Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 10 (1955)

Heft: 2

Artikel: Elementargeometrische Modelle zur Differentialgeometrie
Autor: Sauer, R.

DOl: https://doi.org/10.5169/seals-18072

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-18072
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zeitschyift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts
Organ fiir den Veresn Schweizerischer Mathematik- und Physiklehrer

El.Math. Band X Nr.2 Seiten 25-48 Basel, 10. Midrz 1955

Elementargeometrische Modelle zur Differentialgeometrie

(Schluss)

§ 8. Flichen konstanten negativen Kriimmungsmasses

8. 1. Definition der ebeneckigen Tschebyscheff-Gitter'). Wir wenden uns nun zu spe-
ziellen ebeneckigen Gittern, namlich zu solchen, bei denen die Leitpolygone der einen

JII
J’ J’
(k) (¥

/,7] 5”
J’ J’
(k) (k)

a)s"

Figur 13 Figur 14

Schar die konstante Seitenlidnge s’ und die Leitpolygone der anderen Schar die kon-
stante Seitenlidnge s” haben (Figur 13). Wir bezeichnen diese Gitter als Tschebyscheff-
Gitter, da sie das differenzengeometrische Analogon der Tschebyscheffschen Kurven-
netze u# = const, v = const mit dem Linienelement

ds?=du®+ 2 cosw(u, v) du dv + dv?
sind.
Die Vierecksmaschen sind «windschiefe Parallelogrammen»; ihre Gegenseiten sind
zwar nicht parallel, aber stets lingengleich (Figur 14). Offenbar sind dann auch in

1) G.E.Bennerr, Engineering 76, 777-778 (1903), und Proc. London Math. Soc. 13, 151-173 (1914). —
R. SAUER, Math. Z. 52, 611-622 (1950). — W. WUNDERLICH, Math. Z. 55, 13-22 (1951), und Sitz.-Ber. Oster.
Akad. Wiss., math.-naturw, Klasse, Abtlg. I1a, 160, 39-77 (1951).
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jeder Masche die einander gegeniiberliegenden Viereckswinkel einander gleich:

G=dg=0o, fi=F=4.

Neben den Viereckswinkeln «, § fithren wir noch die Windungswinkel ein, das heisst
die Winkel aufeinanderfolgender Tangentenebenen des Gitters, zum Beispiel

App,= X (BPR|PRF).

Sie sollen positiv oder negativ gerechnet werden, je nachdem die Fortschreitungs-

richtung (zum Beispiel PP,) mit der zugeordneten Drehung eine Rechts- oder Links-

schraube bestimmt (Figur 14).
Aus der Gleichung

sin % sin A

: (16)

’

ergibt sich, dass alle Leitpolygone mit der Seitenlinge s” den konstanten Windungs-
winkel » und alle Leitpolygone mit der Seitenlinge s” den konstanten Windungs-
winkel A besitzen. Da die Tangentenebenen des Gitters mit den Schmiegebenen der
Leitpolygone zusammenfallen, sind die Windungswinkel zugleich die Winkel zwischen
aufeinanderfolgenden Schmiegebenen der Leitpolygone. Es liegt daher nahe, den
Quotienten (sinx)/s’ bzw. (sinA)/s” als Windung w der Leitpolygone zu bezeichnen.
Wegen der Konstanz von %, A und s’, s” gilt dann:

Die Leitpolygone der einen Schar haben konstante Seitenlinge s’ und konstante
Windung »’, die Leitpolygone der anderen Schar haben konstante Seitenldnge s” und
konstante Windung w".

Aus Gleichung (16) folgt ausserdem sofort

w = —w" = const = w, (17)
das heisst: Die Leitpolygone der beiden Scharen haben entgegengesetzt gleiche Win-
dungen.

8.2. Sphdrisches Bild der ebeneckigen T schebyscheff-Gitter. Die in Ziffer 6. 2 erorterte
sphirische Abbildung spezialisiert sich bei Tschebyscheff-Gittern folgendermassen:
Die Windungswinkel #x, 4 des Vierecksgitters sind gleich den Bogenldngen im sphaéri-
schen Bild; dieses ist also ein aus Grosstkreisbégen der Linge » bzw. A bestehendes
Tschebyscheffsches Kurvennetz.

Ahnlich wie in Ziffer 1. 2 definieren wir fiir jede Gittermasche des Tschebyscheff-
Gitters ein Kriimmungsmass K mit Hilfe des Flicheninhalts @ des sphirischen Vier-
ecks, das sich als sphirisches Bild der Gittermasche ergibt. Wir definieren

_ 2sin@[2
F )

(18)
wobei 2 F die Oberfliche des durch die vier Eckpunkte der Gittermasche bestimmten
Tetraeders ist. Eine elementare Rechnung liefert dann die Beziehung

K= w w" w?

e e

(19)

2 % gt 2 % ot
cos® - cos? - cost —- cos?
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zwischen dem Kriimmungsmass der Gittermaschen und den Windungen der Leitpoly-
gone. Aus der Konstanz von %, 4 und w folgt dann: Ein ebeneckiges Tschebyscheff-
Gitter hat fiir alle Gittermaschen konstantes, und zwar negatives Kriimmungsmass.

8. 3. Parallel-reziproke Zuordnung der ebeneckigen Tschebyscheff-Gitter und der
ebenmaschigen scheitelwinkelgleichen Vierecksgitter. Die in Ziffer 7. 1 eingefiihrte pa-
rallel-reziproke Zuordnung spezialisiert sich jetzt folgendermassen: Die zu einem
ebeneckigen Tschebyscheff-Gitter parallel-reziproken Gitter sind ebenmaschige schei-
telwinkelgleiche Vierecksgitter im Sinne von Ziffer 5. 1. Den nichtebenen Vierecks-
maschen des Tschebyscheff-Gitters mit den gleichen Gegenwinkeln o; = o = a,
B1=B.=pB (vgl. Figur 14) entsprechen ndmlich im parallel-reziproken ebenmaschigen
Gitter die nicht ebenen Vierkante mit den gleichen Scheitelwinkeln o; = oy = «,
fi=B.=p (vgl. Figur 9). Die Windungswinkel %, A der Tschebyscheff-Gitter treten
im parallel-reziproken Gitter als Keilwinkel benachbarter ebener Vierecksmaschen auf.

Wir denken uns nun ein ebeneckiges Tschebyscheff-Gitter vorgegeben und wihlen
aus der Menge der zugeordneten parallel-reziproken ebenmaschigen scheitelwinkel-
gleichen Gitter ein bestimmtes Exemplar aus. Hierauf verknicken wir dieses Exemplar
im Sinne von Ziffer 5. 2 und konstruieren zu jeder Verknickungsform das parallel-
reziprok zugeordnete ebeneckige Tschebyscheff-Gitter. Auf diese Weise ergibt sich
eine einparametrige Menge ebeneckiger Tschebyscheff-Gitter, welche alle dieselben
Viereckswinkel «, § besitzen, wihrend die Seiten s’, s” und die Windungswinkel », 4
andere Werte s'*, s"*, »*, 1* angenommen haben. Durch passende dhnliche Vergrosse-
rung oder Verkleinerung kénnen wir stets erreichen, dass die Windungen w, w’ der
Leitpolygone denselben konstanten Wert behalten. Dann ist

sinx*  sinx - t

g% = = w-=const, 20)
sin A¥ sin A
T = g = W= const.

Aus den Gleichungen (11) ergibt sich ausserdem nach elementarer Rechnung fiir die
Seitenldngen der Leitpolygone

1
SI* — Q sl T . ,
“ . ]
cos? 5 + o? sxn2—2—~
> (21)
1
/% L - B o
) ] st — + L sin? o
oS T T 2
und schliesslich fiir das Kriimmungsmass der Gittermasche
. A 1 ., 4
K*=K (cosz—’éi + 2 smz—:—> (cosz—z— + ra sin? —2~) ‘ (22)

8. 4. Grenziibergang zur Differentialgeometrie. Beim Grenzprozess € > 0 gehen die
Windungen der Leitpolygone in die Windungen der Asymptotenlinien iiber, das Kriim-
mungsmass der Gittermaschen konvergiert gegen das Kriitmmungsmass der Fliche.
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Infolgedessen sind die ebeneckigen Tschebyscheffschen Vierecksgitter das differenzen-
geometrische Analogon der Flichen konstanten negativen Kriimmungsmasses. Im
cinzelnen entsprechen die in den Ziffern 8. 1 bis 8. 3 entwickelten elementargeome-
trischen Beziehungen den folgenden bekannten differentialgeometrischen Sitzen:

a) Satz von ENNEPER: Die Asymptotenlinien einer Fliche konstanten negativen
Kriimmungsmasses haben konstante und in beiden Scharen entgegengesetzt
gleiche Windungen 4 w; das Produkt — w? ist gleich dem Kriimmungsmass der
Flache [vgl. die Gleichungen (17) und (19) mit % > 0, A > O fiir ¢ > 0].

b) Die Asymptotenlinien einer Fliche konstanten negativen Kriimmungsmasses
und ebenso ihr sphirisches Bild erzeugen ein Tschebyscheffsches Netz (s’, s” = const
in Ziffer 8.1 und x, 4 = const in Ziffer 8. 2).

c) Das Asymptotenliniennetz einer Fliche konstanten negativen Kriimmungsmasses
ist parallel-reziprok zu konjugierten geoditischen Kurvennetzen auf VoBschen
Fldachen (vgl. Ziffer 8. 3).

d) Die Verbiegungen der VoBschen Fliche (vgl. die Ziffern 5. 2 und 5. 3), bei denen
ein geoddtisches Kurvennetz konjugiert bleibt, liefern bei der parallel-reziproken
Zuordnung die sogenannten Lieschen Transformationen der Asymptotenlinien-
netze auf Flichen konstanten negativen Kriimmungsmasses: Die Windungen der
Asymptotenlinien, das Kriilmmungsmass der Fliche und die Winkel, unter denen
sich die Asymptotenlinien schneiden, bleiben erhalten; die Bogenlingen auf den
Asymptotenlinien der einen Schar werden im Verhiltnis 1:p, auf der anderen
Schar im Verhiltnis 1: 1/p verzerrt [vgl. die Gleichungen (20), (21), (22) mit » >0,
A—>0 fir ¢ >0].

§ 9. Streifenmodelle fiir Dreh- und Schraubenflichen

9. 1. Definstion der Streifenmodelle von Drehflichen. Durch Drehung eines ebenen
Polygons um eine in seiner Ebene liegende Gerade entsteht eine aus Kegelzonen -
die auch in Zylinderzonen entarten konnen — zusammengesetzte Drehfliche (Figur
15a). Wir bezeichnen sie als Streifenmodell!), da die ebene Abwicklung (Figur 15b)
der Kegelzonen eine Folge ebener und zwar kreisringformiger Streifen liefert. Aus
Platzgriinden ist in Figur 155 nur die vordere Hélfte des Streifenmodells abgewickelt.
Bei einem Grenzprozess ¢ > 0, der das Polygonprofil des Streifenmodells in eine ebens
Kurve iiberfiithrt, konvergiert das Streifenmodell gegen eine Drehfliche mit der eben
genannten Kurve als Profilkurve. Wenn diese Drehflidche positives Kriimmungsmass
hat, bilden die Streifen in der ebenen Abwicklung (von einem hinreichend kleinen
¢ an) Spalte, bei negativem Kriimmungsmass iiberdecken sie sich; die ebene Abwick-
lung der Streifen steht also mit dem Kriimmungsmass der Fliche in dhnlichem Zu-
sammenhang wie die ebene Abwicklung der Sechskante eines Dreiecksgitters in
Ziffer 1. 2.

9. 2. Verbiegung von Drehflichen auf Schraubenflichen. In Figur 164 und b sind
Grund- und Aufriss einer Kegelzone samt dem als ebene Abwicklung sich ergebenden
Kreisringstreifen A BCD dargestellt. Derselbe Kreisring ldsst sich auf jeden beliebigen
Drehkegel aufbiegen, wobei die Kreisrinder und die Radienvektoren des Streifens

1) R.SAUER, Math, Z, 48, 455-466 (1942),
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jeweils in Breitenkreise und Mantellinien des Kegels iibergehen. Bei Verkleinerung
des Kegeloffnungswinkels tiberdeckt der aufg:wickelte Kreisring ein'n Teil ‘des
Kegels mehrfach, bei Vergrésserung des Offnungswinkels iiberdeckt er nur einen Teil
einer Kegelzone.

Ausserdem ldsst sich derselbe Kreisring auf jede beliebige Schraubenbdschungs-
flaiche (= Tangentenfliache einer Schraubenlinie s) aufbiegen (Figur 165 und c): Der
Schraubenlinie s («Gratlinie») entspricht in der ebenen Abwicklung der zu den Strei-
fenrdndern konzentrische Kreis %, der dieselbe Kriimmung wie die Gratlinie s hat;
die Tangenten von 2 kommen beim Aufbiegen auf die Schraubenfldche mit den Tan-

.

Figur 154 Figur 15%

genten der Gratlinie s zur Deckung, die Kreisrinder mit Schraubenlinien der Schrau-
benfliche.

Das in Figur 155 durch die ebene Abwicklung gegebene Streifenmodell ldsst sich
nach dem Vorangehenden auf eine einparametrige Menge von Drehfldchen, die aus
Kegelzonen zusammengesetzt sind, aufbiegen. Es ldsst sich ausserdem aufbiegen auf
eine zweiparametrige Menge von Schraubenflichen, die aus Zonen von Schrauben-
béschungsflichen bestehen. In jedem der beiden Fille kann fiir den ersten Streifen
der Kegel, auf den er aufgebogen werden soll (1 Parameter = Kegel6ffnungswinkel
w), bzw. die Schraubenbdschung:fliche (2 Parameter = Ganghohe 2 7 & und Radius
a der Gratlinie s) willkiirlich vorgeschrieben werden; die Verbiegung der iibrigen Strei-
fen ist hierdurch festgelegt. Grenzlagen der Verbiegungen ergeben sich in dhnlicher
Weise wie in Ziffer 4. 3.

Beim Grenzprozess ¢ - 0 gehen die hier behandelten Verbiegungen der Streifen-
modelle in die einparametrige Gruppe der Verbiegungen einer Drehfliche in Dreh-
flichen (vgl. Ziffer 4. 4, Fall ¢) und in die zweiparametrige Gruppe der Verbiegungen
einer Drehfliche in Schraubenflichen (Boursches Theorem der Differentialgeometrie)
liber.
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9. 3. Geodatische Linien auf Dreh- und Schraubenflichen. Die geoditischen Linien
eines Streifenmodells sind in der ebenen Abwicklung in jedem Kreisringstreifen gerad-
linig und setzen sich beim Ubergang von einem Streifen zum anderen unter gleichen
Scheitelwinkeln fort; vgl. die in Figur 1556 eingezeichnete Streckenfolge.

Figur 165 Figur 16¢

Fiir eine geoditische Linie besteht hiernach innerhalb eines jeden Streifens nach

Figur 17 die Beziehung
0 cosa = p == const (23)

(0 = Winkel der geoditischen Linie gegen die Kreise vom Radius g). Es bleibt jetzt
noch festzustellen, wie sich die Konstante p von Streifen zu Streifen dndert:
- Bei Aufbiegung der Streifen auf eine Drehfliche (w = Offnungswinkel der Kegel-
zonen) folgt aus Figur 16a sofort
. 4
SInow = 'E . (24)

also mit Riicksicht auf Gleichung (23)
7 cosa = p sinw = const. (25)

Da p und w innerhalb eines jeden Streifens konstant sind und beim Ubergang von
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einem Streifen zum anderen sowohl 7 als auch — wegen der Scheitelwinkelgleichheit
— der Winkel a sich stetig dndern, ist die linke Seite der Gleichung (25) lings der
geoditischen Linie auf der gesamten Streifendrehfliche konstant.

Bei Aufbiegung der Streifen auf eine Schraubenfliche (2s 4 = Ganghdhe der
Schraubenfliche; o = Steigungswinkel, a = Radius, 1/p = Kriimmung der Grat-

linien s der einzelnen Schraubenstreifen) ergeben sich die Beziehungen (vgl. Figur
165 und ¢)

— a4+ hr 24
h=actgw, =", =hzo l
4 h? (26)
r2=a%+ ’sin?w, p%?=p241% = i B ’

Figur 17

gemessene Linge. Durch Elimination von / und Einsetzen in Gleichung (24) folgt
nach kurzer Rechnung

Vr2+ h2cosa = P sinw = const, (27)

wobei die Konstante auf der rechten Seite wieder fiir die gesamte Streifenschrauben-
fliche gilt.

Beim Grenziibergang ¢ > 0 gehen die geoditischen Linien der Streifenmodelle in
die geoddtischen Linien beliebiger Dreh- und Schraubenflachen iiber. Die Gleichungen
(25) und (27) bleiben beim Grenziibergang erhalten und driicken den bekannten
Clairautschen Satz der Differentialgeometrie fiir die geoddtischen Linien auf Dreh-
und Schraubenfldchen aus.

9.4. Streifenmodell der Pseudosphdire. Ein besonders bemerkenswertes Streifenmodell
ergibt sich, wenn in der ebenen Abwicklung alle Streifen aus demselben Kreisring
ausgeschnitten sind (Figur 184). Die Streifen lassen sich dann in der ebenen Abwick-
lung iibereinanderlegen. Jeder folgende Streifen ist kiirzer als der vorangehende, da
sein dusserer Rand mit dem inneren Rand des vorangehenden zur Deckung gebracht
werden muss; so ist beispielsweise die Bogenlinge 4, B, des zweiten Streifens 4,B,C,D,
gleich der Bogenlidnge DC des ersten Streifens ABCD.

Beim Aufbiegen ergeben sich Drehflichen mit Kegelzonen, welche simtlich dieselbe
Mantellinienlinge ¢ haben (Figur 185). Der Grenzprozess € - 0 liefert daher Pseudo-
sphiren, das heisst Drehflichen mit einer Traktrix als Profilkurve.
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Wegen der Kongruenz der Streifen kann man jeden Streifen auf jede Kegelzone des
Modells aufbiegen. Beim Grenzprozess ¢ - 0 folgt hieraus, dass eine Pseudosphire so
in sich verbogen werden kann, dass die Breitenkreise wieder in Breitenkreise iiber-
gehen; alle Punkte der Pseudosphire sind daher beziiglich der Metrik auf der Flache

Figur 18a Figur18b

miteinander gleichwertig, die Pseudosphire hat also konstantes (und zwar negatives)
Kriimmungsmass.

Die entsprechenden Schrauben-Streifenmodelle liefern beim Grenzprozess ¢ > 0
Schraubenflichen konstanten negativen Krilmmungsmasses. = R.SAUER, Miinchen.

Quelques propriétés de la configuration complémentaire
de Desargues

Soit C; une configuration de DESARGUES (10, 10;) formée par les 10 points

12, ..., 45 et par les 10 droites 123, ..., 345, les points 7, j &, k¢ étant sur la droite
1 1 k (Figure 1). Cette configuration engendre une configuration C, (15,, 10;) déter-
minée par les mémes 10 droites 123, ..., 345 et par les 15 points d’intersection qui
ne font pas partie de la configuration C; (Figure 2). Tout point est sur deux droites,
toute droite contient trois points. Cette configuration C, jouit de propriétés dont les
suivantes, a notre connaissance, sont encore inédites.

1° C, contient seulement des polygones a 5, 6, 8 et 9 cités. Désignons par A4, ..., 4,
Ay +1= 41 un de ces polygones.

Soit A;; le troisitme point de la configuration situé sur 4;4;. Soit encore
B(i,7 41,4 + 2) le point d’intersection de (4;, 4,,,) et de (4;, 11, 4it1y i49)-
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