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Ungelöste Probleme - Aufgaben 19

Ungelöste Probleme

Nr. 3. Herr W. Süss (Freiburg i. Br.) lenkt gelegentlich wieder die Aufmerksamkeit
auf eine reizvolle Frage der Geometrie der Eilinien, die bereits im Jahre 1918 von
W. Blaschke und andern aufgestellt wurde, bis heute aber unbeantwortet blieb.
Das Problem lautet: Gibt es eine Eilinie in der Ebene, welche zwei Speichenpunkte
aufzuweisen hat Ein Punkt im Innern einer Eilinie heisst Speichenpunkt, wenn alle
durchlaufenden Sehnen gleiche Länge haben.

Bemerkenswerterweise kennt man eine ganze Reihe von Eigenschaften einer
solchen Eilinie, die von W. Süss [Töhoku Math. J. 25, 86-98 (1925)] aufgestellt worden
sind. Eine Note von G. A. Dirac [J. London Math. Soc. 27, 429-437 (1952)] aus neuerer

Zeit befasst sich auch mit diesen Eigenschaften. Nur weiss man nicht, ob eine
solche Eilinie überhaupt existiert! H. Hadwiger, Bern.

Aufgaben

Aufgabe 195. Man beweise: Rollt eine Gerade eines starren ebenen Systems Z auf
einer festen Zykloide, so existiert in Z ein Strahlenbüschel, dessen Geraden im Ablauf
der Bewegung ähnliche Zykloiden umhüllen. R. Bereis, Wien.

Lösung des Aufgabenstellers: Dreht sich eine Ebene Z\ um einen ihrer Punkte O mit
der konstanten Winkelgeschwindigkeit oc, eine komplanare Ebene £2 um einen Punkt A
(OA a) von Zi mit der konstanten Winkelgeschwindigkeit ß (gegenüber einem ruhend
gedachten System Zo), so beschreibt bekanntlich jeder Punkt von Z% im ruhenden
System Zo eine Trochoide. Die Polkurven dieser Bewegung Z% gegen Zo sind Kreise
mit den Radien

ß
a (Fixkreisradius),

-5- a (Rollkreisradius).
P

(1)

Jeder Punkt des Gangkreises k durchläuft eine Zykloide, deren Spitzen auf dem Rastkreis

k0 liegen.
Da ferner Bahntangente t und Bahnnormale n eines beliebigen Punktes B von k

stets durch zwei feste Punkte P und Q von Zi hindurchgehen - P und Q liegen auf dem
Verbindungssteg OA; P übernimmt dabei die Rolle des jeweiligen Momentanpoles der
Bewegung von Z* gegen Zo -» so führt das durch t und n aufgespannte System Zs gegen
Z* eine Drehung um B und gegen Zi eine umgekehrte Ellipsenbewegung aus. Die Bewegung

von Zz gegen Zo kann auch durch Abrollen von n auf der Evolute e der Bahn-
zykloide z von B hervorgerufen werden. Dieses Abrollen vollzieht sich, wie aus den
bestehenden Winkelrelationen zu ersehen ist, mit der konstanten Winkelgeschwindigkeit

Da die Gerade t stets die Zykloide z berührt, eine Verschiebung von t in sich während
der Bewegung von Zz auf ihre Hüllbahn ohne Einfluss ist, ferner t immer den in Zi
festen Punkt Q trägt und sich gegen Zo mrt der konstanten Winkelgeschwindigkeit y
dreht, so ist damit zunächst der bekannte Satz bewiesen:
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