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Dreiecks HX. Z;). Die Fallgerade f durch U liefert U”. Die Achsenbilder x*, y* und
z* laufen parallel zu den Kernstrahlen durch X bzw. Y,/ bzw. Z;. z* ist normal zu A.
Probe: x°= U°X; schneidet x* in einem Punkt X auf g, ebenso liegt Y= y° y* auf
g. z° und z* schneiden sich im Bildspurpunkt Z der z-Achse. U* ist Hohenschnitt-
punkt von XYZ. Das Dreieck XYZ ist zum Dreieck X,Y,/Z, zentrisch dhnlich. Der
MafBstab des normalaxonometrischen Bildes ist durch den MafBstab, in dem 4 aufge-
tragen wurde, gegeben. — Sind P* und P’* gegeben, so findet man P° und P’ in
Figur 9 wie frither durch Umzeichnen. Treten schleifende Schnitte auf, so verwende
man statt der Fallgeraden durch P’ eine andere waagrechte Gerade, zum Beispiel in
Figur 9 die y-Parallele.

c) Herstellung einer Perspektive aus einer dimetrischen Militdrperspektive (Figur
10). O, sei Fernpunkt der Drehsehnen, die zur Drehung von I" um g nach 7 gehéren.
Kernpunkt ist dann der Messpunkt M, von I'. Das Bild aus O, ist eine Militidrper-
spektive mit eigenem z-MaBstab. In I" liege ein Achsenkreuz Uxy, gegeben durch
U°X.Y,), wobei H Hohenschnittpunkt des Dreiecks X[Y,/Z, ist. Mittels der Fall-
geraden f durch U bestimmen wir U*. %% y7, z* gehen durch U” und sind parallel zu
den Kernstrahlen durch X bzw. Y, bzw. Z,,. Probe: X = x° x* und Y = y° y* liegen
auf g. — Nun trage man im Kreuzriss die Einheitsstrecke ¢ auf z von U bis C auf.
Der Kreuzrissordner durch den Schnittpunkt von OC mit & schneidet 2° in C°. Der
Kernstrahl durch C° schneidet z* in C*. Aus dem axonometrischen Bild (Einheits-
strecke e auf x* und y*, U*C* auf z*) folgt durch Umzeichnen das perspektive Bild
(zum Beispiel P in Figur 10). F. HOHENBERG, Graz.

Kleine Mitteilungen

Bemerkungen zu einer Variationsaufgabe

Das von W. WuNDERLICH kiirzlich in dieser Zeitschrift!) behandelte und als «ver-
allgemeinerte Schachtelaufgabe» bezeichnete Variationsproblem ldsst sich, wenn man
den dort betrachteten Korper zu einem geschlossenen Korper ergdnzt, bei etwas gedn-
derter Bezeichnung auch so formulieren: Man schneide aus der (y, z)-Ebene eines
(%, v, 2)-Koordinatensystems vier kongruente Zwickel oder Blitter aus, die im Null-
punkt zusammenhingen, fiir die die y- bzw. z-Achse Symmetrieachsen sind und deren
Lingsausdehnung den festen Wert a habe (siehe Figur 1, dort sind nur zwei der vier
Blitter gezeichnet). Die Blattkurve C sei so beschaffen, dass sich durch Aufbiegen der
Blitter zu Zylinderflichen mit Erzeugenden, die beziehungsweise der y- oder z-Achse
parallel sind, ein geschlossener Kérper ergibt, der dann offenbar die vier Ebenen y = 0,
z=0, y = 4+ z zu Symmetrieebenen hat. Symmetrie zur Mittelebene » = const wird also
nicht vorausgesetzt. Gefragt wird nach derjenigen Blattkurve C oder Profilkurve K, die
dem Korper das grosstmégliche Volumen erteilt.

Legt man die Kurve C durch die Koordinaten &, n (Figur 1) fest, so ist der Zusam-
menhang zwischen der Kurve K oder y = y(#) und C oder n = n(§) offenbar gegeben
durch

n=>u d§2=dx2+dy2‘ (1)

da £ zugleich die Bogenlinge von K ist. Je nachdem man C oder K sucht, kommt man

1) EL Math. 9, Nr.4, 89 (1954), Aufgabe 187.
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zu verschiedenen Variationsproblemen. Ausgedriickt durch K ist das Volumen

V=4/y2x)dx (2)
| /
mit

fl/l +9y'3¥)dx=a, (2)
0

wenn #, die Hohe des Koérpers bezeichnet. Transformiert man das Problem mittels (1) auf

Figur 1

&, n, so erhdlt man

V=4 / n3(&) Y1 —n'2(§) d&, (3)
0

also ein Variationsproblem mit festen Endpunkten, allerdings mit «Gefdllbeschrian-
kung», da || =1 sein muss, eine Bedingung, die auch leicht als hinreichend dafiir
erkannt wird, dass sich die vier Blitter iiberhaupt zu einem Korper liickenlos zusam-
menfiigen lassen.

Zur Losung der vorliegenden Aufgabe wurde von W. WUNDERLICH das Problem in
der Fassung (3) behandelt. Mathematisch vielleicht interessanter ist seine Behandlung
in der Form (2), (2’), da es sich dann um ein isoperimetrisches Problem handelt, bei
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dem auch die Lage des Endf)unktes — also x, — unbekannt ist. Nach der Eulerschen
Regel hat man das Integral

//xy, /y +AYT+y%) dx (4)

zum Maximum zu machen. Da der Endpunkt des Integrals auf der x#-Achse beweglich
ist, hat man ein Variationsproblem zwischen Punkt und Kurve, und die Transversali-
titsbedingung

H(%o, ¥, ¥0) + (56— ¥5) fy (%0, Yo, ¥5) =0 (5)

liefert die Neigung y; der Extremalen im gesuchten Endpunkt; hierbei bezeichnet ¥
die Neigung der Kurve, auf der der Endpunkt beweglich ist, im Punkte x,. Da hier
Vo= 0, liefert (5)

"?_A*—:_— =0
Vit+y?
und da 4%0,
Vg = 00. (6)
Die Eulersche Gleichung von (4) lautet
Z’ yll
V=g (i e (7)

Sie driickt die auch aus Formel (11) von W. WUNDERLICH abzulesende Eigenschaft der
Profilkurve aus, wonach ihre Ordinaten ihrer Kriimmung proportional sind. Das ist
aber die charakteristische Eigenschaft der elastischen Linie. Somit sind die Extremalen
des Problems (2), (2’) elastische Linien, wie schon EULER bei der verwandten Unter-
suchung des maximalen Volumens eines Rotationskérpers erkannte.

Um die Gleichung der Profilkurve explizit hinzuschreiben, integriert man (7) unter
Beriicksichtigung von y’'=oo fiir y = 0 und erhilt

1
y,=_3)—2— },2—— y4 (8)

und unter Beachtung von 2= 0 fiir =0

t
t2dt _ 1
x—]/—-—A/ el o y. (9)

Dieses Integral geht aber mit ¢2=1— «? in elliptische Normalintegrale erster und
zweiter Gattung mit k2= 1/2 iiber. Man erhilt

¥ = l/__g_ [2E— K- 2E(p) + F(9)],

(10)
JT T
=1/— —= = =
J—2 cose, zgtp:z.
Der noch unbekannte Parameter 4 folgt aus der Bogenldngenbedingung
nf2
a
= — 11
.[ V(& ) W=7 .
Mit
dx e cos”«p dy
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folgt
2 S
) / de V ) a
-2 oo e BB
2J V1i-Tlisin)/2] 2z
und damit
a?
Aus (10) ergibt sich fiir ¢ = — /2 die Héhe des Korpers zu
E
x0=(2~1—{—— )a=0,4568a (13)
und die grésste Randbreite fiir ¢ =0 zu
Zymam—;ﬁ- a=0,7627 a. (14)
K
Das maximale Volumen ist mit (2), (8) und (12)
w 1
22 s [ ttdt 2a3 1
Viaw = a = = — 0,7757 a®=0,1939 a3, (15)
K3 Y 3K? 4
s y1i—¢

Die in (13), (14) und (15) enthaltenen Ergebnisse stimmen beziehungsweise mit den
Formeln (9), (8) und (10) der zitierten Arbeit iiberein, wenn man beriicksichtigt, dass
dort a/2 als Einheit gewdhlt und nur die Hilfte des Gesamtkdrpers betrachtet wurde. Der
Wert fiir V,,,,, findet sich iibrigens, bezogen auf Rotationskorper, auch bei O. Borzal).

Da die Profilkurve als elastische Linie erkannt ist und y’= oo fiir ¥ = 0, das heisst
die Tangenten in beiden Endpunkten senkrecht zur x-Achse stehen, kann der Extremal-
korper sehr einfach mechanisch erzeugt werden. Man denke sich vier elastische Stdbe
der Lange a in der x-Achse von ¥ =0 bis »# =a stehend. Diese werden im Nullpunkt
gestiitzt und durch eine Druckkraft in negativer x-Richtung belastet. Es sei dafiir ge-
sorgt, dass zwei Stdbe in die (¥, z)-Ebene, zwei in die (¥, y)-Ebene jeweils nach ent-
gegengesetzten Seiten ausknicken. Die Grosse der Druckkraft ist dann so zu bemessen,
dass die Richtung der Stibe im Angriffspunkt und demzufolge auch im Nullpunkt
horizontal ist. In diesem Augenblick bilden die Stdbe die vier Profilkurven des Extre-
malkorpers, dessen Begrenzungsflichen zwischen ihnen aufgespannt werden konnen.
Die Ordinaten der Kantenlinien des Korpers unterscheiden sich zwar nur um einen
konstanten Faktor von denen der Profilkurve, sie sind aber keine elastische Linien, da
die Differentialgleichung (7) in ¥, 9’, »” nicht homogen ist. Die urspriinglich nicht
vorausgesetzte Symmetrie der Kurve K beziiglich » = x,/2 bzw. der Kurve C beziiglich
& =a/2 folgt aus (10), da

() =y(=9); #(@)=x—x(—9¢).

Der Extremalkorper besitzt also auch noch die Symmetrieebene x = x,/2.
Vergleichsweise kann man den Korper betrachten, der durch senkrechten Achsen-
schnitt zweier Kreiszylinder vom Radius 7 (@ = 7 #) entsteht. Er hat das Volumen
16 16
= 8=
V=mg"=3m
und bleibt um 11% hinter dem des Extremalkorpers zuriick. Nimmt man aber als
Profilkurve eine Ellipse mit der kleinen Halbachse in der x#-Achse, so erhilt man

a®=0,1720a3 (16)

2 cosa . Lo
V—--—S—":E—-a('&s—a ’ sina =& (17)

1) O.Bovrza, Vorlesungen tiber Variationsrechnung (Teubner, Leipzig und Berlin 1909), S.541.
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(e = numerische Exzentrizitit). Das Maximum wird erreicht, wenn

K(a)
E(x)

=1+%tg2a. (18)

Diese Gleichung ist erfiillt fiir a = 50,91° bzw. ¢ =0,6306 und fiihrt auf V= 0,1926 a3,
ein Wert, der nur um 0,79, geringer ist als das Extremalvolumen.
Das von W. WUNDERLICH behandelte Problem (3) mit der Eulerschen Gleichung

nn'+2(1-9"%)=0 (19)
fiihrt nach Integration auf
_a F((p)) _a cosg g 1
S A SRR ICE NS a0

was auch sofort aus (10) unter Anwendung der Transformation (1) folgt. Die Gleichung
der Blattkurve (20) kann auch in der Form

n:i.ﬁcn[(l——z—i)lg’] (21)

2 K a

geschrieben werden. Die Variationsaufgabe (3) ist eingehend von L. KOSCHMIEDER!Y)
behandelt, allerdings ohne die geometrische Deutung, die den engen Zusammenhang
zwischen den Problemen (2), (2’) und (3) erkennen ldsst. A.FrIickE, Braunschweig.

Sur quelques identités élémentaires

Nous avons démontré les identités suivantes:

la+b|+]a—b] _  sgn(ab) (1)
2ab ~ min(|al,|b])’
la+b|—la—bl _ !
2ab ~ max([a], [8]) ’ @
(a et bréels, ab=+0);
la+b|-2§-|“—b| = max(|al, |b]), (3)
[a+bl;‘a—_b| Esgn(ab) min(|a|,Ib]), (4)

(a et b réels).
Dans la littérature mathématique nous n’avons pas rencontré ces formules. On
peut les ajouter aux deux suivantes:

“+b+2“’”“| = max (a, b), (5)
‘”’b‘z“"“' = min (a, b). (6)

Les formules (5) et (6) se trouvent dans les traités d’analyse?).

1) L.KoscHMIEDER, Dissertation (Breslau 1913).
2) Voir, par exemple, A. Ostrowsk1, Vorlesungen iber Differential- und Integralrechnung, Bd.1 (Birk-
héuser Verlag, Bale 1952), p.52.
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La formule (2) intervient, par exemple, dans le calcul de 'intégrale définie

n
J= sint dt
Va2 +b2— 2abcost )
0

_|la+b|—|a-b] 2
J = ab " max(|a|, |b]) "

D. S.MiTrINOVITCH, Belgrad.

En effet (a b=+ )

Ungeloste Probleme

Nr.5. Das Problem der Quadratur des Kreises im mengengeometrischen Sinn ist
immer noch ungel6st! Es handelt sich um die Frage, ob ein abgeschlossener Kreis-
bereich mit einem flichengleichen abgeschlossenen quadratischen Bereich der Ebene
im Sinne der Mengengeometrie zerlegungsgleich ist? Kann man den Kreis so in
endlich viele disjunkte Punktmengen zerlegen, dass sich aus den gleichen in der
Ebene passend bewegten Punktmengen wieder das Quadrat zusammensetzen ldsst ?

Vermutlich ist dies nicht méglich; doch gibt es in der Mengengeometrie und in der
Theorie der Punktmengenfunktionen bis heute keinen Begriff, der geeignet wire, zur
Kldrung dieser Frage herangezogen zu werden.

Die Frage wurde wiederholt von W. SIERPINSKI aufgestellt?).

Eine gewisse Merkwiirdigkeit liegt darin, dass die Dimension % = 2 vermutlich die
einzige Raumdimension ist, fiir welche die analog verallgemeinerte Frage negativ
beantwortet werden muss. Fiir £ + 2 ist ndmlich eine Kugel stets mit einem inhalts-
gleichen Wiirfel zerlegungsgleich!

Fir £ =1 ist die Behauptung trivial und fiir 2 =3 eine Folge der bekannten
«Zerlegungsparadoxie» von S. BANACH und A.TARski1?).

Es diirfte wohl leichter sein, zu beweisen, dass Kreis und Quadrat nicht translativ-
zerlegungsgleich sind; in diesem Fall sollen die Teilmengen in der Ebene nur ver-
schoben, aber nicht gedreht werden. Unseres Wissens gibt es auch hier noch keine
Handhabe, Fragen dieser Art zu entscheiden. H. HADWIGER.

Aufgaben

Aufgabe 205. Man zeige: a) Alle Kegelstiimpfe, die in der Héhe und in der Linge
der erzeugenden «Meridiankurve» (Mantellinie + Radien der begrenzenden Kreise) iiber-
einstimmen, haben dieselbe Gesamtoberfliche. b) Es gibt genau einen nichttrivialen
Zylinder der Hohe % und einen symmetrischen Doppelkegel der Hohe 4, welche in der
Gesamtoberfliche und im Flicheninhalt eines Achsenschnittes iibereinstimmen.

H.BiEri, Bern.

1) Vergleiche: Sur quelques problémes concernani la congruence des ensembles de points, El. Math. 5,
1-4 (1950).

%) Sur la décomposition des ensembles de points en parties respectivement congruentes, Fund. Math. 6,
244-277 (1924).
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