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130 Ungeloste Probleme

‘Wie bekannt, gibt es

45 Pascalsche Punkte,
60 Pascalsche Geraden,
60 Kirkmansche Punkte,
20 Steinersche Punkte,
15 Steinersche Geraden,
20 Cayleysche Geraden,
15 Salmonsche Punkte.

Die in Betracht kommenden Konfigurationen sind:
60 Pascalsche Geraden und 45 Pascalsche Punkte ergeben die Konfiguration (60,4, 45,).
60 Pascalsche Geraden und 60 Kirkmansche Punkte ergeben die Konfiguration (60,, 60,).
Diese besteht aus 6 Desarguesschen (10g, 105).
15 Steinersche Geraden und 20 Steinersche Punkte ergeben die Konfiguration (15, 20,).
20 Cayleysche Geraden und 15 Salmonsche Punkte ergeben die Konfiguration (20,, 15,).
15 Steinersche 4 20 Cayleysche Geraden und 20 Steinersche + 15 Salmonsche Punkte
ergeben die Konfiguration (35,, 35,).
60 Pascalsche + 20 Cayleysche Geraden und 60 Kirkmansche + 20 Steinersche Punkte
ergeben die Konfiguration (80,, 80,).
Die beiden Figuren enthalten:

innerhalb | ausserhalb

des Kreises | des Kreises
Pascalsche Punkte . . . . 15 25 5 ausserhalb der Figur
Pascalsche Geraden . . . 60
Kirkmansche Punkte . . . 28 30 2 ausserhalb der Figur
Steinersche Punkte. . . . 10 9 1 ausserhalb der Figur
Steinersche Geraden . . . 3 3 Rest nicht gezeichnet
Cayleysche Geraden . . . - 5 Rest nicht gezeichnet
Salmonsche Punkte . . . - 1 Rest nicht gezeichnet

Um die Figuren nicht zu iiberlasten, ist eine grossere Zahl von Punkten und Geraden
weggelassen. Die Anordnung der in Figur 1 unten gezeichneten Punkte und Geraden
ist selbstverstandlich nur schematisch zu verstehen.

Man kann die Pascalsche Konfiguration auch fiir das regelméissige Sechseck zeichnen.
Dabei sind 6 Pascalsche Geraden unendlich fern und 3mal je 4 fallen zusammen,
so dass man nur 45 dieser Geraden zeichnen kann. 18 Kirkmansche Punkte sind
unendlich fern, wéahrend 6 in den Mittelpunkt des Kreises fallen.

Einen weiteren Spezialfall erhdlt man, wenn der Kegelschnitt in zwei Geraden
zerfallt. K. Wanka, Wien.

Ungeloste Probleme

Nr. 8. Anlisslich eines Vortrages im Mathematischen Kolloquium Winterthur im
Sommer 1947 erorterte H. HopF!) verschiedene Sitze iiber stetige Funktionen auf
der Kugelfliche. Es zeigt sich, dass verschiedene dltere und neuere Aussagen dieser
Art mit einem zentralen Satz in engste Beziehung gebracht werden konnen, der auch
vom erwdhnten Referenten als eventuell giiltig gestreift wurde, dessen Nachweis aber

!) EL Math. 2, 119-120 (1947).
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unseres Wissens bis heute noch nicht gliickte. In einigen wichtigen Sonderfillen ist
seine Richtigkeit dagegen festgestellt worden. Es handelt sich um den folgenden Satz:
Bezeichnet {(P) eine stetige Funktion der Punkte P dey Kugelfliche S, und ist (44, By, Cy>
ewn beliebig vorgegebenes sphirisches Dreieck auf S mit den Eckpunkten A,, B, und
Co, so gibt es auf S ein Dreieck (A, B, C), das mit dem vorgegebenen Dreieck kongruent
ist, so dass die Funktion in seinen Eckpunkten gleiche Werte annimmt, so dass also
(4) = {(B) = {(C) wird.

Wir erwihnen wichtige gekldrte Sonderfille und Korollarien:

aa) Der Satz ist richtig, wenn das Dreieck gleichseitig ist; dies wurde von A. DE
Mira FERNANDES!) gezeigt.

ab) Der Satz ist insbesondere richtig, wenn das Dreieck gleichseitig und recht-
winklig ist. Dieser noch speziellere, aber wichtige «orthogonale» Fall wurde etwas
frither von S. KAkuTANI?) erledigt. Eine stetige Richtungsfunktion im Raum nimmt
also fiir drei geeignete paarweise orthogonale Richtungen gleiche Werte an.

ac) Der Satz ist richtig, wenn das Dreieck in der Weise entartet ist, dass zwei seiner
Eckpunkte ein antipodisches Paar bilden. Dies wiederum ist ein Korollar eines neueren
Resultates von G. R. LiveEsay?), das noch wesentlich mehr aussagt. Danach gibt
es namlich zwei antipodische Punktepaare mit beliebig vorgeschriebenem Zwischen-
winkel der beiden Kugeldurchmesser, so dass die Funktion in allen vier Punkten den-
selben Wert annimmt. An die Stelle eines Dreiecks ist hier also ein beliebiges Recht-
eck getreten, das einem Grosskreis der Kugelfliche einbeschrieben ist. Auch hier
wurde der «orthogonale» Fall frither durch F. J. Dyson?) entdeckt. Danach gibt es
also ein Grosskreisquadrat derart, dass die Funktion in allen vier Eckpunkten iiber-
einstimmenden Wert aufweist.

Aussagen iiber stetige Funktionen der hier betrachteten Art sind als Hilfssdtze bei
mannigfaltigen geometrischen Beweisen ausserordentlich leistungsfihig. Hier einige
zum Teil geldufige Anwendungen: ba) Einer stetig gekriimmten Eifldche ldsst sich
stets ein regulires Tetraeder so einschreiben, dass einer der vier Eckpunkte mit
einem beliebig vorgeschriebenen Eiflichenpunkt zusammenfillt. Zum Beweis kon-
struiert man die gerade stetige Richtungsfunktion f(P) = s, wo s die Lénge der Ei-
flichensehne durch den vorgeschriebenen Punkt bezeichnet, welche parallel zum
Kugeldurchmesser durch P gelegt ist. Nun wende man die Aussage aa) fiir ein gleich-
seitiges Dreieck der Seitenldnge 7z/3 an.

bb) Einem konvexen Kérper lisst sich stets ein Wiirfel umschreiben. Um den
Beweis zu fithren, betrachte man die gerade stetige Richtungsfunktion f(P) = b, wo
b die Breite des konvexen Kérpers in der durch den Kugelpunkt P gekennzeichneten
Richtung bedeutet. Dann wende man die Aussage ab) an. Die drei Stiitzebenenpaare
in den drei Raumrichtungen gleicher Breite ergeben einen umschriebenen Wiirfel.

be) Einer Eifliche lisst sich ein Quadrat so einbeschreiben, dass die Quadratmitte
mit einem beliebig vorgeschriebenen, von der Eifliche umschlossenen Raumpunkt
zusammenfillt. Hier betrachte man die stetige Richtungsfunktion f(P) =h, wo &
die Linge der vom gewihlten Raumpunkt im Innern der Eifliche in der Richtung P

1) Portugaliae Math. 4, 69-72 (1943).
2) Ann. Math. 43, 739-741 (1942).
3) Ann. Math. 59, 227-229 (1954).
4y Ann. Math. 54, 534-536 (1951).
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auslaufenden Halbsehne bezeichnet. Nun wende man die Aussage ac) im «orthogo-
nalen» Fall an.

Erweiterungen der Sitze iiber stetige Richtungsfunktionen der hier besprochenen
Art auf Rdume héherer Dimensionen sind nur in einzelnen Féllen bekannt. So haben
H.YAMABE und Z. YujoBo?!) das Theorem von S. KAKUTANI verallgemeinert. Danach
nimmt eine stetige Richtungsfunktion des k-dimensionalen Raumes in % paarweise
orthogonalen Richtungen den ndmlichen Wert an. Hier stellt sich das Problem, alle
Aussagen, die oben im Falle des gewohnlichen Raumes erldutert worden sind, sinn-
gemdss auf Ridume beliebiger Dimension zu iibertragen. H. HADWIGER.

Aufgaben

Aufgabe 221. Alle vier Seitenflichen eines Tetraeders sollen gleichen Fliacheninhalt

haben. Man beweise, dass folgende drei Punkte zusammenfallen:

1. Der Mittelpunkt der einbeschriebenen Kugel, das heisst der alle vier Seitenflichen
innerlich beriihrenden Kugel.

2. Der Mittelpunkt der Umkugel, das heisst der durch die vier Eckpunkte gehenden
Kugel.

3. Der Schwerpunkt des Tetraeders. F.GorLpNER, London.

Lésung: Zu einem beliebigen Dreieck als Grundfliche kann man direkt ein Tetra-
eder mit den vorausgesetzten und behaupteten Eigenschaften finden, indem man durch
die Ecken des Dreiecks Parallele zu den Gegenseiten zieht und die so entstehenden vier
kongruenten Dreiecke als Netz des Tetraeders auffasst. Weil die Umkreise der Seiten-
flichen dieses Tetraeders kongruent sind, hat der Mittelpunkt der Umkugel von den
Seitenflichen gleiche Abstdnde und fillt also mit dem Inkugelmittelpunkt zusammen.
Der Abstand des Tetraederschwerpunktes von einer Seitenflache ist gleich einem
Viertel der zugehorigen Tetraederhohe. Aus der Betrachtung des Volumens folgt, dass
die Tetraederhohen gleich lang sind, also fédllt der Schwerpunkt in den Inkugelmittel-
punkt.

Das angegebene Tetraeder ist aber auch das einzige mit flaichengleichen Seitenfldchen.
Geometrische Orter tiir die Spitze des zum gegebenen Dreieck als Grundfliche geho-
renden Tetraeders sind drei Kreiszylinder, von denen jeder eine Dreiecksseite als Achse
und die zugehorige Dreieckshohe als Radius hat. Ihre Durchdringungen haben die
Grundfliche zur Symmetrieebene und projizieren sich also darauf als drei Kurvenbdgen
zweiter Ordnung (Hyperbelbogen) eines durch vier Grundpunkte bestimmten Kegel-
schnittbiischels, indem jede Kurve durch die vier Schnittpunkte der beiden andern
geht. Drei der Grundpunkte sind aber identisch mit den Ecken des erwidhnten Netz-
Dreiecks, die zugehoérigen Zylinderschnittpunkte liegen in der Ebene der Grundfliche
und ergeben keine eigentlichen Tetraeder. Es verbleibt der vierte Grundpunkt als
Hohenfusspunkt des einzig moglichen Tetraeders.

Es sei noch bemerkt, dass die Hohe % sich in folgender Weise durch die Seiten a, b, ¢
der Grundfliche ausdriickt:

2
2V2F

A= V(a®+b2—c?) (a2— b2+ ¢c?) (—a2+ b2 +c?), F=|s(s—a)(s—b)(s—c).
G.BALASTER, Ziirich.

Die Tatsache, dass die Seitenflichen des Tetraeders bei gleichem Flicheninhalt
kongruent sind, woraus die behaupteten Eigenschaften wie oben unmittelbar folgen,

1) QOsaka math. J. 2, 19-22 (1950).
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