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ELEMENTE DER MATHEMATIK
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Zeitschrift zur Pflege der Mathematik
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Organ für den Verein Schweizerischer Mathematik- und Physiklehrer

El Math Band IX Nr 6 Seiten 121-144 Basel 15 November 1954

Elementargeometrische Modelle zur Differentialgeometrie

Viele differentialgeometrische Eigenschaften der Flachen, insbesondere diejenigen,
die sich auf die Metrik in der Flachenhaut und nicht auf die Einbettung der Flachenhaut

in den Raum beziehen, lassen sich durch analoge «differenzengeometrische»
Eigenschaften elementargeometrischer Modelle (Dreiecks- und Vierecksgitter,
Streifenmodelle und dergleichen) veranschaulichen. Durch geeignete Grenzübergänge
kann man die elementargeometrischen Modelle und ihre differenzengeometrischen
Beziehungen in Flachen und deren differentialgeometrische Beziehungen überfuhren.
Die Bedeutung der differenzengeometrischen Betrachtungsweise liegt aber nicht in
der Durchfuhrung dieser prinzipiell einfachen, wenn auch manchmal langwierigen
Grenzprozesse, sondern in dem unmittelbaren Einblick, den die differenzengeometrischen

Zusammenhange in fundamentale Begriffe und Beziehungen der Differentialgeometrie

vermitteln
Einen besonders starken Anstoss empfing die im Sinne der Differenzengeometrie

«anschauliche» Behandlung der Differentialgeometrie durch Seb. Finsterwalder,
der 1897 in einem Artikel in den Jahresberichten der Deutschen Mathematikerveremi-

gung über Mechanische Beziehungen bei der Flachendeformation eine Fülle von
Anregungen fur differenzengeometrische Betrachtungen gab. Spater haben dann H. Graf
und der Verfasser dieses Aufsatzes als Schuler von Seb. Finsterwalder verschiedene

Beitrage zur Differenzengeometrie der Flachen geliefert, und m den letzten
Jahren hat ausserdem Herr W. Wunderlich die Differenzengeometrie erheblich
gefordert.

In dem vorliegenden Aufsatz wird versucht, auf Grund der zahlreichen in der
Literatur verstreuten Emzelpubhkationen einen kurzen zusammenfassenden Überblick

über die bemerkenswertesten anschaulichen Ergebnisse der Differenzengeometrie
und der hierbei verwendeten elementargeometrischen Modelle zu geben, wobei von
erläuternden Figuren ausgiebig Gebrauch gemacht wird.

Der erste Abschnitt handelt von Dreiecksgittern und von ebenmaschigen Vierecksgittern;

die ersteren werden wir zur Veranschauhchung des Gaußschen Krummungs-
masses und des Integralsatzes von Gauss und Bonnet, die letzteren zur
Veranschauhchung der Biegungstheorie der Drehflachen, Gesimsflachen, Affinflachen und
Voßschen Flachen verwenden. Em spater nachfolgender Abschnitt wird einerseits von
ebeneckigen Vierecksgittern und andrerseits von Streifenmodellen handeln. Mit ersteren

kann man die Theorie der infinitesimalen Flachenverbiegung und die Flachen
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konstanten negativen Krümmungsmasses, mit letzteren die Differentialgeometrie der
Dreh- und Schraubenflächen veranschaulichen.

Dreiecksgitter und ebenmaschige Vierecksgitter

§ 1. Dreiecksgitter

1.1. Definition. Unter einem Dreiecksgitter verstehen wir ein einfach zusammenhängendes,

aus Dreiecken bestehendes Flächenstück, das von zwei Scharen von

iiz

Figur la I<igur lb

Leitpolygonen und einer Schar von Diagonalpolygonen erzeugt wird (Figur 1 a). Die
Leitpolygone liefern ein Vierecksgitter mit im allgemeinen windschiefen Vierecksmaschen,

die Diagonalpolygone zerlegen die Vierecksmaschen in Dreieckspaare.
Jeder innere Gitterpunkt P ist sechs Dreiecken gemeinsam, die ein Sechskant mit
dem Scheitel P bilden. Der Rand des Dreiecksgitters besteht aus vier Leitpolygonen.

1.2. Krümmungsmass des Dreiecksgitters1) in einem inneren Gitterpunkt P. Nach
Festlegung einer Aussen- und Innenfläche des Gitters kann man in eindeutiger
Weise jeder Dreiecksmasche eine «nach aussen» weisende Normale zuordnen, die

man sich etwa jeweils im Schwerpunkt angebracht denken mag. Die Parallelen zu
diesen Normalen durch den Mittelpunkt einer Einheitskugel liefern zu jedem Dreieck
des Gitters einen eindeutig bestimmten Punkt der Einheitskugel als sphärisches
Bild. Den sechs in einem inneren Gitterpunkt P zusammentreffenden Dreiecken
entspricht auf diese Weise ein sphärisches Sechseck p auf der Einheitskugel (Figur 1 b).
Die Dreieckswinkel a7 am Gitterpunkt P sind gleich den Aussenwinkeln des sphärischen

Sechsecks; der Flächeninhalt 0 des sphärischen Sechsecks ist daher

0(P) 2 71

7 1

m

Hierdurch wird der Flächeninhalt 0 mit Vorzeichen definiert, und zwar auch für
sphärische Sechsecke mit sich überschneidendem Rand.

*) S.Finsterwaldfr, Jber. Dtsch. Math.-Ver. 6, H.2, 1-90 (1897).
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Ist 3 F(P) der - positiv definierte - Flächeninhalt der sechs im Gitterpunkt P
zusammentreffenden Dreiecke, so bezeichnen wir den Ausdruck

k(p) - yg (2)

als Krümmungsmass des Dreiecksgitters im Gitterpunkt P. Wir nehmen hierbei nur
den dritten Teil F der Summe der sechs Dreiecksinhalte, weil jedes Dreieck, das
keinen Punkt mit dem Randpolygon gemeinsam hat, drei Sechskanten um innere
Gitterpunkte angehört.

Löst man die sechs in P zusammentreffenden Dreiecke aus dem Zusammenhang
mit dem übrigen Dreiecksgitter und breitet sie nach Aufschneiden längs einer der

/
Ao

•

$01

2 V*S7
Aa

>Vx
Ai 's« At As

Figur 1 c Figur 1 d

von P ausgehenden Kanten in die Ebene aus (Figur lc), so entsteht in der ebenen
Abwicklung ein - positiver oder negativer - Spaltwinkel

a(P) =-2 n -Z*,{P). (3)

Nach Gleichung (1) ist a 0, so dass man das Krümmungsmass K(P) auch durch

k(p) -;]g (4)

definieren kann.
1. 3. Geodätische Krümmung eines Leitpolygons. Löst man die einem Leitpolygon

A0A±... auf einer Seite anliegenden Dreiecke aus dem Zusammenhang mit dem
übrigen Gitter und breitet sie in die Ebene aus (Figur ld), so entsteht in der ebenen

Abwicklung ein ebenes Polygon mit den Winkeln y1 und den Seiten s] ;4 x; die Winkel
y1 sind nach Festsetzung einer Orientierung des Polygons mit Vorzeichen definiert.
Wir bezeichnen den Ausdruck

^ <^T7TWZ* (5)

als Abwicklungskrümmung oder geodätische Krümmung des Leitpolygons A0A±...
im Punkt _4; (_4; + A0 und A1 #= B0).

Ist das Leitpolygon AQAX... nicht Bestandteil des Randpolygons des Gitters, so
kann man sowohl die auf der einen als auch die auf der anderen Seite anliegenden
Dreiecke verwenden und hierdurch eine linksseitige und eine rechtsseitige geodätische
Krümmung und schliesslich durch das arithmetische Mittel auch eine mittlere
geodätische Krümmung definieren.
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Man beachte, dass zur Definition sowohl des Krümmungsmasses als auch der
geodätischen Krümmung nur die Seiten und Winkel der Gittermaschen, nicht aber die
Keilwinkel der Maschenebenen verwendet werden.

1. 4. Grenzübergang zur Differentialgeometrie. Das vorgegebene Dreiecksgitter
bestehe aus den Sehnen eines Dreiecksnetzes, das auf einer Fläche r x(u, v) von Kurven

w wo_tne> v VQ^zme, u + v u0+v0-±:ls (m, n, l 0, 1, 2, 3,...)

gebildet wird. Hält man u0, v0 fest und lässt mit e -> 0 die Dreiecksnetze der Fläche
und ihre Sehnendreiecksgitter immer engmaschiger werden, so konvergiert das

Krümmungsmass K(P) der Dreiecksgitter im inneren Gitterpunkt P(u0, v0) gegen das
Gaußsche Krümmungsmass K(u, v) der Fläche in diesem Punkt. Ebenso konvergiert
die - rechtsseitige, linksseitige und mittlere - geodätische Krümmung g(P) der
Leitpolygone im Gitterpunkt P(u0, v0) gegen die geodätische Krümmung g(u, v) der
Kurven u u0 und v v0 in diesem Punkt.

Dem letzten Satz der Ziffer 1. 3 entspricht die Tatsache, dass sowohl das

Krümmungsmass als auch die geodätische Krümmung durch die Metrik in der Fläche
bestimmt ist und nicht von der Einbettung der Fläche in den Raum abhängt.

Wir werden auf den hier eingeführten Grenzprozess fortan häufig zurückkommen
und werden ihn kurz als « Grenzprozess e -> 0" bezeichnen.

§ 2. Integralsatz von Gauss und Bonnet

2. 1. Summensatz1) für das Krümmungsmass in den inneren Gitterpunkten und die

geodätische Krümmung des Randpolygons eines Dreieckgitters. In einem aus 2m n
Dreiecken bestehenden Dreieckgitter (Figur 1 a) bezeichnen wir mit a, die Dreieckswinkel

in den inneren Gitterpunkten P und mit ßk die Dreieckswinkel in den Punkten
R des Randpolygons. Die Winkelsumme

2J*t+2]ßk==2mn7t

liefert, wenn wir in den Innenpunkten P

]TK1(P)=2 7z-a(P)
7 1

und in den Randpunkten R

setzen, die Beziehung

2 tz {n - 1) (tn - 1) ~2]<y{P) +2(n + m)n ~£y(R) =2mnn,
also £o{P) +_>>(#) =2n' (6)

Hierbei ist £a(P) die Summe der Spaltwinkel in den Innenpunkten des Dreiecksgitters

(vgl. Figur lc). JJy(R) ist die Summe der Polygonwinkel des ebenen Polygons,

das sich aus dem Randpolygon des Dreiecksgitters dadurch ergibt, dass man

*) R. Sauer, Sitz.-Ber. Bayer. Akad. Wiss., math.-naturw. Abt. 1928, 97-104, und 1929, 307-324;
ferner Mh. Math. Phys. 45, 358-365 (1937).
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den Kranz der dem Randpolygon anliegenden Dreiecke in die Ebene ausbreitet
(Figur 2); die beiden m Figur 2 schraffierten Dreieckspaare kommen miteinander
zur Deckung, wenn man den m die Ebene ausgebreiteten Dreieckskranz wieder auf
das Dreiecksgitter im Raum auflegt. Die Winkel y(R) werden positiv gerechnet,
wenn bei dem in Figur 2 durch Pfeile gekennzeichneten Fortschreiten auf dem
Randpolygon die Polygonseiten sich im Uhrzeigersinn drehen, naturlich müssen auch die
Winkel y in den Punkten A0, B0,C0,D0 mitgerechnet werden.

wI*

Figur 2

2. 2. Grenzübergang zur Differentialgeometrie. Bei dem Grenzprozess e -> 0 konvergieren

£o(P) -> f [K(u, v) df (curvatura integra), JJy(R) ¦> £ g{s) ds, (7)

df Flachenelement, 5 Bogenlänge der Randkurve. Beim zweiten Integral sind
an etwaigen Knickstellen der Randkurve die Kmckwmkel mit emzubeziehen. Solche
Knickstellen können beim Grenzübergang nicht nur in den Punkten A0, B0, C0, D0,
sondern auch an anderen Punkten der Randkurve auftreten. Ebenso aber kann sich
beim Grenzprozess eine durchweg glatte Randkurve ohne Knickstellen ergeben, in
diesem Fall konvergieren die Dreieckswinkel bei _40 und C0 und die Dreieckswmkel-
paare bei B0 und D0 gegen n. Durch Einsetzen der Grenzwerte (7) geht der Summensatz

(6) in
f f K(u, v)df + £ g(s) ds 2 Tt, (8)

das heisst in den Integralsatz von Gauss und Bonnet über.

§ 3. Ebenmaschige Vierecksgitter

3. 1. Definition. Wie in Ziffer 1. 1 gehen wir von zwei Scharen von Leitpolygonen
aus, setzen jetzt aber voraus, dass diese Leitpolygone em Vierecksgitter mit ebenen
Vierecksmaschen erzeugen (Figur 3 a). Jeder innere Gitterpunkt P ist dann Scheitel
eines Vierkants mit den Seltenwinkeln ocx, Og, Og, a4 und den Keilwinkeln kx k2 Xx, X2.
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Die Vierecksseiten, welche die Gitterpunkte zweier benachbarter Leitpolygone
verbinden - wir bezeichnen sie kurz als Querseltenfolge -, liegen paarweise in einer
Ebene. Die Geraden, in denen diese Vierecksseiten liegen, umhüllen also em Polygon
QxQ2 • • Es kann zu einem eigentlichen oder uneigentliehen Punkt entarten, die
Geraden bilden dann eine Pyramide oder em Prisma.

3.2. Verknickungen. Unter Verknickungen eines Dreiecks- oder Vierecksgitters
verstehen wir Deformationen, bei denen die einzelnen Dreiecks- bzw Vierecksmaschen
starr bleiben, jedoch gegeneinander um ihre gemeinsamen Seiten verdreht werden
dürfen. Dreiecksgitter lassen im allgemeinen unendlich viele Verknickungen zu,

Q* ^y

iti
in

w

I igui 3a

ebenmaschige Vierecksgitter dagegen smd, wenn sie aus mindestens 3 • 3 Vierecksmaschen

bestehen, im allgemeinen nicht verknickbar. Spezielle ebenmaschige Vier-
ecksgitter, bei denen Verknickungen möglich smd, werden wir in den Paragraphen 4

und 5 besprechen.
3. 3. Grenzübergang zur Differentialgeometrie. Wir betrachten das Sehnen-Vierecksgitter

eines Kurvennetzes, das auf der Flache r r (u, v) von den Parameterkurven

u^-u^-^ne, v ==v0^zme

gebildet wird. Die Parameterkurven smd als zueinander konjugiert vorausgesetzt
das heisst, ihre Quertangentenfolgen (Figur 3 b) erzeugen Torsen (Tangentenflachen
von Raumkurven, Kegel- oder Zylinderflachen).

In besonderen Fallen (zum Beispiel b°i den in § 4 behandelten konjugierten
Kurvennetzen) smd die Sehnenvierecke eines konjugierten Kurvennetzes eben. Der in
§1.4 eingeführte Grenzprozess e -> 0 liefert dann eine Folge ebenmaschiger Vierecksgitter,

die gegen das vorliegende konjugierte Kurvennetz konvergieren Hierbei gehen
die Querseltenfolgen des Gitters m die Quertangentenfolgen des Netzes über.

Im allgemeinen jedoch (zum Beispiel in dem m § 5 behandelten Fall) smd die Seh
nenvierecke eines konjugierten Netzes nicht eben. Sie werden jedoch beim
Grenzprozess e -> 0 m der Ordnung e2 eben, wahrend die Sehnenvierecke eines nichtkon-
jugierten Netzes nur m der Ordnung e eben werden. Wenn man auch in diesen Fallen
das konjugierte Netz als Limes einer Folge ebenmaschiger Vierecksgitter erhalten
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will, muss man den Grenzprozess e -> 0 etwa m folgender Weise modifizieren Man
konstruiert zum Kurvennetz mit dem Parameterwert e jeweils dasjenige ebenmaschige
Gitter, welches die Sehnenpolygone der Kurven u u0 und v v0 als Leitpolygone
hat und bei dem auch die Seiten aller übrigen Leitpolygone beider Scharen dieselbe
Lange haben wie die entsprechenden Sehnen des Kurvennetzes

Die ebenmaschigen Vierecksgitter smd hiernach das differenzengeometrische Ana-
logon der konjugierten Kurvennetze auf Flachen r — x(u, v), den Querseltenfolgen
des Gitters, welche Polygone umhüllen entsprechen die Quertangentenfolgen des
Kurvennetzes welche Kurven umhüllen

1 UUl tt)

Den Verknickungen der Dreiecks- und ebenmaschigen Vierecksgitter entsprechen
beim Grenzprozess e -> 0 Verbiegungen der Flachen r — t(w, v) Insbesondere
entsprechen den Verknickungen der ebenmaschigen Vierecksgitter solche Verbiegungen,
bei denen das (u, v)-Kurvennetz konjugiert bleibt Ebenso wie em ebenmaschiges
Vierecksnetz im allgemeinen nicht verknickbar ist, lasst sich eine Flache im allgemeinen

nicht derart verbiegen dass em auf der Flache vorgegebenes konjugiertes Kur
vennetz konjugiert bleibt

§ 4 Verbiegung der Dreh-, Gesims- und Affinflachen

4 1 Definition der Trapezgitter1) Wir wenden uns nun zu speziellen ebenmaschigen
Vierecksgittern, den sogenannten Trapezgittern Sie werden folgendermassen
definiert (Figur 4)

Vorgegeben seien in zwei zueinander senkrechten Ebenen (ß0) und (tz0) zwei Polygone

b0 und p0 mit der gemeinsamen Ecke A0, ausserdem eine Folge weiterer zu (ß0)

senkrechter Ebenen (ttJ, (tz2), welche die Ecken Alt A2 des Polygons b0

enthalten. Alsdann wird das Polygon pQ durch Parallele zu ^40^i m die Ebene (nj
projiziert, das hierbei m (rc-) entstandene Polygon^ wird ebenso durch Parallele zu

x) R Sauer un4H Grai-, Math ^nn 105 512-527(1931)
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A1A2 m die Ebene (n2) projiziert und so fort. Das auf diese Weise erzeugte Trapezgitter

hat als Leitpolygone die zueinander affinen « Profüpolygone » p0, px, p2,... m den

zu (ß0) senkrechten Ebenen (tiq), (tt-), (tz2), und die in (ß0) und zu (ß0) parallelen
Ebenen (/?-), (ß2),... liegenden «Bahnpolygone» b0, bx, b2,..., deren Seiten zueinander

parallel smd. Die Ebenen (tt0), (jzj), (tz2), umhüllen das «Leitprisma» des Trapezgitters.

As (ßo)

Figur 4

4. 2. Klassifikation der Trapezgitter. Je nach Vorgabe des Bahnpolygons b0 und
des Leitprismas ergeben sich folgende Falle (Figur 5)

(a)

(b)
| Leitprisma nicht entartet

(c) | Leitprisma entartet in eine eigentliche Gerade
(d) J (Leitachse)

(e) Leitprisma entartet in eine uneigenthche Gerade,
Trapeze zu Parallelogrammen spezialisiert

f Trapeze nicht gleichschenklig,
1 Trapeze gleichschenklig,

Trapeze nicht gleichschenklig,

Trapeze gleichschenklig,

Die Grundrisse smd in Figur 5 dargestellt. Bei (b) und (d) smd die Profilpolygone
kongruent, bei (d) gehen sie durch Drehung um die Leitachse, bei (b) durch Abrollen
der Profilebene am Leitprisma auseinander hervor. Bei (e) smd die Leitpolygone
jeder der beiden Scharen kongruent und gehen durch ParallelVerschiebung auseinander

hervor.
4. 3. Verknickung der Trapezgitter. Die in Ziffer 4. 1 definierten Trapezgitter smd

nicht starr, sondern lassen eine einparametrige Gruppe von Verknickungen zu. Bei
diesen Verknickungen entstehen aus den Trapezgittern der Klassen (a) bis (e) von
Ziffer 4. 2 immer wieder Trapezgitter derselben Klasse.

Die Verknickungen ergeben sich folgendermassen (Figur 6) In Figur 6 smd die
beiden in Figur 4 schraffierten Trapeze (1), (2) nochmals dargestellt, die
Trapezschenkel smd bis zu ihren Schnittpunkten Px, P2 auf der Geraden g, m der sich die
Ebenen (tz0), (apj schneiden, verlängert. Dreht man das Trapez (1) um die Seite A0Alf
dann verlagert sich der Punkt Plt wobei sein Grundriss G auf einem Lot l zu A0A1
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wandert. Man verschiebt hierauf das Trapez (2) so, dass es mit der Seite C0C1 wieder
an das Trapez (1) stösst. Hernach dreht man das Trapez (2) um die Seite C0Clt bis
der Schnittpunkt P2 seiner Schenkel, dessen Grundriss G sich auf dem nämlichen

m
LU#

Figur 5

Lot l zu ^40^i bewegt, wiederum mit dem Grundriss G des Punktes Px zusammenfällt.

Bei Forderung stetiger Verknickungen und Beschränkung auf nicht zu grosse

Verdrehungswinkel des Trapezes (1) ist durch die Verdrehung des Trapezes (1) die

Figur 6

Verdrehung des Trapezes (2) und die Verdrehung der übrigen Trapeze des Gitters

eindeutig festgelegt. Die Verknickungen bilden also in der Tat eine einparametrige

Menge mit dem Verdrehungswinkel des Trapezes (1) als Parameter.
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Die Verknickung kann so weit getrieben werden, bis entweder die Trapeze zwischen
einem Paar benachbarter Profilpolygone oder die Trapeze zwischen einem Paar
benachbarter Bahnpolygone in eine gemeinsame Ebene fallen. Figur 7 zeigt das

Modell eines Trapezgitters in diesen beiden
Grenzformen der Verknickung und einer Zwischenform.

4. 4. Grenzübergang zur Differentialgeometrie.
Beim Grenzprozess e -> 0 gehen die Trapezgitter
(a) bis (e) der in Ziffer 4.2 vorgenommenen
Klassifikation in folgende Flächen über:

(a) Gesimsaffine Flächen: Sie werden erzeugt
von einer Schar zueinander affiner Profilkurven,
welche in den Tangentenebenen eines Leitzylinders

liegen, und einer Schar von Bahnkurven in
Ebenen senkrecht zum Leitzylinder.

(b) Gesimsflächen: Die Bahnkurven sind
Orthogonaltrajektorien der Tangentenebenen des
Leitzylinders. Die Profilkurven sind infolgedessen
kongruent und gehen beim Abrollen der Profilebene

am Leitzylinder auseinander hervor.
(c) Achsenaffine Flächen: Der Leitzylinder

entartet zu einer eigentlichen Geraden (Leitachse).
Die Profilkurven sind zueinander affin mit der
Leitachse als Affinitätsachse, die Bahnkurven sind
zueinander ähnlich mit dem Ähnlichkeitszentrum
auf der Leitachse.

(d) Drehflächen: Der Leitzylinder entartet zu
einer eigentlichen Geraden (Drehachse). Die
Profilkurven sind kongruent und gehen durch
Drehung um die Leitachse auseinander hervor; die
Bahnkurven sind koaxiale Kreise.

(e) Translationsflächen: Der Leitzylinder
entartet zu einer uneigentlichen Geraden. Die
Leitkurven liegen in zwei zueinander senkrechten
Parallelebenenscharen. Die Leitkurven jeder der
beiden Scharen sind kongruent und gehen durch

Parallelverschiebung auseinander hervor.
Die Profilkurven und Bahnkurven bilden in jedem der Fälle (a) bis (e) ein

konjugiertes Kurvennetz. Der einparametrigen Gruppe der Verknickungen der Trapezgitter

entspricht eine einparametrige Gruppe von Verbiegungen der Flächen (a) bis
(e) in Flächen derselben Klasse, wobei die Profil- und Bahnkurven ihre Eigenschaft
beibehalten und konjugiert bleiben2).

Figur 7 l)

x) Diese Figur ist mit freundlicher Genehmigung des Springer-Verlages der Arbeit von R. Sauer und
H. Graf, Math. Ann. 105, 522 (1931), entnommen.

2) Vgl. hierzu Enzyklopädie der mathematischen Wissenschaften, III D 6a, Nr. 26, 24, 23; ferner K. Pe-
terson, Über Kurven und Flächen (Leipzig und Moskau 1868); P. Stöckel, Math. Ann. 49, 255-310(1897);
und M.Lagally, Sitz.-Ber. Bayer. Akad. Wiss., math.-naturw. Abt., 49, 369-379 (1919).
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Den in Figur 7 dargestellten Grenzformen der Verknickungen entsprechen bei
den Flachen (a) bis (e) Grenzformen der Verbiegungen, bei denen die Flache entweder
längs einer Profilkurve oder längs einer Bahnkurve eine gemeinsame Tangentenebene

besitzt. (Fortsetzung folgt) R Sauer, München.

Kleine Mitteilungen
Eine Verallgemeinerung des Delischen Problems

Zu der bekanntermassen mit Zirkel und Lineal unlösbaren Aufgabe der Wurfelver-
dopplung (Dehsches Problem) ist es eine sinnvolle Verallgemeinerung, drei Würfel zu
konstruieren, von denen zwei zusammen so gross sind wie der dritte Ich will nun dazu
einige besonders einfach zu zeichnende Losungen angeben

Da eine (nicht aufgehende) Kubikwurzel keine konstruierbare Grosse ist, ist die
Aufgabe nur in dieser weiteren Form zu stellen und nicht etwa so, dass zu zwei gegebenen
Wurfein der dritte mit der Summe (oder Differenz) der Inhalte verlangt wird Es muss
also zwischen drei konstruierbaren, das heisst lediglich mit Hilfe von Quadratwurzeln
gebildeten Grossen a, b, c die Beziehung az+ bz= cz bestehen, und die Aufgabe besteht
nun dann, solche Tripel zu finden

Bei dem nächstliegenden Versuch der Losung in rationalen Zahlen (also die Wurfel-
seiten in einem passenden ganzzahhgen Verhältnis) greift nun eine andere Unmöglichkeit

ein, namhch die des grossen Fermatschen Satzes fur den Exponenten 3, wonach
die Gleichung a3 + b3=cz in ganzen Zahlen unlösbar ist Wir müssen also fur a, b, c

Zahlen aus irgendeinem reellen konstruierbaren Zahlkorper nehmen
Die einfachsten solchen Korper smd nun die quadratischen K(]/m), und unter ihnen

wieder solche mit möglichst kleiner Grundzahl m In diesen Korpern ist nun die kubische
Fermat-Gleichung losbar fur m 2, 5, 6 und andere, jedoch unlösbar fur m 3, 7, 10
und andere Eine besonders einfache Losung gibt es bei m 5

(9 + /5)3+(9-l/5T=12!'

mit folgender geometrischer Konstruktion

Figur 1

ß C

Da J/T die Hypotenuse zu den Katheten 1 und 2 ist, liefern mit OR 9 die Strecken
OA, OB, OC =12 die drei passenden Wurfelseiten

___
Eine ganz analoge Konstruktion liefert die Gleichung (l2 + j/33~)8+ (l2 - ^33)8= 183,

wobei 1/33" die eine Kathete zur Hypotenuse 7 und der anderen Kathete 4 ist Ich
erwähne ferner noch

423+ (17 j/2~_ 18;3= (17 ]/2 + 18)8, 8«-f (j/85 - l)8= (/85 + 1)",

18^4 5J/6- 6)8=( 5J/6+ 6)8, 10» + (^82 - 2)8=^ (^82~ f 2)8,

wobei |/85~ Hypotenuse zu 2 und 9 oder zu 6 und 7, j/82 Hypotenuse zu 1 und 9 ist.
Solche Beispiele lassen sich beliebig viele herleiten Nach der Identität

[3 *2+ fZJJxTJTTy^Y f [3^2- (/-IT*4 f 4^)]8= (-6 x y)\
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