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Organ für den Verein Schweizerischer Mathematik- und Physiklehrer

El Math BandX Nr 2 Seiten 25-48 Basel, 10 März 1955

Elementargeometrische Modelle zur Differentialgeometrie
(Schluss)

§ 8 Flachen konstanten negativen Krummungsmasses

8. 1. Definition der ebeneckigen Tschebyscheff-Gitter1) Wir wenden uns nun zu
speziellen ebeneckigen Gittern, namhch zu solchen, bei denen die Leitpolygone der einen
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Schar die konstante Seitenlange s' und die Leitpolygone der anderen Schar die
konstante Seitenlange s" haben (Figur 13). Wir bezeichnen diese Gitter als Tschebyscheff-
Gitter, da sie das differenzengeometrische Analogon der Tschebyscheffschen Kurvennetze

u const, v const mit dem Linienelement

ds2 — du1 -f 2 cosa>(w, v) du dv -f- dv2

sind.
Die Vierecksmaschen sind «windschiefe Parallelogramme», ihre Gegenseiten smd

zwar nicht parallel, aber stets langengleich (Figur 14) Offenbar sind dann auch in
x) G E Bennett, Engineering 76, 777-778 (1903), und Proc London Math Soc 13, 151-173 (1914) -

R Sauer, Math Z 52,611-622(1950) -W Wunderlich, Math Z 55, 13-22 (1951), und Sitz -Ber Öster
Akad Wiss, math naturw Klasse, Abtlg IIa, 160, 39-77 (1951)



26 R. Sauer: Elementargeometrische Modelle zur Differentialgeometrie

jeder Masche die einander gegenüberliegenden Viereckswinkel einander gleich:

ai=a2=a, ß1 ß2 ß.

Neben den Viereckswinkeln ot, ß führen wir noch die Windungswinkel ein, das heisst
die Winkel aufeinanderfolgender Tangentenebenen des Gitters, zum Beispiel

Sie sollen positiv oder negativ gerechnet werden, je nachdem die Fortschreitungs-
richtung (zum Beispiel PPZ) mit der zugeordneten Drehung eine Rechts- oder
Linksschraube bestimmt (Figur 14).

Aus der Gleichung sin„ sinA
_____ _ (16)

ergibt sich, dass alle Leitpolygone mit der Seitenlänge s' den konstanten Windungswinkel

x und alle Leitpolygone mit der Seitenlänge s" den konstanten Windungswinkel

X besitzen. Da die Tangentenebenen des Gitters mit den Schmiegebenen der
Leitpolygone zusammenfallen, sind die Windungswinkel zugleich die Winkel zwischen
aufeinanderfolgenden Schmiegebenen der Leitpolygone. Es liegt daher nahe, den

Quotienten {sin x)js' bzw. (sinA)/s/; als Windung w der Leitpolygone zu bezeichnen.

Wegen der Konstanz von x, X und s't s" gilt dann:
Die Leitpolygone der einen Schar haben konstante Seitenlänge s' und konstante

Windung w', die Leitpolygone der anderen Schar haben konstante Seitenlänge s" und
konstante Windung w".

Aus Gleichung (16) folgt ausserdem sofort

w' — w" const w, (17)

das heisst: Die Leitpolygone der beiden Scharen haben entgegengesetzt gleiche
Windungen.

8.2. Sphärisches Bild der ebeneckigen Tschebyscheff-Gitter. Die in Ziffer 6.2 erörterte
sphärische Abbildung spezialisiert sich bei Tschebyscheff-Gittern folgendermassen:
Die Windungswinkel x, X des Vierecksgitters sind gleich den Bogenlängen im sphärischen

Bild; dieses ist also ein aus Grösstkreisbögen der Länge x bzw. X bestehendes

Tschebyscheffsches Kurvennetz.
Ähnlich wie in Ziffer 1. 2 definieren wir für jede Gittermasche des Tschebyscheff-

Gitters ein Krümmungsmass K mit Hilfe des Flächeninhalts <£> des sphärischen Vierecks,

das sich als sphärisches Bild der Gittermasche ergibt. Wir definieren

K _2sinßI1) (lg)

wobei 2F die Oberfläche des durch die vier Eckpunkte der Gittermasche bestimmten
Tetraeders ist. Eine elementare Rechnung liefert dann die Beziehung

K «__i" «__ (19)
cos2 — cos2 — cos2 — cos2 —
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zwischen dem Krümmungsmass der Gittermaschen und den Windungen der Leitpolygone.

Aus der Konstanz von x, X und w folgt dann: Ein ebeneckiges Tschebyscheff-
Gitter hat für alle Gittermaschen konstantes, und zwar negatives Krümmungsmass.

8. 3, Parallel-reziproke Zuordnung der ebeneckigen Tschebyscheff-Gitter und der

ebenmaschigen scheitelwinkelgleichen Vierecksgitter. Die in Ziffer 7. 1 eingeführte
parallel-reziproke Zuordnung spezialisiert sich jetzt folgendermassen: Die zu einem
ebeneckigen Tschebyscheff-Gitter parallel-reziproken Gitter sind ebenmaschige
scheitelwinkelgleiche Vierecksgitter im Sinne von Ziffer 5. 1. Den nichtebenen Vierecksmaschen

des Tschebyscheff-Gitters mit den gleichen Gegenwinkeln oc2 ocg oc,

ßi ~ ß% — ß (vgl- Figur 14) entsprechen nämlich im parallel-reziproken ebenmaschigen
Gitter die nicht ebenen Vierkante mit den gleichen Scheitelwinkeln at ocg oc,

ßi ß2"= ß (vgl. Figur 9). Die Windungswinkel x, X der Tschebyscheff-Gitter treten
im parallel-reziproken Gitter als Keilwinkel benachbarter ebener Vierecksmaschen auf.

Wir denken uns nun ein ebeneckiges Tschebyscheff-Gitter vorgegeben und wählen
aus der Menge der zugeordneten parallel-reziproken ebenmaschigen scheitelwinkelgleichen

Gitter ein bestimmtes Exemplar aus. Hierauf verknicken wir dieses Exemplar
im Sinne von Ziffer 5. 2 und konstruieren zu jeder Verknickungsform das
parallelreziprok zugeordnete ebeneckige Tschebyscheff-Gitter. Auf diese Weise ergibt sich
eine einparametrige Menge ebeneckiger Tschebyscheff-Gitter, welche alle dieselben
Viereckswinkel oc, ß besitzen, während die Seiten s', s" und die Windungswinkel x, X

andere Werte s'*, s"*, x*,X* angenommen haben. Durch passende ähnliche Vergrösse-

rung oder Verkleinerung können wir stets erreichen, dass die Windungen w,w' der
Leitpolygone denselben konstanten Wert behalten. Dann ist

smr sin«- - w -= const,
s * s

sinA* sinA
,,*- n =• — w const.

s * s

(20)

Aus den Gleichungen (11) ergibt sich ausserdem nach elementarer Rechnung für die

Seitenlängen der Leitpolygone

S * — Q S

cos2 -- + g2 sin2 —-

s"* -L~s" ,- \
cos2 — + -Y sin2

2 Q* l

(21)

und schliesslich für das Krümmungsmass der Gittermasche

K* K (cos* -f- £* sin* -J) (cos*\ + ~ sin* A) (22)

8. 4. Grenzübergang zur Differentialgeometrie. Beim Grenzprozess e -> 0 gehen die

Windungen der Leitpolygone in die Windungen der Asymptotenlinien über, das

Krümmungsmass der Gittermaschen konvergiert gegen das Krümmungsmass der Fläche.
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Infolgedessen sind die ebeneckigen Tschebyscheffschen Vierecksgitter das
differenzengeometrische Analogon der Flächen konstanten negativen Krummungsmasses. Im
einzelnen entsprechen die in den Ziffern 8. 1 bis 8. 3 entwickelten elementargeometrischen

Beziehungen den folgenden bekannten differentialgeometrischen Sätzen:

a) Satz von Enneper: Die Asymptotenlinien einer Fläche konstanten negativen
Krummungsmasses haben konstante und in beiden Scharen entgegengesetzt
gleiche Windungen ^ w '> das Produkt — w2 ist gleich dem Krümmungsmass der
Fläche [vgl. die Gleichungen (17) und (19) mit x -> 0, X •> 0 für e -> 0].

b) Die Asymptotenlinien einer Fläche konstanten negativen Krummungsmasses
und ebenso ihr sphärisches Bild erzeugen ein Tschebyscheffsches Netz (s', s" const
in Ziffer 8.1 und x, X const in Ziffer 8. 2).

c) Das Asymptotenliniennetz einer Fläche konstanten negativen Krummungsmasses
ist parallel-reziprok zu konjugierten geodätischen Kurvennetzen auf Voßschen
Flächen (vgl. Ziffer 8. 3).

d) Die Verbiegungen der Voßschen Fläche (vgl. die Ziffern 5. 2 und 5. 3), bei denen
ein geodätisches Kurvennetz konjugiert bleibt, liefern bei der parallel-reziproken
Zuordnung die sogenannten Lieschen Transformationen der Asymptotenliniennetze

auf Flächen konstanten negativen Krummungsmasses: Die Windungen der

Asymptotenlinien, das Krümmungsmass der Fläche und die Winkel, unter denen
sich die Asymptotenlinien schneiden, bleiben erhalten; die Bogenlängen auf den

Asymptotenlinien der einen Schar werden im Verhältnis 1:q, auf der anderen
Schar im Verhältnis 1:1/g verzerrt [vgl. die Gleichungen (20), (21), (22) mit x -> 0,
X^O für e->0].

§ 9. Streifenmodelle für Dreh- und Schraubenflächen

9. 1. Definition der Streifenmodelle von Drehflächen. Durch Drehung eines ebenen

Polygons um eine in seiner Ebene liegende Gerade entsteht eine aus Kegelzonen -
die auch in Zylinderzonen entarten können - zusammengesetzte Drehfläche (Figur
15a). Wir bezeichnen sie als Streifenmodell1), da die ebene Abwicklung (Figur 15b)
der Kegelzonen eine Folge ebener und zwar kreisringförmiger Streifen liefert. Aus
Platzgründen ist in Figur 15 & nur die vordere Hälfte des Streifenmodells abgewickelt.
Bei einem Grenzprozess e -> 0, der das Polygonprofil des Streifenmodells in eine ebene

Kurve überführt, konvergiert das Streifenmodell gegen eine Drehfläche mit der eben

genannten Kurve als Profilkurve. Wenn diese Drehfläche positives Krümmungsmass
hat, bilden die Streifen in der ebenen Abwicklung (von einem hinreichend kleinen
e an) Spalte, bei negativem Krümmungsmass überdecken sie sich; die ebene Abwicklung

der Streifen steht also mit dem Krümmungsmass der Fläche in ähnlichem
Zusammenhang wie die ebene Abwicklung der Sechskante eines Dreiecksgitters in
Ziffer 1. 2.

9. 2. Verbiegung von Drehflächen auf Schraubenflächen. In Figur 16 a und b sind
Grund- und Aufriss einer Kegelzone samt dem als ebene Abwicklung sich ergebenden
Kreisringstreifen ABCD dargestellt. Derselbe Kreisring lässt sich auf jeden beliebigen
Drehkegel aufbiegen, wobei die Kreisränder und die Radienvektoren des Streifens

*) R. Sauer, Math, Z, 48, 455-466 (1912),
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jeweils in Breitenkreise und Mantellinien des Kegels übergehen. Bei Verkleinerung
des Kegelöffnungswinkels überdeckt der aufgewickelte Kreisring ein n Teil des

Kegels mehrfach, bei Vergrösserung des Öffnungswinkels überdeckt er nur einen Teil
einer Kegelzone.

Ausserdem lässt sich derselbe Kreisring auf jede beliebige Schraubenböschungsfläche

Tangentenfläche einer Schraubenlinie s) aufbiegen (Figur 16 b und c): Der
Schraubenlinie s (« Gratlinie») entspricht in der ebenen Abwicklung der zu den
Streifenrändern konzentrische Kreis k, der dieselbe Krümmung wie die Gratlinie s hat;
die Tangenten von k kommen beim Aufbiegen auf die Schraubenfläche mit den Tan-
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Figur 15« Figur 15 6

genten der Gratlinie s zur Deckung, die Kreisränder mit Schraubenlinien der
Schraubenfläche.

Das in Figur 156 durch die ebene Abwicklung gegebene Streifenmodell lässt sich
nach dem Vorangehenden auf eine einparametrige Menge von Drehflächen, die aus

Kegelzonen zusammengesetzt sind, aufbiegen. Es lässt sich ausserdem aufbiegen auf
eine zweiparametrige Menge von Schraubenflächen, die aus Zonen von
Schraubenböschungsflächen bestehen. In jedem der beiden Fälle kann für den ersten Streifen
der Kegel, auf den er aufgebogen werden soll (1 Parameter Kegelöffnungswinkel
co), bzw. die Schraubenböschungsfläche (2 Parameter Ganghöhe 2nh und Radius
a der Gratlinie s) willkürlich vorgeschrieben werden; die Verbiegung der übrigen Streifen

ist hierdurch festgelegt. Grenzlagen der Verbiegungen ergeben sich in ähnlicher
Weise wie in Ziffer 4.3.

Beim Grenzprozess e -> 0 gehen die hier behandelten Verbiegungen der Streifenmodelle

in die einparametrige Gruppe der Verbiegungen einer Drehfläche in
Drehflächen (vgl. Ziffer 4.4, Fall c) und in die zweiparametrige Gruppe der Verbiegungen
einer Drehfläche in Schraubenflächen (Boursches Theorem der Differentialgeometrie)
über.
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9. 3. Geodätische Linien auf Dreh- und Schraubenflächen. Die geodätischen Linien
eines Streifenmodells sind in der ebenen Abwicklung in jedem Kreisringstreifen geradlinig

und setzen sich beim Übergang von einem Streifen zum anderen unter gleichen
Scheitelwinkeln fort; vgl. die in Figur 15 b eingezeichnete Streckenfolge.
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Figur 16 a
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Figur 16 b Figur 16 c

Für eine geodätische Linie besteht hiernach innerhalb eines jeden Streifens nach
Figur 17 die Beziehung

q cos ot £ const (23)

(a Winkel der geodätischen Linie gegen die Kreise vom Radius g). Es bleibt jetzt
noch festzustellen, wie sich die Konstante p von Streifen zu Streifen ändert:

* Bei Aufbiegung der Streifen auf eine Drehfläche (co Öffnungswinkel der Kegelzonen)

folgt aus Figur 16 a sofort
sin oj —, (24)

Q

also mit Rücksicht auf Gleichung (23)

r cos a p sin m const. (25)

Da p und co innerhalb eines jeden Streifens konstant sind und beim Übergang von
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einem Streifen zum anderen sowohl r als auch - wegen der Scheitelwinkelgleichheit
- der Winkel a sich stetig ändern, ist die linke Seite der Gleichung (25) längs der
geodätischen Linie auf der gesamten Streifendrehfläche konstant.

Bei Aufbiegung der Streifen auf eine Schraubenfläche (2nh Ganghöhe der
Schraubenfläche; co Steigungswinkel, a Radius, 1/g Krümmung der
Gratlinien s der einzelnen Schraubenstreifen) ergeben sich die Beziehungen (vgl. Figur
16b und c)

a2+h2 2h *

h^actgco, Qa= —n sin 2 oj

Ah2
(26)

/ ist die auf den Mantellinien der Schraubenstreifen Tangenten der Gratlinien s)

r2=a2+l2 sin2 co, Q2 P% + 12 ^^- + /2;u u sirz oo

Figur 17

gemessene Länge. Durch Elimination von / und Einsetzen in Gleichung (24) folgt
nach kurzer Rechnung

yr2 + h2 cos a p sin co const, (27)

wobei die Konstante auf der rechten Seite wieder für die gesamte Streifenschraubenfläche

gilt.
Beim Grenzübergang e -> 0 gehen die geodätischen Linien der Streifenmodelle in

die geodätischen Linien beliebiger Dreh- und Schraubenflächen über. Die Gleichungen
(25) und (27) bleiben beim Grenzübergang erhalten und drücken den bekannten
Clairautschen Satz der Differentialgeometrie für die geodätischen Linien auf Dreh-
und Schraubenflächen aus.

9.4. Streifenmodell der Pseudosphäre. Ein besonders bemerkenswertes Streifenmodell
ergibt sich, wenn in der ebenen Abwicklung alle Streifen aus demselben Kreisring
ausgeschnitten sind (Figur 18 a). Die Streifen lassen sich dann in der ebenen Abwicklung

übereinanderlegen. Jeder folgende Streifen ist kürzer als der vorangehende, da
sein äusserer Rand mit dem inneren Rand des vorangehenden zur Deckung gebracht
werden muss; so ist beispielsweise die Bogenlänge A1B1 des zweiten Streifens A^^CJ^^^
gleich der Bogenlänge DC des ersten Streifens ABCD.

Beim Aufbiegen ergeben sich Drehflächen mit Kegelzonen, welche sämtlich dieselbe

Mantellinienlänge q haben (Figur 186). Der Grenzprozess e -> 0 liefert daher Pseudo-

sphären, das heisst Drehflächen mit einer Traktrix als Profilkurve.
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Wegen der Kongruenz der Streifen kann man jeden Streifen auf jede Kegelzone des

Modells aufbiegen. Beim Grenzprozess e -> 0 folgt hieraus, dass eine Pseudosphäre so

in sich verbogen werden kann, dass die Breitenkreise wieder in Breitenkreise
übergehen; alle Punkte der Pseudosphäre sind daher bezüglich der Metrik auf der Fläche

Figur 18 a Figur 18 &

miteinander gleichwertig, die Pseudosphäre hat also konstantes (und zwar negatives)
Krümmungsmass.

Die entsprechenden Schrauben-Streifenmodelle liefern beim Grenzprozess e -> 0

Schraubenflächen konstanten negativen Krummungsmasses. R. Sauer, München.

Quelques proprietes de la configuration complementaire
de Desargues

Soit Cx une configuration de Desargues (103,103) formee par les 10 points
12,..., 45 et par les 10 droites 123,..., 345, les points i j, j k, k i 6tant sur la droite

ijk (Figure 1). Cette configuration engendre une configuration C2 (152, 103)
determinee par les meines 10 droites 123, 345 et par les 15 points d'intersection qui
ne fönt pas partie de la configuration Cx (Figure 2). Tout point est sur deux droites,
toute droite contient trois points. Cette configuration C2 jouit de proprietes dont les
suivantes, ä notre connaissance, sont encore inedites.

1° C2 contient seulement des polygones ä 5,6,8 et 9 cötes. Designons par Alt Ak)
Ak+t s= Ax un de ces polygones.

Soit A4i le troisieme point de la configuration situe sur AtAj. Soit encore
B{i, i + 1, i -f 2) le point d'intersection de {Ait At + ^ et de {Ait i+l, Ai+l, t+2).
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