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ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

Organ für den Verein Schweizerischer Mathematik- und Physiklehrer

El Math Band X Nr 4 Seiten 73-96 Basel, 10 Juli 1955

Konstruktionen des Dodekaeders und Ikosaeders

Die folgenden Ausfuhrungen sind einem rem didaktischen Zweck gewidmet. In
vielen Schulbuchern ist vom Dodekaeder und vom Ikosaeder so^ie auch von deren
Konstruktion die Rede. Meist fehlt aber der Beweis, dass das konstruierte Polyeder
regulär ist. Man zeigt zwar etwa, dass die Flachen regulär smd, unterlasst es aber,
die Regulantat der Raumecken zu beweisen Mit Hilfe des Eulerschen Satzes legt
man dar, dass nur wenige reguläre Polyeder möglich smd Den Existenzbeweis lasst
man weg. Und doch gibt gerade dieser erst den richtigen Einblick in den Aufbau. Das
Vorzeigen eines Modells ist kein Ersatz, da man einem solchen nicht entnehmen kann,
ob seine Flachen und Raumecken wirklich regulär smd1).

Im folgenden werden fur das Ikosaeder und das Dodekaeder je drei Existenzbeweise

kurz, aber möglichst anschaulich angedeutet. Diese liefern zugleich die
Grundrisse des Polyeders m den drei Hauptlagen. Dann wird eine Zusammenstellung
übersichtlicher Konstruktionen beigefugt, die vielleicht da und dort willkommen ist.

Erste Konstruktion des Ikosaeders (Figur 1)

Wir denken uns em reguläres Fünfeck ABCDE mit der Seite a m horizontaler
(parallel zur Zeichnungsebene) Lage In seinem Mittelpunkt errichten wir das Lot
nach oben und wählen auf diesem den Punkt P derart, dass die regelmassige Pyramide

P (ABCDE) als Seitenflächen reguläre dreieckige Scheiben2) erhalt. Der
Pyramidenmantel bildet eine reguläre Raumecke Den Keilwmkel (kleiner als 180°)
zwischen zwei anemanderstossenden Scheiben bezeichnen wir mit a.

Wir nehmen em zweites Exemplar Q (FGHIK) eines solchen Pyramidenmantels
und stellen dieses in einem zunächst noch beliebigen Abstand so unter das erste,

1) Eine exakte Behandlung findet man in dem Werke von W Killing und H Hovestadt, Handbuch des

mathematischen Unterrichts, zweiter Band (Verlag B G Teubner, Leipzig und Berlin 1913), S 289 f -
Ferner sei auf das umfassende, reichhaltige Werk von H S M Coxeter, Regulär Polytopes (Methuen & Co

London 1948), hingewiesen, in welchem der Autor auf Seite 13 folgende Bemerkung macht "Sir D'Arcy
W Thompson once remarked to me that Euclid never dreamed of wnting an Elementary Geometry what
Euclid really did was to wnte a very excellent (but somewhat long winded) account of the Five Regulär
Sohds, for the use of Initiates " - Vom Begriff der Regulantat handelt die Arbeit L Locher Ernst, Wie
viele regelmassige Polyeder gibt es? Arch Math 3, 193-197 (1952)

2) Da unter den Seitenflächen eines Polyeders hier - im Unterschied zu den Untersuchungen gewisser
Konfigurationen - nicht Vielecke schlechthin, sondern solche samt ihren inneren Punkten zu verstehen
sind, verwenden wir die anschauliche Bezeichnung Scheibe
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dass PQ vertikal ist, die Spitze Q nach unten weist und die Grundrisse der Ecken
F,G,H,I,K und A,B,C,D,E ein reguläres Zehneck bilden. Verbindet man die Grundecken

der oberen Pyramide je mit den zwei nächstliegenden Grundecken der unteren
Pyramide, so erhält man zwischen den beiden Pyramiden einen Kranz von zehn
gleichschenkligen Dreiecken. Ist der Abstand der Grundfünfecke ABCDE, FGHIK
hinreichend klein, so sind die Schenkel dieser Dreiecke kleiner als a; ist der Abstand
hinreichend gross, so sind jene Schenkel grösser als a. Jedenfalls haben wir so ein einfaches
(das heisst einfach zusammenhängendes) Polyeder gewonnen, das topologisch-regulär

ist: in jeder Ecke treffen sich gleich viele Kanten, und
jede Scheibe ist von gleich vielen Kanten begrenzt.

Wir können den Abstand so wählen, dass die Dreiecke

des Kranzes regulär werden. Es ergibt sich ein
einfaches Polyeder aus zwanzig regulären Dreiecken. Es
bleibt noch zu untersuchen, ob das Polyeder regulär ist,
ob also auch die Raumecken regulär sind. Nach
Konstruktion gilt dies für die Raumecken (P) und (Q).
Die Raumecken (A), (B),(C), (D), (E), sind jedenfalls
kongruent, da sie nach Konstruktion durch Drehung
um PQ ineinander übergeführt werden können.
Dasselbe gilt für (F),(G),(H),(I),(K). Es genügt also, die
Regularität von (A) und (F) zu beweisen.

Diese ist nicht selbstverständlich, da die Figur aus fünf zusammengehefteten, sich
nicht durchsetzenden regulären Dreieckscheiben nicht starr ist. (Ein kleines Modell
hierzu ist nützlich.) Betrachten wir die Raumecke (A). Die Scheiben ABP, AEP
schhessen den Winkel a ein, und die Pyramide A (BEHI) ist kongruent der Pyramide
P (EBCD) (kongruente Trapeze als Grundflächen und kongruente Seitenflächen).
Daraus schhesst man auf die Kongruenz von (^4) mit (P). Entsprechend ergibt sich
die Kongruenz von (F) mit (Q). Wir haben somit ein einfaches und reguläres Polyeder

mit zwölf Ecken, zwanzig Scheiben und dreissig Kanten gewonnen. Natürlich
gibt es auch andere, aber nicht reguläre, oder zwar reguläre, aber nicht konvexe Polyeder

aus zwanzig kongruenten regulären Dreiecken. (Man kann der angegebenen
Schlussweise, wie den folgenden, auch andere Wendungen geben.)

Erste Konstruktion des Dodekaeders (Figur 2)

Vorbemerkung: Legt man drei reguläre fünfeckige Scheiben mit gleicher Kanten-
länge a zu einer Raumecke (A) zusammen, so entstehen in den Endpunkten der drei
von A ausgehenden Kanten AB, AE, AF reguläre dreikantige Raumecken (B), (E),
(F), die zu (^4) kongruent sind. (A) und (B) stimmen nämlich in drei Stücken überein.
Den Keilwinkel eines solchen Dreikants nennen wir a.

Nun denken wir eine reguläre fünfeckige Scheibe ABCDE mit der Kante a
horizontal gelegt (parallel zur Zeichnungsebene). In A legen wir zwei weitere solche
Scheiben ABGUF, AEKTF nach unten an. Nach der Vorbemerkung bilden die drei
von B ausgehenden Kanten eine zu (A) kongruente Ecke. An GBC lässt sich somit
eine weitere Scheibe GBCHQ einsetzen; ebenso an DEK die Scheibe DEKSI. Nach
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der Vorbemerkung haben wir in C und D zu (A) kongruente Raumecken erhalten
Die Kanten CH, DI liegen also m derselben von der Geraden CD ausgehenden
Halbebene, die nach unten mit der horizontalen Scheibe den Winkel a bildet. Daraus
folgt, dass sich an HCDI eine Scheibe HCDIR einsetzen lasst Es ist em kappen-
formiges Gebilde aus sechs Scheiben entstanden. Durch Drehen um 72° um das Lot
durch die Mitte der horizontalen Scheibe geht das Gebilde m sich über. Wir
untersuchen den freien Kappenrand Jedenfalls liegen die Ecken F, G, H, I, K gleich hoch,
ebenso die Ecken Q, R, S, T, U. Im Grundriss erscheinen wegen der Symmetrie die
Kanten UF und UG, aber auch FU und FT je gleich
gross. Der zehneckige Kappenrand, dessen Kanten alle
die Lange a haben, erscheint also auch im Grundriss
als gleichseitiges Zehneck. Dieses ist sogar regulär, wie
die folgende Betrachtung zeigt Die Ebene durch die
Kante ^4F und die Mitte von CD ist Symmetrieebene
der Kappe. U und T, B und E, H und / entsprechen
sich m dieser Symmetrie. Da UT, BE, HI gleich lang
smd, bildet UT sowohl mit BE als auch mit HI je
em Rechteck Die Grundrisse U', B', H' und T', E',
V liegen also je in einer Geraden, desgleichen F', B',
Q' und T',A',G' usf. Jetzt nehmen wir das reguläre
Fünfeck FGHIK mit seinem Umkreis zu Hilfe. Wegen
der Symmetrie hegt der Grundriss U' von U auf der Mittelsenkrechten von A'B',
die auch D' und F enthalt. Der Grundriss des Dreiecks HIU hat einen rechten Winkel

bei H' und bei I' den Winkel 54° (halber Funfeckswmkel). Demnach sieht man
von U' die Sehne HT des Umkreises von FGHIK unter 36°, das heisst, U' liegt auf
diesem Kreise Der Grundriss des Kappenrandes ist somit em reguläres Zehneck.

Wir nehmen nun eine zur ersten kongruente Kappe und kehren sie um, so dass ihr
Rand oben ist. In dieser Lage nennen wir das Gebilde einen Korb. Der bereits
gezeichnete Grundriss der Kappe stellt auch den Grundriss des Korbes dar Drehen

wir diesen um 36° um die vertikale Achse durch die Bodenmitte, so erhalt der Korb
eine Lage, bei der durch geeignetes Heben oder Senken sein Rand in den Kappenrand
passt. Damit haben wir em einfaches reguläres Polyeder mit zwanzig Ecken, zwölf
Flachen und dreissig Kanten erhalten.

Bemerkung Es ist nicht selbstverständlich, dass in der spiegelbildlichen Lage von
Kappe und Korb, obschon diese kongruent sind, die beiden Rander aufeinandergelegt
werden können. Das ergibt sich nur infolge der genannten Eigenschaften.
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Zweite Konstruktion des Ikosaeders (Figur 3)

Die Kante AB a denken wir uns in horizontaler Lage. An AB legen wir nach
beiden Seiten nach unten reguläre dreieckige Scheiben ABC, ABD unter gleichen
Neigungen. Der Grundriss A'C'B'D' der Figur ist offenbar em Rhombus. Die

Neigung wählen wir so, dass die beiden Scheiben den KeilWinkel a bilden, der anemander-
stossenden Seitenflächen einer regulären, funfseitigen Pyramide mit regulären Scheiben

als Seitenflachen zukommt. An die beiden so zusammengehefteten Scheiben
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lassen sich also je drei weitere Scheiben derart ansetzen, dass A (BDEFC) und
B (ACGHD) Mantelflächen einer solchen Pyramide sind. BDEFC und ACGHD sind
also reguläre Fünfecke.

Die Diagonale DG ist parallel zur Kante AC (Fünfeck ACGHD). Da nun D'B' \A'C,
liegen D',B',Gf also in einer Geraden. Ebenso gehören C,Bf,H' und E', A', C und
F',A',D' je einer Geraden an.

E, F,G, H liegen gleich hoch; wegen der Symmetrie bilden diese Ecken ein Rechteck
mit den Seiten a und d. Da auch CD horizontal liegt und die Länge d hat, lässt sich

der Grundriss der acht Scheiben in ein Quadrat
einbeschreiben, so dass EF und GH auf Gegenseiten liegen.

Die Scheiben EAD, ABD, BHD bilden aufeinanderfolgend

den Winkel a, und zwar in dem Sinne, dass sie
Flächen eines regulären Pyramidenmantels D (EABHI)
sind. Im Fünfeck EABHI ist AI parallel BH und Bl
parallel AE. Wegen B'H'\\A'D' und A'E'\B'D' fällt
somit der Grundriss /' von I mit D' zusammen. Die zwei
Scheiben DHI und DIE erscheinen somit als Strecken.
Analog haben wir einen regulären Mantel C (FABGK),
von dem die zwei Scheiben CGK und CKF als Strecken
erscheinen. Das bisher konstruierte Gebilde besteht aus
zwölf Scheiben.

Da EFGH ein Rechteck ist und sowohl C, K wie auch D, I zur Ebene des Rechtecks

spiegelbildlich liegen, ist der freie Kantenrand EFKGHI des Gebildes kongruent
dem Kantenzug EFCGHD. Man kann an den freien Rand somit eine Figur von acht
Scheiben ansetzen, deren Grundriss mit der schon vorliegenden Zeichnung
zusammenfällt. Damit ist das Ikosaeder gewonnen. Die Konstruktion zeigt, wie es einem
Würfel von der Kantenlänge d einbeschrieben werden kann.

Zweite Konstruktion des Dodekaeders (Figur 4)

Wir denken uns die Strecke AB a horizontal (parallel zur Zeichnungsebene). An
AB setzen wir zwei reguläre fünfeckige Scheiben ABCDE und ABFGH unter gleichen
Neigungen nach beiden Seiten nach unten derart an, dass die Kanten AE und AH
den Fünfeckswinkel 108° bilden. Wegen der Symmetrie bilden BC und BF dann auch
diesen Winkel. An EAH und CBF lassen sich somit reguläre Scheiben EAHIK bzw.
CBFLM einfügen. Wir nennen die in AB zusammenstossenden Scheiben die
Scheitelscheiben, die an EAH eingefügte die Stirnscheibe, die an CBF eingefügte die
Hinterscheibe.

Die Ecken C,E,H,F liegen gleich hoch und bilden ein Quadrat mit der Seite d
(Fünfecksdiagonale), das im Grundriss in wahrer Grösse erscheint. Ferner sind die
Grundrisse von AE und BF parallel (gleiche Wechselwinkel), obschon diese Kanten
windschief laufen. Ebenso gilt A'H'\ B'C. Wegen A'G'\\ B'F und A'E'\\ B'F' liegen
die Grundrisse von A,E,G in einer Geraden. Aus ähnlichen Gründen gilt dies für
W, A'f D' und G'f B\ C. Weil sowohl die Strecken H'K', A'E' als auch die
Strecken A'G', B'F' sich verhalten wie d zu a und A'E' gleich B'F' ist, sind A'G'
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u M'

und H'K' gleich lang, wegen H'K'\A'G' bilden sie em Parallelogramm. H'G' ist
also parallel zu A'K'. Wegen H'F || A'K' liegen die Grundrisse von G, H, I somit in
einer Geraden. Dasselbe gilt fur die Grundrisse von K, E, D und D, C, M und L, F, G.

Das Dreikant H (AIG) ist (Vorbemerkung, S 74) kongruent dem Dreikant A (HBE).
GH, HI bilden also den Funfeckswmkel 108°. Es lasst sich eine reguläre Scheibe
GHINO, die rechte Schlafenscheibe, einsetzen, die im
Grundriss als Strecke erscheint, entsprechend an KED
die linke Schlafenscheibe KEDPQ sowie an DCM und
LFG je eine Scheibe.

Die rechte Schlafenscheibe bildet mit der rechten
Scheitelscheibe eine Raumecke G (FHO), die kongruent
A (HBE) ist. Wegen der Symmetrie erscheint die Kante

GO als Winkelhalbierende von G'H', G'F' oder als
Punkt Da die Schlafenscheibe als Strecke erscheint,
fallt Of mit G' zusammen. Weil GO parallel HN ist,
fallt N' mit H' zusammen.

Die vier m GHI, KED, DCM, LFG eingesetzten
Scheiben enthalten somit Diagonalen, namhch HN,
QE, CS, FR, die Kanten eines Wurfeis HECFRNQS darstellen. Der Kantenzug
IKEDCMLFGH ist dem freien Kantenrand IKQPSMLRON kongruent, so dass an
diesen freien Rand von unten vier Scheiben angesetzt werden können, deren Grundriss

m der bereits konstruierten Figur mitgegeben ist. Diese Konstruktion des Dodekaeders

zeigt, wie man es einem Würfel umbeschreiben oder einbeschreiben kann.
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Dritte Konstruktion des Ikosaeders (Figur 5)

Wir denken uns eine reguläre dreieckige Scheibe ABC mit der Kante a in horizontaler

Lage. An AB und AC heften wir je eine kongruente Scheibe ABF, ACD mit
Neigung nach unten derart an, dass A (BCDEF) den
Mantel einer regulären Pyramide darstellt. Das ist nur
auf eine Weise möglich. Die zwei Scheiben CAB, AFB
lassen sich als zwei Flachen eines zu A (BCDEF)
kongruenten Pyramidenmantels B (CAFGH) auffassen.
Nun sind die Scheiben DAC, ABC, BHC drei Flachen
eines zu A (BCDEF) kongruenten Pyramidenmantels
C (DABHI).

Infolge der symmetrischen Lage in bezug auf die
Mittelnormalebene der Kante BC smd die Grundrisse
der Kanten ED, EF gleich lang. Aus analogen Gründen

erscheinen auch FE und FG m gleicher Grosse.

Das Sechseck D'E'F'G'H'F ist also gleichseitig.
Da das Fünfeck BCDEF regulär ist, lauft EF parallel

zu BD. Weil aber B'D' zu A'C senkrecht ist, lauft
somit auch E'F' senkrecht zu A'C. Da aus dem gleichen Grunde D'E' senkrecht zu
A'B' steht, bilden F'E', D'E' den Winkel 120°. Auf diese Weise ergibt sich, dass das

f
F D'
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ff
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Figur 5
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Sechseck D'E'F'G'H'F regulär ist. Dabei haben die Ecken D,F,H dieselbe Höhe,
ebenso E, G, I.

Das bisher konstruierte, aus zehn Scheiben bestehende Gebilde nennen wir kurz
Kappe. Jetzt nehmen wir eine zu dieser kongruente Kappe und stellen sie so hin, dass

wir in das Innere sehen; in dieser umgekehrten Lage nennen wir das zweite Exemplar
Korb. Kappe und Korb lassen sich mit ihren freien Rändern zur Deckung bringen.
Das ist nicht selbstverständlich, aber eine Folge der bewiesenen Eigenschaften des

räumlichen Sechsecks DEFGHI. Damit haben wir wieder mit zwanzig Scheiben ein
einfaches und reguläres Polyeder konstruiert. Zum Beispiel ist die Raumecke (E)
regulär, da die zwei Scheiben FAE, ADE des Mantels E (FADLM) den richtigen
Keilwinkel bilden.

Dritte Konstruktion des Dodekaeders (Figur 6)

Wir setzen drei kongruente, reguläre fünfeckige Scheiben (Kante a, Diagonale d)

zu einer Raumecke (A) zusammen und geben dem Gebilde eine solche Lage, in der
die drei Kanten AB, AE, AH gleiche Neigungen von A aus nach unten haben. Die
Ecken B, E, H, die ein reguläres Dreieck mit der Seite d bilden, liegen dann gleich
hoch. In dieser Lage erscheinen die Kanten CD, FG, IK im Grundriss in wahrer
Grösse, da auch deren Endpunkte alle dieselbe Höhe haben.

An den Zug KBC lässt sich eine Scheibe KBCLM einsetzen; ebenso an DEF die
Scheibe DEFNO und an GHI die Scheibe GHIPQ. Die Dreikante C (BDL) und

D (CEO) sind kongruent dem Dreikant A (BEH) (Vor-

pi qi bemerkung, S. 74). Die Kanten CL und DO liegen also,
da sie beide nach unten weisen, in derselben, von der
Geraden CD begrenzten Halbebene. Da sie mit CD den
Fünfeckswinkel 108° bilden, lässt sich an LCDO die
Scheibe LCDOR einsetzen; ebenso an NFGQ die
Scheibe NFGQS und an PIKM die Scheibe PIKMT.

Jetzt betrachten wir das in wahrer Grösse erscheinende

Sechseck CDFGIK. Seine Seiten laufen normal
zu AH bzw. AE, AB. Alle seine Winkel sind also 120°,
und seine Seiten haben abwechselnd die Längen a und
d. Genau dasselbe gilt aber auch für das Sechseck

PQNOLM. Da die Grundrisse dieser kongruenten
Sechsecke denselben Mittelpunkt haben, fallen die Grundrisse ihrer Umkreise zusammen.

Ihre Lage zum Dreikant A (BEH) zeigt, dass jedes durch Drehen um 60° in das
andere übergeführt werden kann. Der Grundriss des Zwölfecks CDONFGQPIKML
zeigt also lauter gleiche Winkel 150°.

Nun bilden B'I'\\ A'H' und M'K' mit K'F supplementäre Gegenwinkel, also ist
M'K' parallel BT. Da die Diagonale BL parallel zur Seite KM läuft, liegen /', B', U,
in einer Geraden, der wegen KM\\TI auch T' angehört. Entsprechend liegen M',
B'f R't D' und C, R', E', N' usw. je in einer Geraden.

Dernoch freie Rand derbisherzusammengehefteten Scheiben, nämlichMLRONSQPT,
ist kongruent dem Kantenzug CDEFGHIKB. Es lassen sich ihm also noch drei

Cr
\F
W

C D'
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u^r



L. Locher-Ernst : Konstruktionen des Dodekaeders und Ikosaeders 79

Konstruktionen des Dodekaeders und Ikosaeders

U'V

d + d

f
u-y

7

\
V



80 L. Locher-Ernst : Konstruktionen des Dodekaeders und Ikosaeders

Scheiben einfügen, die den gemeinsamen Eckpunkt U haben, dessen Grundriss mit
A' zusammenfällt. Die Regularität aller Raumecken folgt aus der Vorbemerkung,
Seite 74.

Zusammenstellung

Es folgen Anleitungen zu möglichst übersichtlichen Konstruktionen (Figuren auf
Seite 79). Für die Grundrisse ergeben sich die Beweise aus den vorstehenden Erläuterungen.

Um die Höhen im Aufriss zu erhalten, braucht man nur den folgenden
einfachen Satz auf geeignete, zueinander senkrechte Kanten oder Flächendiagonalen
anzuwenden: Wenn zwei gleiche Strecken sich normal kreuzen und ihre Grundrisse
parallel sind, so ist die Länge des Grundrisses der einen Strecke gleich dem
Höhenunterschied der Endpunkte der anderen Strecke. Die angegebenen Konstruktionen
können auch zu dankbaren Übungen verwendet werden.

Dodekaeder auf Fläche. Grundriss: Einem Kreis vom Radius u wird ein regelmässiges
Zehneck einbeschrieben. Dessen Ecken sind die Grundrisse von zehn Dodekaederecken.

Bedeuten 1, 2, 3, 10 diese Ecken in natürlicher Reihenfolge auf dem
Kreise, so verbinde man 1 mit 4, 4 mit 7, 7 mit 10, 10 mit 3 usf. (je zwei Ecken
auslassen). Die inneren zehn Ecken des derart erhaltenen Sternzehnecks, die auf dem
Kreise vom Radius v liegen, sind die Grundrisse der übrigen zehn Dodekaederecken.

Aufriss: Gesamthöhe u -f v; die Höhenunterschiede der Ecken betragen v, u — v, v.
Soll das Dodekaeder die Kante a haben, so hat man als Radius u den Umkreisradius

eines regelmässigen Fünfecks mit der Seite d (Diagonale eines regelmässigen
Fünfecks mit der Seite a) zu wählen.

Dodekaeder auf Kante. Grundriss: In einem Quadrat werden die Diagonalen
gezeichnet und deren Hälften im goldenen Schnitt geteilt, so dass die grösseren
Abschnitte von der Quadratmitte ausgehen. Dann verbindet man die Mitten zweier
Gegenseiten des Quadrates mit den erhaltenen Teilpunkten auf den Diagonalen.

Aufriss: Kongruent dem Grundriss, aber um 90° gedreht.
Soll das Dodekaeder die Kante a haben, so hat man als Quadratseite die Länge

a -f- d zu wählen.
Dodekaeder auf Ecke. Grundriss: Man schreibt einem Kreis zwei einen regelmässigen

Stern bildende gleichseitige Dreiecke ein. Die Ecken des entstehenden inneren Sechsecks

sowie der Kreismittelpunkt sind die Grundrisse von Dodekaederecken. Der
Hilfskreis, dessen Mittelpunkt der Schnittpunkt von zwei der kürzeren Diagonalen
des inneren Sechsecks ist und der durch die diesem Schnittpunkt nächstliegende
Ecke des Sterns geht, schneidet eine der Dreieckseiten in zwei Punkten, die
Dodekaederecken darstellen. Der zum Ausgangskreis konzentrische Kreis durch diese Punkte
liefert die Grundrisse der übrigen Ecken.

Aufriss: Die Gesamthöhe ist gleich der Seite der anfangs gezeichneten beiden
Dreiecke. Die Grundrisse der Dodekaederecken auf einer solchen Seite bilden auf
dieser die Abschnitte u, v, w, v, u. Diese sind auch die Höhenunterschiede der Ecken.

Soll das Dodekaeder die Kante a haben, so hat man als Radius des Ausgangskreises
die Strecke d (Diagonale eines regelmässigen Fünfecks mit der Seite a) zu wählen.

Ikosaeder auf Ecke. Grundriss: Einem Kreis vom Radius u wird ein regelmässiges
Zehneck (Seite v) einbeschrieben.
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Aufriss: Gesamthöhe v + u + v; die Höhenunterschiede der Ecken betragen
V, U, V.

Soll das Ikosaeder die Kante a haben, so ist u als Umkreisradius eines regelmässigen
Fünfecks mit der Seite a zu wählen.

Ikosaeder auf Kante. Grundriss: In einem Quadrat wählt man ein Paar von Gegenseiten

und teilt die beiden Hälften jeder Seite dieses Paares je im goldenen Schnitt,
so dass die grösseren Abschnitte von der Seitenmitte ausgehen. Die vier erhaltenen
Teilpunkte und die Mitten der beiden übrigen Quadratseiten sind die Grundrisse
von Ikosaederecken. Verbindet man die Teilpunkte mit den genannten Mitten, so
erhält man auch die Grundrisse der übrigen Ecken.

Aufriss: Kongruent dem Grundriss, aber um 90° gedreht.
Soll das Ikosaeder die Kante a haben, so hat man als Quadratseite die Diagonale d

des regelmässigen Fünfecks mit der Seite a zu wählen.
Ikosaeder auf Fläche. Grundriss: Einem Kreis vom Radius u wird ein regelmässiges

Sechseck einbeschrieben; dessen Ecken sind die Grundrisse von sechs Ikosaederecken.

Die Grundrisse der übrigen Ecken liegen auf einem konzentrischen Kreise,
dessen Radius v der grössere Abschnitt des im goldenen Schnitt geteilten Radius u
ist. (Eine günstige Konstruktion zeigt die Figur.)

Aufriss: Gesamthöhe u + v. Die Höhenunterschiede der Ecken betragen v, u — v, v.
Soll das Ikosaeder die Kante a haben, so ist u als Umkreisradius eines regelmässigen

Dreiecks mit der Seite d (Diagonale eines regelmässigen Fünfecks mit der Seite a) zu
wählen. L. Locher-Ernst.

Über die Hüllkurven von Kepler-Bahnen fester Energie,
welche eine feste Kepler-Bahn berühren

1. Einleitung

Die zu einem festen Zentralkörper S' gehörigen komplanaren Kepler-Bahnen fester
Gesamtenergie h sind bekanntlich monofokale Kegelschnitte mit S' als gemeinsamem

Brennpunkt und mit fester Hauptachsenlänge 2 a. Je nachdem die Gesamtenergie
h < 0, =0, > 0 ist, sind die Kepler-Bahnen Ellipsen, Parabeln, Hyperbeln.

Diese mechanische Bedeutung der monofokalen Kegelschnitte mit fester
Hauptachsenlänge 2 a rechtfertigt das Interesse, das auch der Geometer dieser Kurvenklasse
zuwendet.

In den folgenden Darlegungen handelt es sich um solche monofokale Kegelschnitte k'a

der festen Hauptachsenlänge 2 a, welche einen festen Kegelschnitt k' mit dem gleichen

Brennpunkt S' berühren.
Wir wollen beweisen (Figur 1):
Satz 1. Die Hüllkurve h' dieser Kegelschnitte k'a ist ein zu k' konfokaler Kegelschnitt,

der mit k' ausser dem Brennpunkt S' noch einen zweiten Brennpunkt T' gemeinsam hat.
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