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ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Förderung des mathematisch-physikalischen Unterrichts

Organ für den Verein Schweizerischer Mathematik- und Physiklehrer

El. Math. Band X Nr. 3 Seiten 49-72 Basel, 10. Mai 1955

Die zwölf Nabelpunkte des Ellipsoides
Zum 70. Geburtstag von Andreas Speiser, am 10. Juni 1955

1. In einem Artikel über das Imaginäre in der Geometrie1) habe ich gezeigt, dass
die von-Staudtsche Imaginärtheorie an Zugänglichkeit gewinnt, wenn man sich ent-
schliesst, die den imaginären Punkt bestimmende gerichtete elliptische Involution
durch einen Pfeil als Zeichen darzustellen. Dabei wird der Punkt mit den Koordinaten
% £ + i {', y rj + irj', z £ + i £' durch den Pfeil gegeben, dessen Anfangspunkt
und Endpunkt die Koordinaten |, rj, £ bzw. | + £', rj + rj', £ + £' haben. Die reellen
Punkte erscheinen als Pfeile der Länge Null. Diese Pfeildarstellung ist nur affininvariant.

Es ist leicht, sich entsprechende Vorstellungen für die uneigentlichen Elemente
zu bilden.

Ist man mit dieser Darstellung vertraut, so kann man sich manche Sachverhalte,
die sonst nur analytisch erschlossen werden, anschaulich klarmachen. Als ein Beispiel
sei die Tatsache gewählt, dass ein allgemeines Elhpsoid zwölf Nabelpunkte besitzt,
von denen nur vier reell sind, und dass acht imaginäre Geraden existieren, von denen

jede je drei dieser zwölf ausgezeichneten Punkte enthält.
2. Um nicht auf den genannten Artikel zurückgreifen zu müssen, sei hier das

Pfeilbild einer imaginären Geraden auf eine neue Art hergeleitet, die an sich gewisses
Interesse finden kann. Auf die Konstruktionen der Verknüpfung, die dort besprochen
werden, gehen wir hier nicht ein. Wir behandeln zunächst die folgenden zwei Fragen:

a) Ein Punkt P einer reellen Geraden g in der (x, y)-Ebene werde um den reellen
Punkt 0 auf g um den rein-imaginären Winkel ix gedreht. Wie bewegt sich der
entsprechende Pfeil, wenn x von — co bis -f co läuft?

b) Die Gesamtheit der Pfeile (das heisst der reellen und imaginären Punkte) in
einer reellen Geraden g in der (x, y)-Ebene, also die Gerade g, werde um den reellen
Punkt 0 auf g um den festen, rein-imaginären Winkel i x gedreht. Wie sieht die Menge
der sich ergebenden Pfeile der gedrehten Geraden aus

Beherrscht man diesen Drehvorgang, so überblickt man auch sofort die Verhältnisse
für beliebige komplexe Drehwinkel. Obschon die rein synthetische Behandlung ihre
Vorteile hat, wollen wir in dieser Note vom analytischen Ansatz ausgehen.

3. Die zu drehende Gerade wählen wir als #-Achse, den reellen Drehpunkt 0
als Ursprung eines rechtwinkligen (x, y)-Systems. Durch Drehung um 0 um den

*) L.Locher-Ernst, El.Math. 4, 97-105 und 121-128 (1949).
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Winkel i x gehe P(x £ + i £', y 0) in Pj(%, yx) über. Wir haben

#1 fi + ^* Ii # cost t (| + i £') coshr, 1

(1)
y1 rj1+irj[ x sini x i (£ + i£') sinhr. J

Hieraus
|x | coshr, r\x — f' sinhr, (2)

fi f' coshr, ?7i £ sinh r. (3)

Die Koordinaten des Anfangs- und Endpunktes des Px darstellenden Pfeiles sind also

[ fi f coshr, £x + £[ (f + £') coshr,
f (4)

| rjx — f' sinhr, ^-f ^ (f - f') sinhr. J

Der Anfangspunkt bewegt sich für variables r und für festes x auf der Hyperbel:

der Endpunkt auf der Hyperbel

Zwischen den beiden Hyperbeln besteht folgende Beziehung, die für die Anschauung

von Bedeutung sein wird: Ist (p der halbe Innenwinkel zwischen den Asymptoten
der ersten Hyperbel, so ist der entsprechende Winkel für die zweite Hyperbel
j n/4 — (p |. Jeder Pfeil liegt in der betreffenden Normalen der ersten Hyperbel, seine

Länge ist halb so gross wie der Abschnitt der zugehörigen Tangente zwischen den

Asymptoten.
Die Figuren 1, 2, 3,4 zeigen den Drehvorgang für g' 0 bzw. f' > f > 0, f f' > 0,

I > £' > 0. Der Betrag r des Drehwinkels i x ist proportional zur Fläche des
entsprechenden Hyperbelsektors. Die Numerierung 1, 2,3,... erfolgte im Sinne wachsender r.

Lässt man diese Figuren in ihrer Ebene um O um oc (0 bis 2 n) rotieren, so erhält
man das Pfeilbild des Kreises um 0 mit dem Radius OP. Es ist interessant, sich den
Übergang eines Kreises von komplexem Radius OP in einen Kreis von reellem Radius
deutlich zu machen: Hält man £ fest und lässt £' gegen Null abnehmen, so artet die
Hyperbel der Pfeil-Anfangspunkte in die #-Achse aus, die Endpunkt-Hyperbel wird
gleichseitig.

4. Zur Beantwortung der Frage b haben wir sämtliche Pfeile (reelle und imaginäre
Punkte) der x-Achse um denselben Winkel * r zu drehen. Dieser Vorgang ist leichter
zu überschauen, wenn wir zu jedem Pfeil seinen linken und rechten Begleitpunkt (es

sind die sogenannten Laguerreschen Punkte) einführen: Der linke Begleitpunkt U
entsteht aus der Pfeilspitze durch Drehen des Pfeiles um seinen Anfangspunkt um
+ rc/2, der rechte Begleitpunkt V durch Drehen um — nß.

Der Punkt P{£ + i f, 0) hat die Begleiter U(£, £') und V(£, -£'); der aus P durch
Drehung um ix entstandene Punkt (Pfeil) Pt hat die Begleiter

Ut(£x-vi fh+tl)> vfa+ni, fh-*i).
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Nach (2) und (3) gilt
£i-rji £e~r> £1 + r]l' £e\

Vx + £l £'e-\ Vl-£i=~£'e\
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(7)

Der linke Begleitpunkt U(£,£') geht also in Ux(£e~x, £' e~r), der rechte V(£, -£')
in Vx(£er, -r*T)über.

Figur 1

Figur 3

//
P

\

P P
Cl

Figur 1 £'=0.
Figur3 |/=|>0.

Figur 2. £'>£>0
*igur4. {>f>0.

¦fr Figur 2

Figur 4

Die linken Begleitpunkte der neuen Pfeile ergeben sich aus den linken Begleitern der
alten Pfeile durch Zusammenziehen gegen 0 hin mit dem Faktor e~T, die rechten Begleitpunkte

durch Dehnen von 0 aus mit dem Faktor er. (Diese anschauliche Ausdrucksweise
gilt für r > 0, Figur 5.)

Indem man r variabel nimmt, ergibt sich für einen gegebenen Ausgangspunkt P
wieder die Bahn der Pfeile: Das Dreieck OUxVx hat konstanten Inhalt, U^
umhüllt somit eine Hyperbel.

5. Um ein leicht aufzufassendes Bild der Pfeile der gedrehten Geraden zu erhalten,
betrachten wir alle Punkte der #-Achse, für welche |2 + |'2 r2 konstant ist.
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Deren Begleiter erfüllen den Kreis 0(r). Als Ort der linken Begleitpunkte wird dieser
Kreis auf den Kreis 0(re~r) zusammengezogen, als Ort der rechten Begleitpunkte
auf den Kreis 0(r e+t) gedehnt. Für die Anfangspunkte Ax(£x, rjx) der hervorgehenden
Pfeile gilt nach (2):

(__A\ + (_^L-\ r2. (8)
\ coshr/ \sinhT/ v '

Die Anfangspunkte ^4X gehören somit einer Ellipse mit den Halbachsen r coshr,
r sinhr an.

Figur 5

Die Endpunkte (£x + £{, rji -f fjl) dieser Pfeile liegen nach (3) auf der mit der ersten
Ellipse in Ähnlichkeitslage befindlichen Ellipse

\ coshr/ \ sinhr / (9)

Betrachtet man den zum Pfeil Px gleichgerichteten und gleichlangen Vektor 0BX

von 0 aus, so liegt dessen Endpunkt Bx(£l,rjl) wegen (3) auf derselben Ellipse (8)
wie der Anfangspunkt Ax des Pfeiles Px. Für die Steigungen der Vektoren OAx und
0BX erhält man nach (2) und (3):

Vi
£i

£' tghr, -2L J-tehr-
£i rtgftT'

dabei ist tghr das Verhältnis der kleinen zur grossen Achse jeder Ellipse (8); daraus

folgt:
Der Pfeil Px ist parallel und gleich lang wie der eine zum Vektor 0AX konjugierte

Halbmesser (Figur 6).
Die durch Drehen um den Winkel i x aus der x-Achse entstandene Pfeilmannigfaltigkeit

nennen wir einen ebenen Wirbel. Jede imaginäre Gerade der Ebene mit eigentlichem

reellem Punkt 0 kann durch imaginäre Drehung aus einer reellen Geraden

gewonnen werden:
Das Bild einer imaginären Geraden mit einem eigentlichen reellen Punkt ist ein ebener

Wirbel.
(Im Sonderfall einer imaginären Geraden mit uneigentlichem reellen Punkt 0

besteht das Bild aus allen Pfeilen, deren Anfangspunkte in einer Geraden und deren

Endpunkte in einer zu dieser parallelen Geraden liegen.)



L.Locher-Ernst: Die zwölf Nabelpunkte des Ellipsoides 53

Die «Abplattung» des Wirbels hängt vom Betrag r des imaginären Drehwinkels
ab. Bedeuten a und b die Haupthalbachse und Nebenhalbachse einer der ähnlich
gelegenen Ellipsen, und ist ß der positive oder negative spitze Winkel, um den man
die Hauptachse des Wirbels im Sinne der Pfeile zu drehen hat, bis sie gegen ihre
alte Lage die Steigung ± b/a hat, so ergibt sich für das natürliche Mass der Abplattung,

nämlich für (a — b): (a + b), der folgende Wert:

¦b_

a + b
l-tgh|r| ¦tg\ß\
l+tgh|r| l + tg|0| ¦*fc-i4 (10)

Figur 6 Figur 7

Zwischen dem Drehwinkel i x und dem Winkel ß besteht die Beziehung

tghx tgß. (11)

Der Winkel ix, den die imaginäre Gerade mit der Hauptachse des Wirbels bildet,
hat in der Grösse/? (der Betrag jr| auch in der Grösse X) seine natürliche reelle

Deutung. Dreht man den Wirbel um 0 um den reellen Winkel a, so hat man eine
Gerade mit dem Steigungswinkel o + ix. Es ist fast selbstverständlich, wie die

Begriffe «parallele» Wirbel, «zueinander senkrechte» Wirbel usw. anschaulich zu
fassen sind; doch gehört dies nicht in den vorliegenden Rahmen.

6. Für r ->0 gilt auch ß ->0, und die Gerade wird zu einer reellen Geraden; der
Wirbel artet aus, seine Pfeile legen sich sämtlich in die betreffende reelle Gerade,
die Abplattung A nimmt den grösstmöglichen Wert 1 an. Die reelle Gerade erscheint
in diesem Zusammenhang als ausgeartetes Gebilde.

Lässt man den Betrag r des Winkels i r, den die imaginäre Gerade mit der x-Achse

als Hauptachse bildet, unbegrenzt wachsen, so ergibt sich

für r -> + co der Grenzwert ß + ~ (Figur 7),

für r -> — co der Grenzwert ß
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In beiden Fällen wird die Abplattung Null. Die Gleichungen der betreffenden zwei
Geraden heissen

y ^tg*T|T^±00 ^tghT|T^±00= ±ix.
Es sind die beiden Minimalgeraden oder isotropen Geraden des Punktes 0. Die

Wirbel werden rotatorisch.
Die beiden isotropen Geraden, die durch jeden reellen Punkt einer Ebene gehen, werden

durch den links- und den rechtsdrehenden rotatorischen Wirbel um jenen Punkt dargestellt.
Es ist unmittelbar klar, dass eine beliebige reelle Drehung der Ebene um einen

ihrer reellen Punkte die beiden isotropen Geraden des Drehpunktes fest lässt.
Dreht man die Figur 1 um 0 reell, so ergibt sich das Pfeilbild eines reellen Kreises

mit dem Radius OP. Lässt man OP gegen Null streben, so erhält man als Kreis vom
Radius Null das Paar der beiden isotropen Geraden des Mittelpunktes, wie anschaulich

sofort klar ist.
Die Pfeilbilder 1, 2, 3, 4 und 7 zeigen auch sofort, dass jeder Kreis mit der

uneigentlichen Geraden dieselben zwei Punkte I und / gemeinsam hat, die aus ihr von
den links- und rechtsisotropen Geraden herausgeschnitten werden (Pfeile unter 45°).

7. Es ist nunmehr leicht, die sämtlichen Punkte einer reellen Kugel zu überblicken.
In jedem reellen Punkt P der Kugel legen wir die Tangentialebene; in dieser denken
wir uns die beiden rotatorischen Wirbel um P, das heisst die beiden isotropen
Erzeugenden der Kugel, die sich in P treffen. Die Gesamtheit der Pfeile aller so konstruierten

Wirbel, das heisst die Gesamtheit der Punkte aller Erzeugenden der Kugel, stellt
die Menge sämtlicher Kugelpunkte dar.

Verwandelt man die Kugel durch zwei reelle Affinitäten in ein allgemeines Elhpsoid
mit den Halbachsen a> b> c, so ergibt sich aus der Pfeilmenge der Kugel die

Pfeilmenge des Ellipsoides. Im allgemeinen werden dabei die Erzeugenden der Kugel,
die rotatorischen Wirbel, in nicht-rotatorische Wirbel übergeführt. Es gibt aber
ausgezeichnete Punkte, bei denen durch die beiden Affinitäten sich wieder rotatorische
Wirbel einstellen. Es sind das Ellipsoidpunkte, deren Erzeugende isotrop sind, also

Nabelpunkte. Die Tangentialebene in einem solchen Punkte hat mit der Fläche einen

Nullkreis gemeinsam.
Zunächst ist leicht zu sehen, dass vier reelle Nabelpunkte vorhanden sind. Das

ergibt sich aus der Betrachtung der Wirkung der beiden Affinitäten oder derart, dass

man das Ellipsoid mit der Kugel 0(b) vom Radius b um den Ellipsoidmittelpunkt 0
schneidet und die reellen Kreisschnitte parallel verschiebt, bis ihre Ebenen die Fläche
berühren. Für die Koordinaten der vier reellen Nabelpunkte des Ellipsoides

erhält man:

*= ±<*k, y =0, *= ±cl mit ß2 -£—?, ^2 ~^ZT^'

N sei ein solcher Nabelpunkt (Figur 8). Die N enthaltenden beiden Erzeugenden
des Ellipsoides sind isotrop. Wir können sofort die Punkte angeben, welche diese

beiden Geraden mit der (x, y)- und (y, s)-Ebene gemeinsam haben: Nx und 2V2 der
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rechtsisotropen, Ni und Ni der linksisotropen Erzeugenden. Da es sich um
rotatorische Wirbel handelt, sind die Längen dieser Pfeile gleich dem entsprechenden
Stück der Tangente in N in der (z, #)-Ebene.

Nehmen wir den zu N bezüglich der (x, y)-Ebene symmetrisch liegenden Nabelpunkt

M, so gehört offensichtlich Nx der linksisotropen Erzeugenden, NI der
rechtsisotropen Erzeugenden jenes Punktes an.

M

N

/
N>

Figur 8

Es ergeben sich auf diese Weise acht imaginäre Punkte des Ellipsoides mit den
Koordinaten

b

mit

# + tt» y +i b m, z 0 bzw. x 0, y ¦= +i —, 2 ± -.

W2==(62_c2).(a2_ö2)#

Jeder dieser Punkte ist gemeinsamer Punkt von zwei isotropen Erzeugenden des

Ellipsoides, das heisst, diese acht Punkte sind Nabelpunkte. Ausser den zwölf erhaltenen

Nabelpunkten hat es keine weiteren, weil die acht Erzeugenden durch die vier
reellen Nabelpunkte die einzigen isotropen Erzeugenden des Ellipsoides sind. Die
zwölf ausgezeichneten Punkte verteilen sich zu je dreien auf eine dieser acht
Erzeugenden; zum Beispiel gehören N, Nx, iV2 und N, Ni, Ni je derselben isotropen
Erzeugenden an. Weitere Eigenschaften der Konfiguration der acht Geraden und
zwölf Punkte kann man mühelos der Figur entnehmen.

8. Für die Durchdringung mit der Anschauung bleibt noch ein Sachverhalt, dessen

Abklärung wünschenswert ist. Die rellen Nabelpunkte sind Stellen, deren Tangentialebene

mit dem Elhpsoid einen Nullkreis, das heisst zwei sich treffende entgegengesetzte

rotatorische Wirbel gemeinsam haben. Durch Parallelverschieben der
Tangentialebene ergeben sich Kreisschnitte. Genau dasselbe gilt auch für die imaginären
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Nabelpunkte. Zum Beispiel ist die Tangentialebene in Nx gegeben durch die beiden
isotropen Geraden NNX und MNX, die einen Nullkreis mit dem imaginären Mittelpunkt

Nx bilden. Sie ist aber imaginär, MN ist ihre reelle Gerade. (Die durch den
Pfeil Nx gegebene gerichtete elliptische Involution bestimmt im Ebenenbüschel mit
der Achse MN eine gerichtete elliptische Ebeneninvolution, durch welche die in Rede
stehende Ebene gegeben ist.) Durch Parallelverschieben dieser Ebene in den Mittelpunkt

0 erhält man einen der Schnittkreise, welche die Kugel 0(c) mit dem Elhpsoid
gemeinsam hat. Diese beiden Kreise haben den reellen Mittelpunkt 0 und den reellen
Radius c, deshalb können wir sie als reell bezeichnen. Ihre einzigen reellen Punkte

ü

Ad

K

Figur 9

sind aber die Endpunkte der kürzesten Achse des Ellipsoides, da sie in imaginären
Ebenen liegen. Wie aus (x/a)2 + (y/&)2 + (z/c)2 1 und x2 + y2 + z2 c2 folgt,
haben diese Ebenen die Gleichungen:

Die Normalprojektionen der beiden Schnittkreise auf die (x, y)-Ebene sind also
die Wirbel mit tghr tgß ±a l/b, deren Hauptachse - wegen b > a l - in die

y-Achse fällt. Um ein Bild von der Pfeilmenge dieser Kreise zu erhalten, können wir
den reellen Kreis um 0 vom Radius c in der (y, 2)-Ebene nehmen und diesen um den
Winkel i x im einen und dem entgegengesetzten Sinne um die z-Achse drehen. Oder
wir bestimmen aus (x/a)2+ (y/&)2 + (z/c)2= 1 und x -j-i (al/b) y die Normalprojektion

auf die (y, ;*)-Ebene:

Das Pfeilfeld dieser Ellipse ergibt sich durch affine Umwandlung des Pfeilfeldes eines

gewöhnlichen Kreises. Vom gesuchten Bild der in Rede stehenden Kreise haben wir
so zwei Normalrisse [Wirbel in der (x, y)-Ebene, Ellipse in der (y, *)-Ebene], aus
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denen man einen Überblick der Punkte der Kreise gewinnt. In der Figur 9 sind einige
Punkte eines solchen im erklärten Sinne reellen, aber in einer imaginären Ebene
liegenden Kreises angedeutet. (Die GrössenVerhältnisse sind der Übersicht wegen andere
als in der Figur 8). Interessant ist der Übergang eines solchen Kreises in einen reellen
Kreis in einer reellen Ebene.

Damit haben wir uns einen anschaulichen Einblick in die Konfiguration der zwölf
Nabelpunkte verschafft. Die Betrachtungen lassen sich auf beliebige Flächen zweiter
Ordnung ausdehnen. Unsere Ausführungen haben natürlich nur für denjenigen einen
Wert, der ausser der Eleganz analytischer Entwicklungen auch die anschauliche
Verarbeitung zu schätzen weiss. L.Locher-Ernst.

Herstellung von Perspektiven aus axonometrischen
oder Perspektiven Bildern1)

Wird ein Gegenstand aus zwei Augen 0 und 0X auf eine Bildebene tz projiziert, so
stehen beide Bilder in einer einfachen Beziehung. Diese Beziehung ermöglicht a) aus
einem axonometrischen Bild durch « Umzeichnen » ein perspektives Bild herzustellen,
b) aus einem Foto das dargestellte Objekt durch Umzeichnen in ein axonometrisches
Bild zu rekonstruieren, c) ein ungünstig wirkendes perspektives Bild in ein anderes
umzuzeichnen, indem das Auge 0 durch ein anderes Auge 0X ersetzt wird.

Eine waagrechte Grundebene F schneide tz in der Grundlinie g. Ein Raumpunkt P
habe den Grundriss P' in r. Die Sehstrahlen OP und 0XP schneiden tz in Pc und Pz,
die Sehstrahlen OP' und 0XP' schneiden tz in P'° und P'z. Wir unterscheiden, ob tz

lotrecht steht oder nicht.

1. Umzeichnen bei lotrechter Bildebene

Figur 1 zeigt links die Perspektiven Bilder mit den Hauptpunkten H, Hx, den
Horizonten h, hx und den Messpunkten Mr, Mx r von r « umgeklappte Augen»),
rechts eine Ansicht in Richtung g, die man als Kreuzriss auffassen kann. Der Schnittpunkt

0X=0Z der Geraden 00x mit tz heisse Kernpunkt. Jede Gerade in tz durch
0[0Z heisse ein Kernstrahl. Die Ebene P00x enthält Pc und Pz. Sie schneidet tz nach
einem Kernstrahl, daher liegen Pc und Pz auf einem Kernstrahl. Ebenso liegen P'c
und P'z auf einem Kernstrahl (ausgeschnitten von der Ebene Pf00x). — Ist P der
Fernpunkt der zu tz normalen Geraden oder der Fernpunkt der Drehsehnen 0Mr
und 0xMxr, so folgt: H und Hx liegen auf einem Kernstrahl, ebenso Mr und Mxr.
Sind H, Hx, d, dx und g gegeben, so geht h parallel zu g durch H und hx durch Hx. Den
Kernpunkt findet man ohne Kreuzriss als Schnittpunkt von HHX mit MrMxr.

P sei durch P°und P'° gegeben. Um P*und P,z ohne Benutzung des Kreuzrisses
zu erhalten, lege man in F durch P' die zu g normale «Fallgerade » /. /c geht durch H
und P,c,fz durch Hx und den auf g gelegenen Bildspurpunkt P von /. Der Kernstrahl

*) Vom Verfasser erscheint demnächst ein Buch Konstruktive Geometrie für Techniker (Springer-Verlag,
Wien).
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