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Ungelöste Probknie 133

Zur Behandlung von Gleichungen mit Quadratwurzeln
In der kleinen Mitteilung Bemerkung zum Rationahnachen von Gleichungen mit

Quadratwurzeln, El Math 7, 3 5 (1946), wird behauptet, dass eine Gleichung von der Form

4 i Wl + Wi W3 W^) (1)

mit der elementaren Methode des Quadrierens nicht rational gemacht werden kann.
Man beachte aber folgendes Durch zweimaliges Quadrieren erhalt man aus (1)

A2 W2 t W2 24(W1 W2) ~2W1W2-~W2-W22==4W£Wl

und hat nicht, wie am angeführten Ort behauptet wird, eine Gleichung mit drei, sondern
nur mit zwei Wurzeln Die Ausfuhrung angezeigter Operationen fuhrt auf

P Q Wj i R W2 f S W1 W2 02) (2)

Auflosen nach W2 und Quadrieren gibt

W2 (P2 \ Q2W2 Y2PQ WJ (R2 + S2W2+2RS WJ.

Die Auflosung nach W1 und Quadrieren gibt eine rationale Gleichung. Man hat daher
die Gleichung (1) durch \iermaliges Quadrieren rational gemacht Dieses Beispiel zeigt
die Methode (die Ausfuhrung sei dem Leser überlassen), die Gleichung

4 W, ' W^ Wn^ } W„=0

mit Hilfe \on n Quadrierungen rational zu machen. Zu beachten ist, dass die Gleichung

A l W1 \/B f C Wx 0

durch zweimaliges Quadrieren rational gemacht werden kann Man hat

A2 2 4WV W2==B CW1
und rational

W2(2A -C)2 (B- A2 W{Y
R.LAurFER, Graz3).

Ungelöste Probleme

Nr.2. Es sei Dn die kleinste (positive, reelle) Zahl mit der Eigenschaft, dass sich

jede Punktmenge des n-dimensionalen Raumes vom Durchmesser D 1 m n + 1

Teile zerlegen lasst, deren Durchmesser alle nicht grosser als Dn ausfallen. Nach einer
bis heute noch unbewiesenen Vermutung von G. Borsuk (Drei Satze über die n-dimen-
sionale euklidische Sphäre, Fund. Math. 20, 177-190 [1933]) gilt Dn < 1. Kürzlich

x) \\ ii setzen P? ]/Ql ]/Pf Qt ll/?, und es sei Wt nicht rational
2) Der Irrtum ist auf die ungeeignete Sjmbolik des Verfassers zurückzuführen
3) Der Verfassei i«t der Ansicht, dass im Unterricht zu Übungszwecken von irrationalen Gleichungen

nur bescheidener Gebrauch zu machen ist Am besten ist es, sich nur auf Beispiele zu beschranken, welche
sich zwanglos aus geometrischen oder ph\sikahschen Aufgaben ergeben und daher nicht den Charakter
von Kreuzwortratsein haben
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zeigte D. Gale (On Inscribmg n-Dimensional Sets in a Regulär n-Simplex, Proc.
Amer. Math. Soc. 4, 222-225 [1953]), dass

J>2"= V2 ~0>866-

ist. Vermutlich gilt

0.-J/3 + *f 0,887

(Vgl hierzu den Aufsatz des Unterzeichneten Von der Zerlegung der Kugel in kleinere

Teile, Gazeta Mat. 57, 1-3 [1954]). Das Borsuksche Problem im gewohnlichen
Raum wäre indessen bereits gelost, wenn D < 1 nachgewiesen werden konnte.

H. Hadwiger, Bern.

Aufgaben

Aufgabe 192. Gegeben sei die additive Abelsche Gruppe der Ordnung 4 vom Typus
(2, 2) mit der Additionstafel

0 a b c

0 0 a b c

a a 0 c b

b b c 0 a
c c b a 0

In dieser Gruppe wird eine (im allgemeinen weder kommutative noch assoziative)
Multiplikation eingeführt, wobei

0 0 0 a 0 6 0 c a 0 b 0 c 0 0

gelten soll Fur die drei Elemente a, b, c kann eine Multiphkationstafel beliebig
festgelegt werden, wobei als «Produkte» alle vier Elemente 0, a, b, c auftreten können, so
dass es 49 verschiedene Multiphkationstafeln gibt

Man zeige, dass die Multiplikation dann und nur dann beidseitig distributiv bezuglich
der Addition ist, wenn fur jede Zeile und jede Spalte der Multiphkationstafel die
«Quersumme» den Wert 0 ergibt A Bager, Hjorring (Danemark)

Losung Von der gegebenen Gruppe werden insbesondere die Eigenschaften verwendet,

dass ausser dem Nullelement sämtliche Elemente die Ordnung zwei haben (jedes
Element ist somit mit seinem Inversen identisch) und dass die Summe zweier der drei
von Null verschiedenen Elemente das dritte ergibt Die Summe der ersten Zeile der
Multiplikationstabelle betragt

5X= a2+ ab + a c

Fur 5X 0 erhalt man daraus unter Anwendung der eingangs erwähnten Eigenschaften
der Gruppe

a2= ab + ac — a(b + c), ab a2+a c — a(a + c), a c — a2 + ab a(a + b) (1)

Die übrigen Zeilensummen der Multiplikationstabelle (ohne Nullelement) gewinnt man
durch zyklische Vertauschung der Elemente der ersten Verschwinden diese Zeilen-
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