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Zum Schluss geben wir noch einen Beweis eines Spezialfalls des zentralen Grenz
wertsatzes der Wahrscheinlichkeitsrechnung, namhch des folgenden Satzes Konvergiert

die Summe unabhängiger stochastischer Variablen, die alle dieselbe
Verteilungsfunktion mit dem Mittelwert 0 haben, gegen eine bestimmte Grenzfunktion, so

ist diese Grenzfunktion die Normalverteilung
Seien xJ} x2, unabhängige stochastische Variablen, die alle dieselbe Verteilungsfunktion

und alle den Mittelwert 0 haben Sei weiter ajt) die charakteristische Funktion

der Summe von n dieser Variablen Bekanntlich ist

Wird die Anzahl der Summanden verdoppelt, so wird also auf die Funktion oin(t) der
Operator

a2n(t) - T{*n(t)} - [*n(t)]2

angewandt Soll nun <xn(t) -> on(t) gelten, so soll sich durch diesen Übergang nur die

Streuung, nicht aber die Gestalt dieser Funktion verandern Diese Grenzfunktion
muss also der Funktionalgleichung

a(<|/2) [a(0]2

genügen Nehmen wir Logarithmen, so folgt

lna(*|/2) 21na(*)

Hieraus (Potenzreihe1)
lnoc(0 =At2

Die Konstante muss in diesem Zusammenhang negativ sein, wir setzen also A — cr2/2

Damit haben wir fur die charakteristische Funktion <x(tf) diejenige der Normalverteilung

ai{t) - e *W i)
K F Moppert, Basel

Kleine Mitteilungen

Einige Parabeleigenschaften2)

(6) Es ist (Figur 2) K3 S3 - SK p + x - p x Fur den Mittelpunkt M des

Krummungskreises im Parabelpunkt P als Ahnhchkeitszentrum gilt ferner

3~4 PQ 2x (2x-\-p)=x (x + ^)=K3 PP

x) Vgl hierzu G Pölya, Astron Nachr 209, 111 (1919), H Cram£r, Mathematicai Methods of Statistics
(Pnnceton University Press, Pnnceton 1946), Seite 214

2) Siehe R Jakobi, Einige Parabeleigenschaften, El Math 8, Nr 5, 107 (1953)
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Ergebnis 8 Aus dem Mittelpunkt K des Scheitelkrummungskreises werden die auf
der Leitlinie gelegenen Gegenpunkte P der Parabelpunkte P jeweils in den Mittelpunkt
M des zu P gehörenden Krummungskreises projiziert1)

(7) Weil A (Pf 1, 5) ^ A (3 Q M) ist sind die auf der Normalen n gelegenen Strek-
ken 5P und MZ gleich lang

90-OC

(X ^/7
/ s? 2 F K

Figur 2

Ergebnis 9 Auf der Normalen n in einem Parabelpunkt P ist die Strecke vom
Krummungsmittelpunkt M bis zur Achse gleich der Strecke von P bis zum Schnittpunkt

von n mit der Ordinate im Achsenpunkt der Tangente m P
(8) Da <^FP3 ^F3P, ist H als Fusspunkt des Lotes in F auf n auch

Halbierungspunkt von P3
Ergebnis 10 Wird der Brennpunkt F orthogonal auf die Normale n in P projiziert,

so erhalt man damit den Halbierungspunkt H der auf n gelegenen Strecke zwischen

i\M

M*

I s

Figur 3 Ilgur 4

dem Krummungsmittelpunkt M und dem Schnittpunkt der Ordinate im Achsenpunkt
der Tangente

(9) Unter dem zum Punkt P einer Kurve gehörenden zweiten Krummungsmittelpunkt
Mx versteht man den Mittelpunkt des Krummungskreises ihrer Evolute, und

zwar m dem zu P gehörenden Krummungsmittelpunkt M Der auf der Evolutennormalen

nx || t im Punkt M gelegene Abschnitt zwischen der Affinnormalen in P und Mx

x) Vgl F Wrtilek, Tangenten und Krummungskreiskonstruktwnen an ebenen Kurven mittels Deutung
eines Kurvenparameters, Mh Math Phys 55 (1951)
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wird durch M im Verhältnis 1 3 geteilt1) Bei den Kegelschnitten fallen die Affin
normalen mit den Durchmessern zusammen Ist d der zur Achse parallele Durchmesser
in P und nx\_ n m M, dann ist MXM= 3 MD, wenn D (d, nx) Wird MD an n gespiegelt,

so erhalt man den auf dem Brennstrahl PF gelegenen Punkt _V (Figur 3), und es

ist MM* 3 MN
Ergebnis 11 Der Brennstrahl PF teilt die Strecke zwischen dem zu P gehörenden

ersten und zweiten Krummungsmittelpunkt M und Mx im Verhältnis 1 2

Figur 5

(10) Da (Figur 2) <£ 2P3 a <£F7P, ist 6F\\n, wobei 6 (c, P2) Ausserdem
trifft 6F die Tangente t im Punkt 8 (t, s) Da das A (6> 7> p) rechtwinklig, ist 6/7 \\ x
Daraus folgt

7,3 7H 6F 6,8 F2 S2 -(!
Für den Parabelpunkt mit der Abszisse p/4 wird dieses Verhältnis 1 1 In diesem Fall
(Figur 4) halbiert also der Punkt 7 die Strecke 3H, und es wird Hl HP =12, das
heisst, OH ist em Drittel des Radius r von c Da OM 3 r, sind H und M konjugierte
Punkte bezüglich c, das heisst, die Tangente von M an c berührt diesen Kreis im Brennpunkt

F, und FH ist die Polare von M bezüglich c

Ergebnis 12 Im Parabelpunkt mit der Abszisse p/4- geht die c-Tangente im Brennpunkt

F durch den Mittelpunkt M des Krummungskreises m P
(11) Es soll (Figur 5) der zum Krummungskreis k in einem Parabelpunkt P ähnliche

Kreis k0, bezüglich P und mit dem Modul 2, kolhnear auf die Parabel p bezogen werden
Die Verschwmdungsgerade v01| v berührt k0 im Punkte T0, dem Bild des unendlich
fernen Punktes T0X der Parabelachse Dem Parabelpunkt B (e, k) wird der Schnittpunkt

B0 (e, kQ) zugeordnet Es entspricht also der Verbindungsgeraden B, T0X die
Verbindungsgerade B0T0 Ihr Schnittpunkt 1 gehört der Kolhneationsachse an Nun
ist A (Bo> B> x) ~ A (Bo> P> Po)> mit dem Modul 2, das heisst, der Punkt 1 halbiert die
Strecke B0T0 Er muss daher auch auf v \\ v0 liegen, v ist daher Kolhneationsachse fur
die kolhneare Zuordnung p-^k0

x) W Blaschke, Vorlesungen über Differentialgeometrie, Bd 2 (Springer, Berlin 1923), Seite 33
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Ergebnis 13 Bezieht man eine Parabel p kolhnear auf den Krummungskreis in einem
ihrer Punkte P, dann schneidet sie die Verschwmdungsgerade v in den Schnittpunkten
mit dem Kreis k0, der zu k ahnlich hegt in bezug auf P, mit dem Modul 2.

(12) Im Hinblick auf das Zeichnen einer Parabel y2=2px ist es bemerkenswert,
dass sich ihre Punkte P schon mit Hilfe eines einzigen rechtwinkligen Zeichendreieckes
ermitteln lassen Aus dem rechtwinkligen Dreieck (Q, 5, P) (Figur 6) folgt 51 ]/~2px.

Ergebnis 14 Fur den im Scheitelpunkt 5 einer Parabel drehbar angebrachten rechten
Winkel (a, b) gilt. Die Ordinate des Schnittpunktes des einen Winkelschenkels a mit
einer festen und zur Parabelachse senkrechten Geraden 1* ist gleich der Ordinate des auf

2pX

Figur 6 Figur 7

dem anderen Winkelschenkel b gelegenen Parabelpunktes. Der Parameter der Parabel
ist (S-\ l*)/2.

Mit Hilfe dieser Überlegung lasst sich em einfacher Parabelzeichner bauen.
Aus dem Polplan1) dieses Mechanismus gelangt man dann zu einer Tangentenkonstruktion

m P, die wiederum nur em rechtwinkliges Zeichendreieck erfordert (Figur 6)
Vorschrift 1. Im Schnittpunkt Q des Schenkels a des um 5 drehbaren rechten Winkels

(a, b) wird das Lot c auf a errichtet
2 Das Lot d in (c, x) auf x wird mit dem Lot e auf b in P im Punkt R zum Schnitt

gebracht.
3. Die Tangente t in P ist senkrecht auf der Verbindungslinie RS.

(13) Fur die folgende Konstruktionsaufgabe soll die gegebene Parabel als der m der
Zeichenebene gelegene Umrissmeridian eines Rotationsparaboloids gedeutet werden
Jeder Rotationszylinder, dessen Achse ebenfalls in der Zeichenebene hegt und parallel
zur gegebenen Achse ist, hat mit dem Paraboloid, neben dem unendlich fernen Punkt
der Achse, eine ebene Schnittkurve gemeinsam. Diese ist eine Ellipse oder — wenn die
Achsen zusammenfallen - em Kreis. Umgekehrt gilt das

Ergebnis 15 Die orthogonale Projektion einer auf einem Rotationsparaboloid
gelegenen Ellipse E (Mittelpunkt M, grosse Halbachse MA MB a, kleine Halbachse
MC MD b) auf eine achsennormale Ebene ist em Kreis Ex mit dem Radius b.

Es sollen nun die Schnittpunkte A und B einer Parabel mit einer Geraden g (nicht
parallel zur Achse) konstruiert werden. Zunächst liefert das im Brennpunkt F der
Parabel errichtete I^ot gx\_g (Figur 7) auf der Leitlinie l einen Punkt V, der dieselbe
Ordinate hat wie der Mittelpunkt M der Strecke AB. Gemäss der raumlichen Deutung

x) A Reuschel, Über ein einheitliches kinematisches Konstruktionsprinzip zur Ermittlung von Tangenten
und Krummungskreisen der Bahnkurven, Eingriffslinien, Hullbahnen und Polbahnen von ebenen bewegten
Systemen, Dissertation, Techmsche Hochschule Wien (1944)
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wird der Parallelkreis K, der in der durch M gehenden Ebene liegt, in die Zeichenebene
geklappt Durch MC0 b ist auch der umgeklappte Kreis Ex bestimmt und damit die
Schnittpunkte A und B auf g

Das Resultat wird im allgemeinen genauer sein als jenes, fur das man die kolhneare
Beziehung zwischen der gegebenen Parabel und ihrem Scheitelkrummungskreis benutzt

R Jakobi, Braunschweig

Über die gemeine Zykloide

Rollt em Kreis auf einer Geraden, so beschreibt em Punkt der Kreisperipherie eine
Kurve die man als gemeine Zykloide bezeichnet Mit Hilfe der Differential und
Integralrechnung kann man zeigen, dass die Lange L der Zykloide zwischen zwei auf
emanderfolgenden Spitzen gleich dem Vierfachen des Durchmessers des rollenden

AT

Figur 1

Kreises, der Flächeninhalt F, der von diesem Zykloidenbogen und der Geraden einge
schlössen wird, gleich dem Dreifachen des Inhaltes des rollenden Kreises ist Wir wollen
zeigen, wie man diese beiden Resultate auch ohne Differential- und Integralrechnung
herleiten kann

Zu diesem Zweck beschreiben wir dem Kreis em reguläres (2 n) Eck em und lassen
dieses Polygon auf der Geraden g abrollen Dabsi beschreibt eine Ecke eine Kurve,
die mit n -> oo gegen die Zykloide strebt (Figur 1) Wir müssen daher die Lange L2n des
Stuckes unserer Naherungskurve, das von einem Punkt auf der Geraden g bis zum
nächsten Punkt auf der Geraden g fuhrt, das also einer Umdrehung unseres Polygons
entspricht, und den Flacheninhalt F2n, der von diesem Kurvenstuck und der Geraden g
eingeschlossen wird, berechnen Dann gilt

L hm L2 und F hrnF«,

Das zu untersuchende Stuck unserer Naherungskurve besteht aus 2 n — 1 Kreis
bogen, deren Radien der Reihe nach gleich den von einer Ecke ausgehenden Seiten und
Diagonalen sind und die wir m der gleichen Reihenfolge mit ax, a2, a2n_1 bezeichnen
Zu jedem dieser Kreisbogen gehört em Zentriwinkel, der gleich ist einem Aussenwinke 1

unseres regulären Polygons, also gleich 2 n/(2 n) n/n Das zu untersuchende Flachenstuck

setzt sich aus 2^ — 2 Dreiecken und 2n — \ Kreissektoren zusammen Jedes
dieser Dreiecke ist kongruent einem der Dreiecke, m die unser Polygon durch die von
einer Ecke ausgehenden Diagonalen zerlegt wird Die Summe all dieser Dreiecksflachen
ist also gleich der Flache f2n unseres regulären Polygons Um einen einfachen Ausdruck
fur die Summe aller Sektorflachen zu erhalten, muss man beachten, dass aß und an + fI
fur ß < n Katheten eines rechtwinkligen Dreiecks sind, dessen Hypotenuse der Durchmesser

des Kreises ist Es ist also a2 + a* + jX= 4r2 fur ^ 1,2, ,n — 1 Damit
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erhalten wir
n-1

ii-i

In 1
1

F2n =f2n + 2j 2 a* n=^2nJr 2n
v 1

und daraus
:/2"+ ^t4r2+(n-l)4r2] f2n + zn ^nr2 f2n+2nr2

F hm F2n n r2 + 2 n r2 3 n r2

Fur die Lange L2n findet man

2nl 2» 1 „ 2« 1

^n ___• v n n ^ v n <_w 2«'vi vi J/ l
da «^ und «2n-/z m dem lechtwmkhgcn Dreieck mit der Hypotenuse 2r dem Winkel
[jl n/(2 n) gegenüberliegen und da

an an\sm ~— sm \n - „ sin2n \ 2nJ

ist Unter Benutzung der Formel

(2 n — fi) n
2 n

(p r 1) a p ol
P sm r ' sm r

v-r _. 2
> sm v ol

v i sm

erhalten wir
w n (2 n — 1) n n

sm — sm2nr 2n 2 2n _ 4« IY 1 \ rclI2n =8f sm 1 — _ „2n n n n \\ 2 n 2 J '
sm sm J4w 4w

woraus sich fur n -> oo L 8 r ergibt1) Christian Blattlr, Basel

Eine Parallelogrammaufgabe

Angeregt durch em von Herrn Vlahavas2) analytisch gelöstes, ähnliches Problem,
soll folgende Aufgabe konstruktiv behandelt werden Gegeben smd in der Ebene vier
Punkte Pt (i 1, 4) m allgemeiner Lage Gesucht ist jenes Parallelogramm, das
einem gegebenen (n) ähnlich ist und dessen Seiten oder deren Verlangerungen durch die
Punkte Pt gehen

Losung In der komplexen Zahlenebene seien die Vektoren gegeben (siehe Figur 1)

P1P^= (x> p^p^=fy uncj eij e2~ eaCi die Einheitsvektoren in Richtung der Parallelo
grammselten Aus der Figur folgt

Ax i ex a \ u ti A21 e2 b -f- v e2

Der Übergang zu den konjugiert komplexen Grossen ergibt

— Xx i lx a + u et, -A2u2=Hn2

1) Anmerkung der Redaktion Eine Verallgemeinerung obiger Flachenberechnung findet man in der
Losung zu Aufgabe 76, El Math 5, 117 (1950)

2) G N Vlahavas, Circonscrire un carre a un quadnlatere donne, El Math 7, 37 (1952)



82 Kleine Mitteilungen

Die Elimination von n und v liefert

2 kx i a ex — et ex, 2 A2 z b e2 — b e2

Aus der Ähnlichkeit von gegebenem und gesuchtem Parallelogramm folgt

Man eliminiert noch }.x

Itiitii

n*i

SA

Figur 1

h2

(a-Äbe«) Cl (ä-kh ea) Ci.

ä V

h
ßß*-P,Q

%PfQ -PfS-fiS,

Figur 2

/T $

Setzt man noch c et — k b ea, so lautet die letzte Gleichung

c ex c Cx,

das heisst, der Vektor c muss die Richtung von ex haben
Konstruktion Der Vektor

c a-^bea
lasst sich sofort konstruieren (siehe Figur 2), wenn man zu dem Vektor et den um — oc

gedrehten und im Verhältnis hx/h2 gestreckten Vektor — b addiert Wenn man von
vornherein festlegt, welche der parallelen Seiten durch Pt und P3 gehen sollen, so sind
zwei Losungen möglich, da man PZS durch PSS± ersetzen kann, im ganzen sind sechs
Losungen möglich.

Soll das gesuchte Parallelogramm speziell em Quadrat sein, so ergibt sich die von
Herrn Buchner1) als trigonometrische Losung bezeichnete Konstruktion.

Rudolf Ludwig, Braunschweig.

Bemerkung zu einer Aufgabe von Herrn van der Pol

Herr B van der Pol stellte in dieser Zeitschrift kürzlich die folgende Aufgabe2)
Zeige, dass neben dem bekannten Satz

>-i+a 1
_ n

y ± --4

x) P Buchner, Aus der Theorie der geometrischen Konstruktionen, El Math. 1, 1-3 (1946)
2) Aufgabe 154, El Math 7, 48 (1952)
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auch gilt
1

-
X

o_
1

zn -
1-3-5 7-9- 11 13-15-17 ^ 48

Es hegt nahe, die Leibnizsche Reihe m der von Herrn van der Pol angedeuteten Richtung

weiter zu verallgemeinern und die Reihe der Kehrwerte der Produkte von je m
aufeinanderfolgenden ungeraden Zahlen zu betrachten Es zeigt sich dabei, dass zur
Erzielung eines glatten Resultates die Glieder dieser Reihe im Falle eines ungeraden m
wie oben mit abwechselndem, bei geradem m dagegen mit konstantem Vorzeichen
genommen werden müssen Unter Verwendung des Pochhammerschen Symbols

(a)0 1, (ä)n a (a + 1) (a + n - 1)

kann dann die zu betrachtende Reihe offenbar wie folgt geschrieben werden

"W-2-Ä(ä/2,+,„*)_
Diese Reihe ist ihrerseits em spezieller Fall einer noch allgemeineren, von Glaisher
in einer grosseren Arbeit1) im wesentlichen mit reellen Methoden untersuchten Reihe.
Es ist vielleicht dennoch gestattet, darauf hinzuweisen, wie man durch eine einfache
Anwendung des Residuenkalkuls zu einer prägnanten Darstellung fur q?(m) gelangen
kann, die übrigens von Glaisher nicht angegeben wurde

Wir betrachten zunächst die fur 0 ^ x ^ 1 konvergente Reihe

w(m,x) 2-mY,MI\, },—-r— #<*+i»«-i/a.

Wegen
qo(m, 1) qj(m)

und
fjm x~^2

1_,,(m.„)-2-1_.jr_ •)

folgt bei Anwendung der bekannten Formel fur m-fache Integration

l

o

l
Z-m + i T (1 - ^)«-i

(w~- l)' J l =f*2~™~
Z

0

oo

2-m-i /"(l-^)»»-i dz.
-m-i /•(!.
____y_(m-i)' y 1T^2

-oo

Bei der letzten Umformung wurde die Invarianz des Integrals bezüglich der
Substitutionen z'= 1/z und z"= —z benutzt. Da der Integrand eindeutig ist und im Unendlichen

hinreichend stark verschwindet, ist das Integral gleich der (2 n £)-fachen Summe

1) J W L Glaisher, Summation of Series in which the r th Term is the Reciprocal of the Product of the

Members of the r th Set of n Consecutive Terms m an Atithmetical Progression, Messenger Math 24, 124-171

(1894-1895)
2) In den folgenden Formeln steht em oberes Vorzeichen jeweils fur gerades, em unteres fur ungerades m.
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der Residuen in der obern Halbebene Der Integrand ist dort Singular m den Punkten

zk i e[lnlm)L, m m
~ 2 <k<^

und das Residuum ist

i (i-4)m x

Wegen

- -1 iz --Mm

z^m (~l)k l~m,
1 k n

Zn. — -— 2i cos
zlc m

ergibt sich damit unmittelbar

rr\l'Wl\ — \ / 1 \K l mc 1

|Ä|<»/2 x 7

Man findet hieraus leicht die folgenden algebraischen Ausdrucke fur die ersten paar
Werte von m

m 1 2 3 4 5 6

- x
1 1 1 2-1/2 8-3 1/5 17-91/3jr_1 o?(m) — — — —^ ; 4 8 48 192 3840 46080

Mit Ausnahme des Wertes fur m — 5 smd diese Resultate schon von Glaisher, 1 c
angegeben worden P Henrici, Washington, D C

Über die Schreibweise der Wurzeln

In der Mathematik gibt es drei Arten von Wurzeln
1 A rithmetische Wurzeln Das smd die Wurzeln aus arithmetischen Zahlen (ohne Vor

zeichen), wie sie auf der ersten Entwicklungsstufe der Mathematik vorkommen (Arith
metik, reme Geometrie, Goniometrie im rechtwinkligen Dreieck) Arithmetische Wur
zeln smd absolute Zahlen und haben also kein Vorzeichen

Beispiel ]/4 2

2 Algebraische Wurzeln Das smd die Wurzeln aus algebraischen Zahlen (mit Vor
zeichen), wie sie auf der zweiten Entwicklungsstufe der Mathematik vorkommen (AI
gebra, analytische Geometrie, Trigonometrie am Einheitskreis)

Die ungerade algebraische Wurzel einer algebraischen Zahl existiert immer, und
zwar eindeutig

3/
Beispiel y — 8 - 2

Die gerade algebraische Wurzel kann dagegen nur aus einer positiven Zahl gezogen
werden, und das Ergebnis ist zweiformig

Beispiel j/4-4 ±2

3 Komplexe Wurzeln Das sind die Wurzeln aus komplexen Zahlen, wie sie auf der
dritten Entwicklungsstufe der Mathematik vorkommen Ihr Ergebnis ist mehrformig
Jede komplexe Zahl besitzt n verschiedene n-te komplexe Wurzeln

8 ._

Beispiel Die dritte komplexe Wurzel aus —8, ^—8, ergibt die drei Werte +1 + ; ^3
(fur k 0), —2 (fur k — 1) und -f-1 — 7 |/3 (fur k 2) Hierbei muss unter dem Zeichen
|/3 die arithmetische Quadratwurzel aus 3 verstanden werden
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Die bisherigen Ausfuhrungen haben gezeigt, dass fur die Bezeichnung der drei
verschiedenen Wurzeln (arithmetische, algebraische und komplexe) das gleiche Wurzelzeichen

gebraucht wird Dies scheint im allgemeinen keine nachteiligen Folgen zu
haben, da es ja öfters vorkommt (zum Beispiel in der deutschen Sprache), dass das
gleiche Wort oder das gleiche Zeichen mehrere verschiedene Bedeutungen hat und der
gewünschte Sinn sich im konkreten Falle meistens klar aus dem Zusammenhang ergibt
Es braucht hierbei nur erwähnt zu werden, dass das Wort «Wurzel» in der Algebra
zuweilen auch die Bedeutung «Losungswert» einer Bestimmungsgieichung besitzt

Dennoch sollte m der Mathematik em und dasselbe Zeichen nicht nach Beheben fur
drei verschiedene Begriffe eingesetzt werden können Denn das widerspricht dem
eigentlichen Wesen der Mathematik, die als exakte Wissenschaft auch eine klare und
eindeutige Sprache haben sollte Ausserdem smd Unklarheiten durchaus nicht
ausgeschlossen, was sich, besonders vom pädagogischen Standpunkt aus gesehen, sehr nachteilig

auswirken kann
Betrachten wir zum Beispiel den Ausdruck a ]/9 + ^4 Versteht man unter dem

Wurzelzeichen die arithmetischen Wurzeln, so ergibt sich eindeutig a 5 Betrachtet
man aber die algebraischen Wurzeln, so ergeben sich fur a die vier Losungswerte
+ 5, +1, -1 und -5

Ähnliche Unklarheiten können bei Wurzelgleichungen und Wurzelfunktionen
auftreten So kann man zum Beispiel nicht immer ohne weiteres ersehen, ob es sich bei
der Bestimmungsgieichung

]/5x + 1 - Yx + 1 2

um nur eine oder vier verschiedene Wurzelgleichungen handelt
Noch grosser kann die Unklarheit auf dem Gebiet der komplexen Zahlen werden

Schreibt man yS, so steht durchaus nicht fest, ob nur der Wert + 2 oder die drei Werte
+ 2 (fur k 0), -1 + 7 j/3 (fur k 1) und -1 - 7 j/3 (fur k 2) m Betracht gezogen
werden sollen Bestimmt aber ist die häufig anzutreffende Schreibweise )/—1 ;
falsch, denn ]/— 1 ist auf komplexem Gebiete zweiformig ]/— 1 dt 7

Die grossten Irrtumer können entstehen, wenn man m der Algebra oder sogar auf
dem Gebiete der komplexen Zahlen Wurzelregeln anwendet, die nur in der Arithmetik
Gültigkeit besitzen

Setzen wir zum Beispiel in der Formel

)/x* Q/xY

fur n 2 p 4 und x 4 em, so ergäbe die Betrachtung der algebraischen Wurzeln

±16 (±2)4 f-16

Genau so unsinnig wird das Ergebnis, wenn man in der Formel

n. nv.
yx yx*

für n 3, p 2 und x — 27 einsetzt Das Ergebnis wurde lauten

_3 _ ^(H27p ^729 ±3

Der Fehler besteht m den beiden letzten Fallen dann, dass man eine in der Arithmetik

gültige Regel auf die Algebra uneingeschränkt ausgedehnt hat Der Grundstock
des Übels beruht aber auf dem Umstand, dass man fur die arithmetischen und die
algebraischen Wurzeln das gleiche Zeichen gebraucht, wodurch man zu den erwähnten
Fehlern geradezu angespornt wird

Eine Behebung dieses Mißstandes konnte wohl dadurch erreicht werden, dass die
Art der betrachteten Wurzeln (arithmetisch, algebraisch oder komplex) aus dem äusseren

Zeichen direkt ersichtlich wäre
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Da die arithmetische Wurzel in der Mathematik und den Naturwissenschaften am
häufigsten vorkommt und die Wurzelregeln fur diese Art Wurzeln auch uneingeschränkt
gültig smd, wäre es wohl angebracht, das althergebrachte Wurzelzeichen fur die
Bezeichnung der arithmetischen Wurzeln beizubehalten n

Fur die Bezeichnung der komplexen Wurzeln konnte man das Zeichen y wählen,
das an die Verwandtschaft zwischen komplexen Zahlen und Vektoren deutlich erinnert
Em neues Zeichen fur die algebraischen Wurzeln wäre dann nicht notwendig, da jede
algebraische Wurzel als Sonderfall einer komplexen Wurzel angesehen werden kann
Durch einen Index konnte man die einzelnen Wurzelwerte noch unterscheiden

Beispiele
j/4~=2, |/4 ±2, j/4=+2, |/4 -2

k o k 1

ys 2 1/8*=- die Gesamtheit der Werte +2, -1 + 7 j/3, -1 - ; |/3

1/8*=- +2, Y~8= -1 + 7)/3, /8*-= -1 - 7 |/3
k 0 Ä 1 Ä 2

|j/8 I =- j/|8| 2, allgemeiner ||/s | ]/\z\

Fur die Bezeichnung der reellen negativen ungeraden Wurzel einer reell negativen
Zahl konnte man übrigens ohne Missverstandnis das alte Wurzelzeichen beibehalten

Beispiel )/- 8 V^S - 2,
* l

aber ]/~S= + 1 + 7 ]/J, j/Z^ __= +1 - ; |/3, ]/\-s\ =- ||/-if| 2
ß 1 Ä 2

Schliesslich konnte man die erwähnte Unterscheidung zwischen den drei Arten von
Wurzeln sinngemäss auch auf die Potenzen mit gebrochenen Exponenten übertragen

R Rose, Saarbrücken
Bemerkung der Redaktion : Es gibt mehrere Bucher, m denen auf die im obigen Artikel

genannten Schwierigkeiten aufmerksam gemacht und die Schreibweise der Wurzeln
sorgfaltig diskutiert wird Zum Beispiel P Buchner, Algebra (vierter Teil, zweite
Auflage) (Orell-Fussh-Verlag, Zürich 1953), Seite 26 f

Aufgaben

Aufgabe 184. In der Gruppentheorie werden fur mchtkommutative Gruppen
spezielle höhere Kommutatoren auf folgende Weise rekursiv definiert

(x, y) — x y x~x y~x,

{%> y, y) [(#, y)> y] — x y x~x y x y~1 x~x y~1 usw

Enthalt der Kommutator n Elemente y, so ist
2n

(#, y> y, y) ^JJf*** ybk>

k=i

wo ak= (— l)k + 1 Man bestimme bk als Funktion von k E Trost, Zürich
Losung Der n-te Kommutator der betrachteten Folge sei (x, y)n, also

(x, y)x= x y x~1 y~x.
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