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Wie bekannt, gibt es
45 Pascalsche Punkte,
60 Pascalsche Geraden,
60 Kirkmansche Punkte,
20 Steinersche Punkte,
15 Steinersche Geraden,
20 Cayleysche Geraden,
15 Salmonsche Punkte.

Die m Betracht kommenden Konfigurationen sind:
60 Pascalsche Geraden und 45 Pascalsche Punkte ergeben die Konfiguration (603,
60 Pascalsche Geraden und 60 Kirkmansche Punkte ergeben die Konfiguration (603,

Diese besteht aus 6 Desarguesschen (103, 103)
15 Steinersche Geraden und 20 Steinersche Punkte ergeben die Konfiguration (154,
20 Cayleysche Geraden und 15 Salmonsche Punkte ergeben die Konfiguration (203,

454)
603)

203)
15.)

15 Steinersche + 20 Cayleysche Geraden und 20 Steinersche + 15 Salmonsche Punkte
ergeben die Konfiguration (354, 354).

60 Pascalsche + 20 Cayleysche Geraden und 60 Kirkmansche + 20 Steinersche Punkte
ergeben die Konfiguration (804, 804).

Die beiden Figuren enthalten

innerhalb ausserhalb
des Kreises des Kreises

Pascalsche Punkte 15 25 5 ausserhalb der Figur
Pascalsche Geraden 60

Kirkmansche Punkte 28 30 2 ausserhalb der Figur
Steinersche Punkte 10 9 1 ausserhalb der Figur
Steinersche Geraden 3 3 Rest nicht gezeichnet
Cayleysche Geraden - 5 Rest nicht gezeichnet
Salmonsche Punkte - 1 Rest nicht gezeichnet

Um die Figuren nicht zu überlasten, ist eine grossere Zahl von Punkten und Geraden
weggelassen. Die Anordnung der in Figur 1 unten gezeichneten Punkte und Geraden
ist selbstverständlich nur schematisch zu verstehen.

Man kann die Pascalsche Konfiguration auch fur das regelmassige Sechseck zeichnen
Dabei smd 6 Pascalsche Geraden unendlich fern und 3mal je 4 fallen zusammen,
so dass man nur 45 dieser Geraden zeichnen kann 18 Kirkmansche Punkte sind
unendlich fern, wahrend 6 in den Mittelpunkt des Kreises fallen.

Einen weiteren Spezialfall erhalt man, wenn der Kegelschnitt in zwei Geraden
zerfallt K Wanka, Wien.

Ungelöste Probleme

Nr. 8. Anlasshch eines Vortrages im Mathematischen Kolloquium Winterthur im
Sommer 1947 erörterte H. Hopf1) verschiedene Sätze über stetige Funktionen auf
der Kugelfläche. Es zeigt sich, dass verschiedene altere und neuere Aussagen dieser
Art mit einem zentralen Satz m engste Beziehung gebracht werden können, der auch
vom erwähnten Referenten als eventuell gültig gestreift wurde, dessen Nachweis aber

*) El Math. 2, 119-120 (1947)
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unseres Wissens bis heute noch nicht glückte. In einigen wichtigen Sonderfällen ist
seine Richtigkeit dagegen festgestellt worden. Es handelt sich um den folgenden Satz:
Bezeichnet f(P) eine stetige Funktion der Punkte P der Kugelfläche S, und ist (A0,B0, C0>
ein beliebig vorgegebenes sphärisches Dreieck auf S mit den Eckpunkten A0, B0 und
C0, so gibt es auf S ein Dreieck <[A, B, C>, das mit dem vorgegebenen Dreieck kongruent
ist, so dass die Funktion in seinen Eckpunkten gleiche Werte annimmt, so dass also

f(A) f(B) f(C) wird.
Wir erwähnen wichtige geklärte Sonderfälle und Korollarien:
aa) Der Satz ist richtig, wenn das Dreieck gleichseitig ist; dies wurde von A. de

Mira Fernandes1) gezeigt.
ab) Der Satz ist insbesondere richtig, wenn das Dreieck gleichseitig und

rechtwinklig ist. Dieser noch speziellere, aber wichtige «orthogonale» Fall wurde etwas
früher von S. Kakutani2) erledigt. Eine stetige Richtungsfunktion im Raum nimmt
also für drei geeignete paarweise orthogonale Richtungen gleiche Werte an.

ac) Der Satz ist richtig, wenn das Dreieck in der Weise entartet ist, dass zwei seiner

Eckpunkte ein antipodisches Paar bilden. Dies wiederum ist ein Korollar eines neueren
Resultates von G. R. Livesay3), das noch wesentlich mehr aussagt. Danach gibt
es nämlich zwei antipodische Punktepaare mit beliebig vorgeschriebenem Zwischenwinkel

der beiden Kugeldurchmesser, so dass die Funktion in allen vier Punkten
denselben Wert annimmt. An die Stelle eines Dreiecks ist hier also ein beliebiges Rechteck

getreten, das einem Grosskreis der Kugelfläche einbeschrieben ist. Auch hier
wurde der «orthogonale» Fall früher durch F. J. Dyson4) entdeckt. Danach gibt es
also ein Grosskreisquadrat derart, dass die Funktion in allen vier Eckpunkten
übereinstimmenden Wert aufweist.

Aussagen über stetige Funktionen der hier betrachteten Art sind als Hilfssätze bei
mannigfaltigen geometrischen Beweisen ausserordentlich leistungsfähig. Hier einige
zum Teil geläufige Anwendungen: ba) Einer stetig gekrümmten Eiflache lässt sich
stets ein reguläres Tetraeder so einschreiben, dass einer der vier Eckpunkte mit
einem beliebig vorgeschriebenen Eiflächenpunkt zusammenfällt. Zum Beweis
konstruiert man die gerade stetige Richtungsfunktion f(P) s, wo 5 die Länge der Ei-
flächensehne durch den vorgeschriebenen Punkt bezeichnet, welche parallel zum
Kugeldurchmesser durch P gelegt ist. Nun wende man die Aussage aa) für ein
gleichseitiges Dreieck der Seitenlänge nß an.

bb) Einem konvexen Körper lässt sich stets ein Würfel umschreiben. Um den

Beweis zu führen, betrachte man die gerade stetige Richtungsfunktion f(P) b, wo
b die Breite des konvexen Körpers in der durch den Kugelpunkt P gekennzeichneten

Richtung bedeutet. Dann wende man die Aussage ab) an. Die drei Stützebenenpaare
in den drei Raumrichtungen gleicher Breite ergeben einen umschriebenen Würfel.

bc) Einer Eifläche lässt sich ein Quadrat so einbeschreiben, dass die Quadratmitte
mit einem beliebig vorgeschriebenen, von der Eifläche umschlossenen Raumpunkt
zusammenfällt. Hier betrachte man die stetige Richtungsfunktion f(P) h, wo h

die Länge der vom gewählten Raumpunkt im Innern der Eifläche in der Richtung P

*) Portugaliae Math. 4, 69-72 (1943).
2) Ann. Math. 43, 739-741 (1942).
3) Ann. Math. 59, 227-229 (1954).
4) Ann. Math. 54, 534-536 (1951).
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auslaufenden Halbsehne bezeichnet. Nun wende man die Aussage ac) im «orthogonalen»

Fall an.
Erweiterungen der Satze über stetige Richtungsfunktionen der hier besprochenen

Art auf Räume höherer Dimensionen smd nur m einzelnen Fallen bekannt. So haben
H. Yamabe und Z. Yujobo1) das Theorem von S. Kakutani verallgemeinert. Danach
nimmt eine stetige Richtungsfunktion des Ä-dimensionalen Raumes m k paarweise
orthogonalen Richtungen den nämlichen Wert an. Hier stellt sich das Problem, alle
Aussagen, die oben im Falle des gewöhnlichen Raumes erläutert worden smd,
sinngemäss auf Räume beliebiger Dimension zu übertragen. H Hadwiger.

Aufgaben

Aufgabe 221. Alle vier Seitenflachen eines Tetraeders sollen gleichen Flächeninhalt
haben Man beweise, dass folgende drei Punkte zusammenfallen
1 Der Mittelpunkt der einbeschriebenen Kugel, das heisst der alle vier Seitenflächen

innerlich berührenden Kugel
2 Der Mittelpunkt der Umkugel, das heisst der durch die vier Eckpunkte gehenden

Kugel
3 Der Schwerpunkt des Tetraeders F Goldner, London

Losung Zu einem beliebigen Dreieck als Grundflache kann man direkt em Tetraeder

mit den vorausgesetzten und behaupteten Eigenschaften finden, indem man durch
die Ecken des Dreiecks Parallele zu den Gegenseiten zieht und die so entstehenden vier
kongruenten Dreiecke als Netz des Tetraeders auffasst Weil die Umkreise der Seiten-
flachen dieses Tetraeders kongruent smd, hat der Mittelpunkt der Umkugel von den
Seitenflächen gleiche Abstände und fallt also mit dem Inkugelmittelpunkt zusammen
Der Abstand des Tetraederschwerpunktes von einer Seitenfläche ist gleich einem
Viertel der zugehörigen Tetraederhohe Aus der Betrachtung des Volumens folgt, dass
die Tetraederhohen gleich lang smd, also fallt der Schwerpunkt m den Inkugelmittelpunkt

Das angegebene Tetraeder ist aber auch das einzige mit flachengleichen Seitenflachen
Geometrische Orter fur die Spitze des zum gegebenen Dreieck als Grundflache
gehörenden Tetraeders sind drei Kreiszylinder, von denen jeder eine Dreiecksseite als Achse
und die zugehörige Dreieckshohe als Radius hat Ihre Durchdringungen haben die
Grundflache zur Symmetrieebene und projizieren sich also darauf als drei Kurvenbogen
zweiter Ordnung (Hyperbelbogen) eines durch vier Grundpunkte bestimmten Kegel-
schnittbuschels, indem jede Kurve durch die vier Schnittpunkte der beiden andern
geht. Drei der Grundpunkte smd aber identisch mit den Ecken des erwähnten Netz-
Dreiecks, die zugehörigen Zylinderschnittpunkte liegen m der Ebene der Grundflache
und ergeben keine eigentlichen Tetraeder Es verbleibt der vierte Grundpunkt als
Hohenfusspunkt des einzig möglichen Tetraeders

Es sei noch bemerkt, dass die Hohe h sich m folgender Weise durch die Seiten a, b, c
der Grundflache ausdruckt *

— \/(a2+b2-c2) (a2~b2+c2) (-a2 + b2 + c2), F=Ys(s-a) (s-b) (s -c~)
2J/2F

G Balaster, Zürich
Die Tatsache, dass die Seitenflächen des Tetraeders bei gleichem Flächeninhalt

kongruent sind, woraus die behaupteten Eigenschaften wie oben unmittelbar folgen,

x) Osaka math J 2, 19-22 (1950)
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