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88 Ungelöste Probleme

P', P", Pm auf die drei Koordinatenebenen drei Gerade p', p", p'" erfüllen, die im
Bild parallel zu z8, xs, y8 erscheinen. Der Ort der Punkte P ist mithin eine Raumgerade

p von ganz bestimmter Richtung. Denkt man sich nun den abzubildenden
Gegenstand G zunächst in der Richtung p auf die (y 2)-Ebene projiziert, so entsteht
hier ein Schrägriss Gt, dessen axonometrisches Bild G( sich mit dem Bild Gs des

Gegenstandes deckt. Da zwischen Gx und G( Affinität besteht, so ist damit bewiesen,
dass das axonometrische Bild G8 des Gegenstandes zu seinem Schrägriss Gx affin ist.

Damit ist ein hinreichender Einblick in das Wesen des axonometrischen Bildes

gewonnen, der die Gesetze der Parallelprojektion, soweit sie affiner Natur sind -
und nur auf diese kommt es tatsächlich an - anzuwenden gestattet. Von diesem

Gesichtspunkt aus erscheint es kaum begreiflich, dass dem (an sich natürlich
interessanten) Pohlkeschen Lehrsatz, der ja einen ausgesprochen metrischen Inhalt hat,
bislang eine so fundamentale Bedeutung für die Axonometrie beigemessen wurde.
Eine bewusste Abkehr von dieser Tradition ist anscheinend erstmalig in dem
ausgezeichneten Werk von E. Stiefel vollzogen worden, das im wesentlichen ebenfalls
die hier dargelegte Auffassung vertritt1). Im übrigen steht auch F. Hohenberg im
Grunde genommen auf dem gleichen Standpunkt, wie schon die Einleitung seines
Aufsatzes andeutet; einer persönlichen Mitteilung zufolge legt sein im Druck
befindliches Buch Konstruktive Geometrie für Techniker bei der Behandlung der schiefen
Axonometrie zunächst besonderes Gewicht auf die affinen Eigenschaften derAbbildung
und bringt den Pohlke-Satz erst als abschliessende Ergänzung. W.Wunderlich, Wien.

Ungelöste Probleme

Nr. 6. P. Erdös schilderte kürzlich (Besuch in der Schweiz im November 1954)
verschiedene Fragen der kombinatorischen Geometrie, beispielsweise die folgende:
Es gibt eine kleinste natürliche Zahl Nh(n) (n^2; k^l), so dass die Aussage
richtig ist: «Der Durchmesser einer aus n Punkten bestehenden Menge A des ß-dimen-
sionalen euklidischen Raumes wird höchstens durch Nk(n) verschiedene Punkte-
paare von A realisiert.» Wie gross ist Nk(n)

Unter dem Durchmesser einer beschränkten Punktmenge versteht man bekanntlich

die obere Schranke der Distanzen, welche durch Punktepaare der Menge
repräsentiert werden. Ist die Punktmenge endlich, so gibt es wenigstens ein Punktepaar,
das den Durchmesser der Menge realisiert.

Trivialerweise gilt Nx(n) —1; weiter ist N2(n) =n2). Nach einer von Väzsonyi
stammenden Vermutung ist Nz(n) 2 n — 23).

Vermutlich gilt Nk(n) <n(k + l)/2; hieraus würde sich die Richtigkeit einer
Vermutung von K. Borsuk (vgl. Problem Nr. 2) für endliche Punktmengen ergeben.
Mit einfachem Schubfachschluss wurde sich aus der angegebenen Schätzung folgern
lassen, dass sich A in k ~f 1 Teilmengen so zerlegen lässt, dass der Durchmesser von
A in keiner Teilmenge angenommen wird. H. Hadwiger.

l) E. Stiefel, Lehrbuch der Darstellenden Geometrie (Birkhauser, Basel 1947), insbesondere S. 133.
*) Vgl. Jahresbericht D. M. V. 43, 114 (1934).
8) P. Erdös, On Sets of Distances of n Points, Amer. Math. Monthly 53, 248-250 (1946\.
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Nachtrag zu Nr. 2 Kurzlich ist es H. G. Eggleston [Covenng a Three Dimenswnal
Set with Sets of Smaller Diameter, J. London Math. Soc. 30, 11-24 (1955)] gelungen,
die Aussage Dz < 1 zu beweisen. Damit ist die Richtigkeit der Borsukschen Vermutung
auch fur den dreidimensionalen Raum bestätigt.

Aufgaben

Aufgabe 211. Em quadratisches Papier werde so gefaltet, dass eine Ecke auf eine
der beiden nicht von dieser Ecke ausgehenden Seiten zu liegen kommt Durch das
Falten entstehen drei « uberschiessende » Dreiecke Die Summe dieser Dreiecke soll zu
einem Maximum gemacht werden Wo hegt die abgebogene Ecke, und wieviel Prozent
der Gesamtflache machen die uberschiessenden Flachen aus E Rothmund, Zürich

Losung Ohne Beschrankung der Allgemeinheit kann man die Aufgabe am Einheitsquadrat

losen
Aus der untenstehenden Figur folgt die Ähnlichkeit der drei Dreiecke, es gilt daher
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und ebenso mittels der Ähnlichkeit
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sowie mit (1)

Damit haben wir die einzelnen Dreiecksmhalte
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Fur die Summe der « uberschiessenden» Dreiecke gilt dann
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Es soll nun (2) fur *€ [0,1] zu einem relativen Maximum gemacht werden.
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