Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 10 (1955)

Heft: 1

Rubrik: Aufgaben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ungelöste Probleme

Nr.3. Herr W. Süss (Freiburg i. Br.) lenkt gelegentlich wieder die Aufmerksamkeit auf eine reizvolle Frage der Geometrie der Eilinien, die bereits im Jahre 1918 von W. Blaschke und andern aufgestellt wurde, bis heute aber unbeantwortet blieb. Das Problem lautet: Gibt es eine Eilinie in der Ebene, welche zwei Speichenpunkte aufzuweisen hat? Ein Punkt im Innern einer Eilinie heisst Speichenpunkt, wenn alle durchlaufenden Sehnen gleiche Länge haben.

Bemerkenswerterweise kennt man eine ganze Reihe von Eigenschaften einer solchen Eilinie, die von W. Süss [Tôhoku Math. J. 25, 86–98 (1925)] aufgestellt worden sind. Eine Note von G. A. DIRAC [J. London Math. Soc. 27, 429–437 (1952)] aus neuerer Zeit befasst sich auch mit diesen Eigenschaften. Nur weiss man nicht, ob eine solche Eilinie überhaupt existiert!

H. Hadwiger, Bern.

Aufgaben

Aufgabe 195. Man beweise: Rollt eine Gerade eines starren ebenen Systems Σ auf einer festen Zykloide, so existiert in Σ ein Strahlenbüschel, dessen Geraden im Ablauf der Bewegung ähnliche Zykloiden umhüllen.

R. Bereis, Wien.

Lösung des Aufgabenstellers: Dreht sich eine Ebene Σ_1 um einen ihrer Punkte O mit der konstanten Winkelgeschwindigkeit α , eine komplanare Ebene Σ_2 um einen Punkt A (OA = a) von Σ_1 mit der konstanten Winkelgeschwindigkeit β (gegenüber einem ruhend gedachten System Σ_0), so beschreibt bekanntlich jeder Punkt von Σ_2 im ruhenden System Σ_0 eine Trochoide. Die Polkurven dieser Bewegung Σ_2 gegen Σ_0 sind Kreise mit den Radien

$$r_0 = \frac{\beta - \alpha}{\beta} a$$
 (Fixkreisradius),
 $r = \frac{\alpha}{\beta} a$ (Rollkreisradius).

Jeder Punkt des Gangkreises k durchläuft eine Zykloide, deren Spitzen auf dem Rastkreis k_0 liegen.

Da ferner Bahntangente t und Bahnnormale n eines beliebigen Punktes B von k stets durch zwei feste Punkte P und Q von Σ_1 hindurchgehen P und Q liegen auf dem Verbindungssteg OA; P übernimmt dabei die Rolle des jeweiligen Momentanpoles der Bewegung von Σ_2 gegen Σ_0 , so führt das durch t und n aufgespannte System Σ_3 gegen Σ_2 eine Drehung um B und gegen Σ_1 eine umgekehrte Ellipsenbewegung aus. Die Bewegung von Σ_3 gegen Σ_0 kann auch durch Abrollen von n auf der Evolute e der Bahnzykloide e von e hervorgerufen werden. Dieses Abrollen vollzieht sich, wie aus den bestehenden Winkelrelationen zu ersehen ist, mit der konstanten Winkelgeschwindigkeit

$$\dot{\gamma} = \frac{\alpha + \beta}{2} \,. \tag{2}$$

Da die Gerade t stets die Zykloide z berührt, eine Verschiebung von t in sich während der Bewegung von Σ_3 auf ihre Hüllbahn ohne Einfluss ist, ferner t immer den in Σ_1 festen Punkt Q trägt und sich gegen Σ_0 mit der konstanten Winkelgeschwindigkeit γ dreht, so ist damit zunächst der bekannte Satz bewiesen:

20 Aufgaben

Eine Gerade, die gleichförmig (Winkelgeschwindigkeit γ) um einen ihr angehörigen Punkt rotiert, der seinerseits mit der konstanten Winkelgeschwindigkeit α auf einem Kreis wandert, umhüllt eine Zykloide mit dem Rollkreisradienverhältnis $2\gamma:\alpha$.

Da nun, wie erwähnt, Σ_3 gegen Σ_1 eine umgekehrte Ellipsenbewegung ausführt, gleitet jede Gerade des Strahlbüschels B (von Σ_3) durch einen festen Punkt von Σ_1 (dieser feste Punkt liegt, wie auch aus Peripheriewinkeleigenschaften leicht abzuleiten ist, auf jenem Kreis von Σ_1 , der stets den Rastkreis k von Σ_2 deckt), und hat somit zufolge ihrer konstanten Winkelgeschwindigkeit γ gegenüber Σ_0 eine zur Zykloide z ähnliche Hüllbahn in Σ_0 . Damit ist auch ein einfacher geometrischer Beweis für den Satz von Fouret (1880) erbracht, nämlich, dass alle Evolutoiden einer Zykloide zu ihr ähnliche Kurven sind. Da insbesondere die Gerade n die Evolute e von z umhüllt und auf z im Ablauf der Bewegung ohne zu Gleiten abrollt, ist damit der geforderte Beweis erbracht.

Da ferner der Punkt B beim Abwälzen von n auf e offenbar mit allen Scheiteln von e in Berührung kommen muss, kann man in Erweiterung des zu beweisenden Satzes sagen:

«Rollt eine Gerade eines starren ebenen Systems Σ auf einer festen Zykloide, so existiert in Σ ein Strahlbüschel, dessen Geraden im Ablauf der Bewegung ähnliche Zykloiden umhüllen. Der Träger dieses ausgezeichneten Strahlbüschels ist jener Punkt der Wälztangente, der mit den Scheiteln der gegebenen Zykloide zur Deckung kommt. Alle übrigen Geraden von Σ umhüllen naturgemäss Parallelkurven genannter Zykloiden.» Eine rechnerische Lösung sandte R. Lauffer (Graz).

Aufgabe 196. Démontrer que

$$\frac{1}{2^{2n-1}} \cdot \frac{1 - \binom{4n}{2} \cdot 3 + \binom{4n}{4} \cdot 3^2 - \binom{4n}{6} \cdot 3^3 + \dots + \binom{4n}{4n} \cdot 3^{2n}}{1 - \binom{4n}{2} + \binom{4n}{4} - \binom{4n}{6} + \dots + \binom{4n}{4n}}$$

est pour tout n entier positif un nombre entier.

H. Bremekamp, Delft.

Lösung: Der Zähler ist der Realteil von $(1+i\sqrt{3})^{4n}$ und hat somit den Wert $(-1)^n 2^{4n} \cos n \pi/3$. Der zweite Teil des Nenners ist die reelle Zahl $(1+i)^{4n} = (-4)^n$. Für den in Frage stehenden Quotienten findet man also den Wert $2\cos n \pi/3$, das heisst, es sind nur die Werte ± 1 , ± 2 möglich.

Lösungen sandten A. Bager (Hjørring, Dänemark), C. BINDSCHEDLER (Küsnacht), J. BINZ (Bern), K. EJRNAES (Tønder, Dänemark), F. Goldner (London), L. Kieffer (Luxemburg), R. Lauffer (Graz), H. Lenz (München), K. Rieder (Riehen), E. Rothmund (Zürich).

Aufgabe 197. Man beweise für natürliche Zahlen r und s die Identität

$$\binom{2 s}{r} = \sum_{p=0}^{\lfloor r/2 \rfloor} 2^{r-2p} \binom{s}{r-p} \binom{r-p}{p}.$$

M. G. BEUMER, Bergen op Zoom (Holland).

Lösung: Die Nummern 1, 2, 3, ..., 2s seien gleichmässig auf s feste Gruppen g_1, g_2, \ldots, g_s verteilt. Eine Auswahl von r Nummern möge sich aus genau r-p solcher Gruppen g_i rekrutieren. Eine solche «Rekrutierungsbasis» lässt sich auf $\binom{s}{r-p}$ Arten auswählen. Innerhalb einer solchen Basis können dié p Zahlenpaare, die je einer Gruppe g_i angehören, auf $\binom{r-p}{p}$ Arten und die übrigen r-2p Nummern, die r-2p verschiedenen Gruppen angehören, jedesmal auf 2^{r-2p} Arten gewählt werden. Das gibt, wenn man noch p variieren lässt, gerade die angegebene Summe für $\binom{2s}{r}$.

C. BINDSCHEDLER (Küsnacht).

Aufgaben 21

Bemerkung des Aufgabenstellers: Setzt man r = s - k, so ergibt sich eine von N. Kemmer¹) mit Gammafunktion und hypergeometrischen Funktionen bewiesene Identität. Einen weiteren Beweis hat Gupta²) gegeben.

Weitere Lösungen sandten F. Goldner (London) und R. Lauffer (Graz).

Aufgabe 198. Soit π_i un plan passant par l'arête $A_{i-1}A_i$ d'un polygone plan $(A_0A_1A_2...A_{n-1}A_n, A_n=A_0)$. Quelles sont les conditions à remplir pour que chaque plan π_i soit orthogonal au plan π_{i+1} (i=1, 2, ..., n)?

J.-P. Sydler, Zurich.

Solution de l'auteur: Soient $\alpha_1, \alpha_2, \ldots, \alpha_n$ les angles intérieures du polygone, β_i l'angle que fait π_i avec le plan du polygone. Pour que π_i et π_{i+1} soient orthogonaux, il faut que

$$\cos \alpha_i = \operatorname{ctg} \beta_i \operatorname{ctg} \beta_{i+1}$$
.

Donc

$$\operatorname{ctg} \beta_{2\,k+2} = \frac{\cos \alpha_1 \cos \alpha_3 \ldots \cos \alpha_{2\,k+1}}{\cos \alpha_2 \cos \alpha_4 \ldots \cos \alpha_{2\,k}} \operatorname{tg} \beta_1, \quad \operatorname{tg} \beta_{2\,k+1} = \frac{\cos \alpha_1 \cos \alpha_3 \ldots \cos \alpha_{2\,k-1}}{\cos \alpha_2 \cos \alpha_4 \ldots \cos \alpha_{2\,k}} \operatorname{tg} \beta_1.$$

Si
$$n = 2s + 1$$
 on a

$$\beta_1 = \beta_{n+1} = \beta_{2s+2}$$
,

$$\operatorname{ctg} \beta_1 = \frac{\cos \alpha_1 \cos \alpha_3 \dots \cos \alpha_n}{\cos \alpha_2 \cos \alpha_4 \dots \cos \alpha_{n-1}} \operatorname{tg} \beta_1, \quad \operatorname{ctg}^2 \beta_1 = \frac{\cos \alpha_1 \cos \alpha_3 \dots \cos \alpha_n}{\cos \alpha_2 \cos \alpha_4 \dots \cos \alpha_{n-1}}.$$

Si n = 2 s on a

$$\beta_{1} = \beta_{n+1} = \beta_{2s+1}, \quad \operatorname{tg} \beta_{1} = \frac{\cos \alpha_{1} \cos \alpha_{3} \dots \cos \alpha_{n-1}}{\cos \alpha_{2} \cos \alpha_{4} \dots \cos \alpha_{n}} \operatorname{tg} \beta_{1},$$

$$\cos \alpha_{1} \cos \alpha_{3} \dots \cos \alpha_{n-1} = \cos \alpha_{2} \cos \alpha_{4} \dots \cos \alpha_{n}. \tag{1}$$

Donc pour n impair il y a une et une seule solution quel que soit le polygone. Pour n pair, il y a ou aucune solution ou une infinité, suivant que le polygone ne vérifie pas ou vérifie la relation (1). Pour un polygone pair vérifiant (1), toute chaîne orthogonale se ferme après un tour. Pour un polygone impair, toute chaîne se ferme après deux tours et il existe une chaîne particulière qui se ferme déjà après un tour. Pour un polygone pair ne vérifiant pas (1), aucune chaîne ne se ferme.

Autre énoncé du problème: Soit A_1 , A_2 , ..., A_n un polygone quelconque d'angles α_1 , α_2 , ..., α_n . Soit h_i l'hyperbole située à l'intérieur de l'angle A_i , d'asymptotes $A_{i-1}A_i$ et A_iA_{i+1} et d'axe réel $\sqrt{\cos\alpha_i/(1-\cos\alpha_i)}$. Par un point quelconque P_i de h_i menons la parallèle à A_iA_{i+1} qui coupe h_{i+1} en P_{i+1} ; par P_{i+1} la parallèle à $A_{i+1}A_{i+2}$, etc. Quelles sont les conditions pour que le polygone $P_1P_2\dots P_n$ se ferme après un ou deux tours? Solution: Les hyperboles h_i sont les lieux des traces des droites d'intersection des

Solution: Les hyperboles h_i sont les lieux des traces des droites d'intersection des plans orthogonaux du problème précédent dans un plan parallèle au polygone. On a donc les mêmes conditions.

Weitere Lösungen sandten F. Goldner (London), R. Lauffer (Graz), A. Unterberger (Bludenz).

Aufgabe 199. Drei Punkte A, B, C, die sich mit gleichförmigen Geschwindigkeiten geradlinig bewegen, befinden sich in einem Zeitpunkt in A_1 , B_1 , C_1 und in einem anderen Zeitpunkt in A_2 , B_2 , C_2 . Man ermittle diejenige Lage, bei der die Fläche des Dreiecks ABC verschwindet oder möglichst klein wird.

W. Zulliger, Küsnacht.

Lösung: Es sei $\overrightarrow{A_1X} = \lambda \overrightarrow{A_1A_2} = \lambda u$, $\overrightarrow{B_1Y} = \lambda \overrightarrow{B_1B_2} = \lambda v$, $\overrightarrow{C_1Z} = \lambda \overrightarrow{C_1C_2} = \lambda w$. Bei variablem λ beschreiben die Punkte $B^* = A_1 + \lambda (u - v)$, $C^* = A_1 + \lambda (u - w)$ zwei Geraden b^* , c^* und auf ihnen zwei projektive Punktreihen. Sollen X, Y, Z kollinear sein, so müssen wegen $\overrightarrow{YX} = \overrightarrow{B_1B}^*$, $\overrightarrow{ZX} = \overrightarrow{C_1C}^*$ $\overrightarrow{B_1B}^*$ und $\overrightarrow{C_1C}^*$ parallel sein. Projiziert man also C_1 in Richtung C_1 auf C_1 auf C_1 auf C_1 eine Projektivität $C^* \to C^*$. Durch Konstruktion der Doppelpunkte dieser Projektivität erhält man die

¹⁾ The algebra of meson matrices. Proc. Cambr. Phil. Soc. 39, 189-196 (1943).

²⁾ Math. Student, Madras, 15 (1947).

kollinearen X, Y, Z, sofern solche existieren. Sind X_1, X_2 bzw. Y_1, Y_2 und Z_1, Z_2 die beiden möglichen Lagen für X bzw. Y und Z, so ergeben die Mitten der Strecken $\overline{X_1X_2}, \overline{Y_1Y_2}, \overline{Z_1Z_2}$ ein Dreieck, für das der Betrag der Fläche ein relatives Maximum annimmt, da diese Fläche eine quadratische Funktion von λ ist. Sind X_1, X_2 usw. imaginär, so kann man aus jener Projektivität gleichwohl den (reellen) Mittelpunkt leicht konstruieren und erhält damit das Dreieck mit dem kleinsten Betrag der Fläche.

C. BINDSCHEDLER, (Küsnacht).

Weitere Lösungen sandten R. Lauffer (Graz) und A. Unterberger (Bludenz).

Neue Aufgaben

227. Die Asymptoten einer Hyperbel H schneiden aus der Tangente im Kurvenpunkte P eine Strecke ab, deren Länge mit 2s bezeichnet sei. Von P aus trägt man auf der Normalen die Strecke PQ = s nach innen ab. Welche Kurve beschreibt Q, wenn P die Hyperbel durchläuft? Beziehungen zwischen H und K?

L. Locher-Ernst, Winterthur.

- 228. Man konstruiere a) einen Rhombus, b) ein Rechteck, dessen Ecken auf vier gegebenen windschiefen Geraden liegen.

 C. BINDSCHEDLER, Küsnacht.
- 229. Man bestimme den Pferchkreis 1) der Höhenschnittpunkte aller Dreiecke, welche einem festen Kreis (M, r) eingeschrieben sind, und bei welchen
 - a) eine Ecke auf diesem Kreis ein fester Punkt ist,
 - b) die Ecken beliebig auf diesem Kreis liegen können. R. Lauffer, Graz.
- 230. Bekanntlich hat die Gleichung $\varphi(n) = a$, wo $\varphi(n)$ die Anzahl der zu n teilerfremden Zahlen < n bedeutet und a eine (notwendig) gerade Zahl ist, nicht immer eine Lösung; z. B. für a = 34 gibt es keine Lösung n. Man beweise, dass es unendlich viele gerade Zahlen a gibt, für die die Gleichung keine Lösung besitzt.

M. G. BEUMER, Enschede (Holland).

231. Auf was für einer Linie bewegt sich ein Wanderer in ebenem, waagrechtem Gelände, wenn er mit gleichbleibender Geschwindigkeit ständig seinem Schatten nachgeht?

W. Wunderlich, Wien.

Berichte

Verein schweizerischer Mathematik- und Physiklehrer

Im Zentrum der 58. Jahresversammlung, die am 2. Oktober 1954 in Genf stattfand, standen die Referate von B. L. van der Waerden über «Lagerungen von Punkten auf der Kugel» (siehe untenstehendes Résumé) und von R. Extermann über «Electronique et recherche physique». Über die Geschäftssitzung, die im Anschluss an das gemeinsame Nachtessen im Restaurant du Boulevard unter dem Vorsitz von Herrn C. Roth stattfand, wird voraussichtlich ein kurzer Bericht im Gymnasium Helveticum orientieren.

Redaktion

Lagerungen von Punkten auf der Kugel

Der Biologe P. M. L. Tammes hat die Verteilung der Austrittsstellen der Pollenkörner verschiedener Pflanzenarten untersucht. Bei manchen Arten, z. B. Fumaria capreolata, sind die Austrittsstellen über die ganze Kugeloberfläche verteilt, und zwar anscheinend so, dass die gegenseitigen Abstände der Austrittsstellen nicht zu klein werden. Tammes fand, dass bei derselben Art die Anzahl der Austrittsstellen im allgemeinen mit der Pollengrösse wächst und dass dabei die Anzahlen 4, 6, 8, 12 bevorzugt werden. Er stellte jetzt die mathematische Frage: Wie gross muss eine Kugel sein, damit N Punkte mit Mindestabstand Eins auf der Kugeloberfläche Platz haben?

¹) Unter dem Pferchkreis einer Punktmenge versteht man den kleinsten Kreis, der die Punktmenge im Innern enthält.