, N bedeuten also irgendwelche echte Teilmengen
des Bereiches {l, 2, 3,4} und K*,L*, M*, N* die Komplemente von K bzw L,M,N
bezüglich {1, 2, 3, 4} Zum Beispiel K 113 und K* 214

Erster Fall M ~L also auch M* L* Dann ergibt sich als Produkt die normale
Relation

(K ^NRR'l
IK*->N*

Zweiter Fall M L* also auch M* L Dann erhalt man als Produkt die
normale Relation

I K ->N*
RR'l

I K*-+N

Dritter Fall M ist weder mit L noch mit L* identisch Dann hat aber M oder M*
sowohl mit L als auch mit L* mindestens je eine gemeinsame Ziffer Es genügt, den
ersten Fall zu prüfen x sei eine gemeinsame Ziffer von M und L, y eine gemeinsame
Ziffer von M und Z* Wegen KRx, xR'N und K*Ry,yR'N gilt somit jRR'N
fur jedes ] 1, 2, 3, 4 RRh ist somit vereinend, womit b) bewiesen ist

Wir werden jetzt, ausgehend von Rlt R2, Rz, RA Produkte

R^X^, -Xt (3)

bilden, wobei jeder Faktor X% eine der acht Grossen Rx±l, R2±1t R^1, R^1 ist Der
folgende Satz ist nun entscheidend

Jedes Produkt (3) besitzt mindestens eine Fixziffer Beweis Jede vereinende Relation
besitzt eine Fixziffer Wegen der Satze a) und b) brauchen wir somit nur den Fall zu
prüfen, in welchem das Produkt zweier normaler Relationen wieder normal ist In
diesem Falle bedeutet nun die Produktbildung genau das Verbinden zweier
Kongruenzen zu einer neuen Kongruenz Zum Beispiel Aus ^41^^4l + ^42 und
Ax + A2^A2 folgt Ax^A2 sowie A2 + Az-\-Ai9^Al + Az + At
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Dem entspricht exakt die Bildung des Produkts Rx R2
1

:

r 1 ->1|2 fl|2-> 2 t 1 -> 2
RA R*1 also ic,^-1

12|3|4->3|4 13|4->1|3|4 " 12|3|4->1|3|4

Ein solches Produkt könnte somit nur dann keine Fixziffer haben, wenn sich aus den
den Relationen RX,R2,R3, R± entsprechenden Kongruenzen (1) durch Komplementbildung

und Verbinden eine Kongruenz zwischen komplementären Teilen von S
herleiten liesse. Zum Beispiel A1-\-Az^A2 + A4:. Nun sind aber alle durch
Komplementbildung und Verbinden aus (1) hervorgehenden Kongruenzen im System (2)
gegeben und keine fordert die Kongruenz komplementärer Teile von 5. (Eine solche
ist übrigens unmöglich.) Dieser Fall kann also nicht eintreffen. Demnach hat jedes
Produkt (3) mindestens eine Fixziffer. (Man könnte diesen Sachverhalt ohne Zurückgreifen

auf die Kongruenzen auch durch direktes Ausrechnen der Produkte aus
unseren Faktoren Rt, R~* bestätigen. Dieses Verfahren ist aber für die Untersuchung
allgemeiner Kongruenzsysteme nicht ohne weiteres anwendbar und lässt den eigentlichen

Grund der Sache nicht sichtbar werden.)
7. Herstellen der geforderten Kongruenzen. Es ist jetzt nicht mehr schwierig,

die Kugeloberfläche 5 so in vier Teilmengen Ax, A2, Az, A± aufzuteilen, dass
die Kongruenzen (1) bestehen. Wir denken uns dazu beliebige vier unabhängige
Rotationen <plf (p2, qjz, <p4 gegeben. G sei die von ihnen erzeugte Gruppe.

Zuerst betrachten wir die Äquivalenzklassen, die aus Nicht-Fixpunkten bestehen.
Aus jeder greifen wir einen beliebigen Punkt heraus, den wir mit 1 belegen. Alle
diese Punkte rechnen wir zur Teilmenge A±. Die weiteren Punkte einer solchen Klasse
werden nun ausgehend vom gewählten Anfangspunkt u nach folgender Vorschrift
sukzessive verteilt: Ist ol irgendeine Operation von G, und gehört der Punkt uol zu Ak,
so werfe man den Punkt u ol cp^1 (i 1, 2, 3, 4), wobei ol (p^1 nicht kürzbar sei, in eine

Teilmenge At, für welche k R^11 gilt, u ol qj^1 liegt also nur dann in Al, wenn kR^11
gilt.

Ausgehend von u in Ax also zum Beispiel: uqdx in Ax (oder in A2), u <px(p2 in A3
oder A^ (bzw. in A1 oder A2) usf.

Die Verteilung kann somit auf verschiedene Arten erfolgen. Wir wählen bei jedem
Schritt eine der Möglichkeiten. Wesentlich ist nur, dass die Bedingung kR^ll
beachtet wird.

Damit sind sämtliche Punkte aller Klassen von Nicht-Fixpunkten in den

Teilmengen A1,A2,AZ, AA untergebracht. Da jeder solcher Punkt eindeutig in der Form
u ß erhalten werden kann, ist ein Widerspruch ausgeschlossen.

Eine gewisse Schwierigkeit bietet die Verteilung der Fixpunkte. Es sei irgendeine
Äquivalenzklasse von Fixpunkten gegeben, v sei ein Punkt in ihr, der Fixpunkt einer
kürzesten Operation # der Klasse ist. Es sei # fx f2

• • • gt, wobei dieses Produkt als

nicht kürzbar angenommen wird. Wir bilden aus vx v den Zyklus von Punkten

v1g1 v2, v2£2 vz, vtgt^vt. (4)

Letzteres gilt wegen v & v. Das Produkt R =X1X2...Xt der entsprechenden
Relationen Rt hat mindestens eine Fixziffer, etwa k. Somit gibt es Ziffern x2,x3, ...,xt,
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für welche
kXxx2, x2X2x3, xtXtk

gilt. Wir werfen nun vx v in Ak, v2 in die Teilmenge mit der Nummer x2, v3 in die
Teilmenge mit der Nummer xz usw., schliesslich vt in die Teilmenge mit der Nummer
xt. Damit sind die Punkte des Zyklus (4) untergebracht. Ausser diesem Zyklus enthält
die betrachtete Klasse keinen weiteren, da jeder Punkt der Klasse gemäss Abschnitt 4

eindeutig in der Form v ß erhalten wird, wobei ß die dort angegebenen Eigenschaften
hat. (Aus vß' v ß würde nämlich ß $nß' folgen; ß besitzt aber nicht diese Form.)
Die übrigen Punkte der Klasse können wir somit nach der Vorschrift für die Nicht-
Fixpunkte verteilen.

Damit ist jeder Punkt von S in eine der Teilmengen At untergebracht. Wie wir die
Vorschrift auch anwenden, ist keine der Teilmengen leer. Ax ist von vornherein nicht
leer, wegen 1R2X2 auch A2 nicht. Nun können wir 2RX3 oder 2 2^4 nehmen.
Wählen wir 22^3, dann ist Az nicht leer, wegen 3i?4~14 auch A± nicht. Wählen wir
aber 2RX4, so ist A± nicht leer und wegen 4 2^*3 auch Az nicht.

Die Verteilung ist so beschaffen, dass genau die Kongruenzen (1) gelten: Die
Rotation (px führt Ax genau in Ax-\-A2 über usw. Es ist selbstverständlich, dass man
aus Ax durch <px wirklich alle Punkte von Ax und A2 erhält. Prüfen wir das zum
Beispiel an irgendeinem Nicht-Fixpunkt a2 au& A2. a2 hat seine Nummer 2 auf Grund
von a2 uß erhalten. Endet nun ß mit <plt also a2 u ß' y1, so ist uß' genau
derjenige Punkt in Alf aus dem durch <px der Punkt a2 hervorgeht. Endet ß nicht mit
<p1, so ist es aber der nach R{x in Ax enthaltene Punkt u ß<pxl, aus dem a2 hervorgeht.

Ähnlich überlegt man für einen Fixpunkt a2.
Damit ist der Satz über die Zerlegung von 5 vollständig bewiesen.
8. Per Satz über die Vollkugel. Die Oberfläche S einer Kugel vom Radius r

werde in der beschriebenen Art in vier Teilmengen At zerlegt. Alle Punkte auf dem
Radius, der nach einem Punkte in At führt - ausser dem Kugelmittelpunkt 0 -
belegen wir wie den Endpunkt mit der Nummer i. Damit ist die Vollkugel, abgesehen
von 0, in vier Teilmengen BltB2,Bz, B4 aufgeteilt. Nennen wir eine Vollkugel, aus
der man den Mittelpunkt entfernt hat, mittenleer, so gilt also:

Eine mittenleere Vollkugel kann in vier Teilmengen Blf B2, B3, 2?4 aufgeteilt werden,
so dass man sowohl aus den Teilen Bx und B3 als auch aus den Teilen B2 und Z?4 durch
je zwei Drehungen je eine zur ursprünglichen kongruente mittenleere Vollkugel erhält.

Der Mittelpunkt 0 erfordert eine besondere Behandlung. Durch eine geeignete
Änderung unserer früheren Aufteilung lässt sich auch 0 einbeziehen.

Wir gehen zurück auf unsere Zerlegung der Kugeloberfläche S und nehmen eine

geringfügige Abänderung vor. Es wird davon nur eine einzige Klasse von Nicht-
Fixpunkten betroffen. Es sei u irgendein Punkt dieser Klasse, den wir auch mit E
bezeichnen, E u. Diesen belegen wir mit keiner Nummer, hingegen werfen wir

u <px in Az oder A±, u (p{x in Ax,

u <p2 in AB oder A^, u <p2l in A2,

u (p3 in Ax oder ^42, u (pä1 in Ax oder ^42 oder ^44,

u 9?4 in Ax oder A2, u (pj~x in Ax oder A2 oder A3.
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Ausser diesen acht Punkten erfolge die weitere Verteilung genau wie früher. Dann gilt

Ax(px Ax + A2 + E, A3<p3 A3 + At,

A2(p2 Ax-±A2 + E, A^(pA^=A3-{-A4c

Denn u (px
1 geht durch die Drehung cpx m E über, ebenso u <p2x durch cp2.

Nehmen wir jetzt eine Vollkugel mit dem Mittelpunkt 0 und dem Radius r. Alle
Punkte, deren Abstand von 0 zwischen 0 und r liegt, numerieren wir mit 1, 2, 3, 4

wie zu Beginn dieses Abschnitts Die Punkte von S tragen ausser E die soeben
erklarte Numerierung Alle Punkte mit der Nummer 1 fassen wir in die Menge A
zusammen, entsprechend smd B, C', D die Mengen der Punkte mit der Nummer 2 bzw.
3 und 4. Die Vollkugel ist so m die sechs Teile A, B, C', D, E und 0 aufgeteilt Nach
Konstruktion gilt

Acpx A+B+E, Bcp2 A +B+E, C'(p3 C' + D, D<p^C' + D.

Da 0 bei jeder Rotation in sich übergeht, ist auch (C'-f 0) q>3= C'-f 0 +2), mit
C -f- 0 C somit C<p3= C + D. Die Vollkugel erscheint so in die fünf Teile A, B,
C, D, E zerlegt, so dass man aus A und C durch die Drehungen q>x und (pz wieder eine
gleichgrosse Vollkugel erhalt, aber ebenso aus B, D und E durch die Drehung cp2 von
B, die Drehung (p± von D und die Translation von E nach 0 Damit ist unser Satz
bewiesen. Es lasst sich, wie Robinson zeigte, unschwer einsehen, dass fur eine solche
Zerlegung mindestens fünf Teile notig smd

9. Rückblick. Die Hauptmomente des Beweises fur die merkwürdigen Sachverhalte

smd die folgenden Die Existenz unabhängiger Rotationen und die daraus sich
ergebende Möglichkeit der eindeutigen Darstellung der Punkte einer Aquivalenz-
klasse, das Auswahlaxiom und der Satz über das Vorhandensein einer Fixziffer eines
Produktes von 2v!-Relationen, der sich daraus ergibt, dass die geforderten Kongruenzen

nicht die Kongruenz komplementärer Teile einer Kugelflache zur Folge haben
können.

Es bleibt zu wünschen, vier möglichst einfache unabhängige Rotationen zu finden,
fur die man die äquivalenten Punkte auf der Kugelflache und deren Numerierung
mit 1, 2, 3, 4 eimgermassen anschaulich überblicken konnte.

10. Existenz unabhängiger Rotationen. Wir werden zuerst die Existenz von
zwei unabhängigen Rotationen beweisen. Diesen Fund verdankt man in der Hauptsache

Hausdorff1).
In die z #-Ebene eines rechtwinkligen x y 2-Systems legen wie die Gerade g, welche

mit der 2-Achse den Winkel t/2 bildet und dem ersten und dritten Quadranten der
x 2-Ebene angehört Über die Grosse r verfugen wir spater. Es sei oo die Drehung
um g durch 180°, xp die Drehung um die z-Achse - im positiven Sinne der x y-Ebene -
durch 120°. Diese Drehungen werden dargestellt durch

w x' — x cosr + zsmr, y'= — y, z' x smr -f z cosr, \
(5)

xp x' Xx — jiiy, y' fi x -f-Xy, z' z.

*) F Hausdorff, Bemerkung über den Inhalt von Punktmengen, Math. Ann 75, 428-433 (1914).



34- L Locher Ernst Wie man aus einer Kugel zwei zu ihr kongruente Kugeln herstellen kann

Dabei ist A -1/2 und pt 1/3/2.
Die Rotationen der von cp und xp erzeugten Gruppe haben wegen cp2=l und xpz — ]

eine der folgenden vier Formen

Jl (p \pmi (p \pm* • (p\p mh

oder nx~ xpm7t(p oder n2^-n<p oder 7t3=xpm7t,

wobei m und m%(% — 0,1, h) entweder 1 oder 2 smd.
Keines dieser Produkte kann die Identität darstellen, das heisst, zwischen cp und

xp bestehen einzig die Relationen (p2 xps l, sofern man r geeignet wählt. Es genügt,
dies fur die Form n zu zeigen. Denn aus nx — 1 wurde od nx <p ri 1 folgen, aus

tz2 1 auch <p n2 oo nz 1 und aus n3 1 ergäbe sich xp2~m n3 xpm tz' — 1, wobei

ri und n'z Produkte der gleichen Art wie n bzw. tz3 smd
Es genügt also, zu zeigen, dass bei geeignetem r das Produkt n niemals die Identität

darstellt, n ist em Produkt aus Faktoren der Form xpx=(pxp und xp2 cpxp2.

Nach (5) erhalt man, wenn cosr und sinr mit c und s abgekürzt werden

#' — — Xc x + piy + Xs z

Wi\ y' ~~/^ c # — Xy + pt sz,

z' S X + c z

V>2

x' — —Xc x — pty + X s z

y' =r -f^ c# — Xy — /as z.

z' s x -\- c z

(6)

yjx und ^2 unterscheiden sich nur dadurch, dass ja und — ju vertauscht smd. Wir
untersuchen, m welchen Punkt die Operation tz als Produkt der Faktoren xpx und xp2 den

Ausgangspunkt P0 (0, 0, 1) überfuhrt.
P0 gehe bei Wirken des ersten Faktors in Px, Px bei Wirken des zweiten Faktors

m P2 usw. über. Nach (6) gilt

Px xx — X s, yx— ±jli s, zx~c.

Allgemein ergeben sich fur Pk die Koordinaten

xk^s(akck-x+-•*), yk-sfikc*"-1^ zk ckc« + (7)

Hier smd die Klammern Polynome in c vom Grade k — 1 und zk ist ein Polynom in c

vom Grade k. In der Tat ist dies fur k 1 richtig mit

ax~X, bx=^zpL, cx — l.

Nach Einsetzen von (7) in (6) erhalt man fur Pk + 1

%k+i^s[X(ck-ak)ck +•••],

y* + i s[±fÄ(ck~ak)ck +...],
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Somit haben auch die Koordinaten von Pk + l die Form (7) mit

ak + 1 X(ck- ak), bk + 1= ±pt(ck~ak), ck + 1 ck-ak.
Also

3 / 3 \* +1
Ck + i - 0* + i (1 - X) (ck — ak) -j (ck - ak) (yj

Die Koordinate zn des Punktes Pn ist also em Polynom von w-tem Grade in c

3\n i""-(11* (cosr)M +

Em Produkt tz kann somit den Punkt P0 nur dann wieder in P0 überfuhren, wenn
das genannte Polynom den Wert 1 hat. Das ist aber nur fur höchstens n Werte von
c cosr möglich. Wir denken uns fur jedes n diese Werte von cosr ausgeschlossen,
womit nur abzahlbar viele Werte betroffen werden. Da der Wertevorrat von cosr
nicht abzahlbar ist, gibt es beliebig viele, sogar nicht-abzahlbar viele cosr, also
auch t, fur welche kein Produkt tz die Identität darstellt Damit ist bewiesen, dass

zwischen qp und xp ausser cp2 xp3 1 tatsachlich keine Relation besteht, sofern r
entsprechend gewählt wird

Die Rotationen xpx <pxp und xp2 qpxp2 smd selbst nicht unabhängig voneinander,
zum Beispiel gilt

(V,2Vr1)8=(W9?)8 1-

Hingegen stellen cox xpx und co2 xp\ zwei vollständig unabhängige Rotationen
dar.

Betrachten wir namhch irgend em Produkt aus den Faktoren ojx, cof1, co2, cof1, das

in diesen nicht kurzbar ist, und setzen fur diese die Form in den cp, xp em, also

ojx (p xp (p xp, cofx xp2 cp xp2 (p, oj2 (p xp2 <p xp2, cof
1

xp q) xp qj,

kurzen m den cp, xp, soweit man kurzen kann, so bleiben der Produktanfang und das
Produktende von den Formen qo xp, xp qp, qo xp2, xp2 qo davon unberührt.

Dxe vier Operationen

di coxco2, d2 oox coi, dz -= ojx cof, (54 ojx oi\

sind nicht unabhängig, wie die Relation dfx b2 b3 x
(54 1 zeigt. Hingegen stellen

qpx ojx co2 cox co2, q>2= cox a>£ cox coi, q)z — cox coi cox cof, <p4 cox co\ cox coi

vier unabhängige Rotationen dar, wie wir sie früher vorausgesetzt haben. Der Grund
ist derselbe wie der soeben fur die Unabhängigkeit von cox und co2 angegebene.

Wie sich in diesem Abschnitt herausstellte, ist unser Satz somit letzten Endes eine
Folge der Nichtabzahlbarkeit des WerteVorrats (—1, -f 1) von cosr. Auch hier
erweist sich die Nichtabzahlbarkeit des Kontmuums, dieses unerschöpflichen Borns
der Geometrie, als wesentlich. L. Locher-Ernst.
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