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76 Kleine Mitteilungen

Zum Schluss geben wir noch einen Beweis eines Spezialfalls des zentralen Grenz-
wertsatzes der Wahrscheinlichkeitsrechnung, ndmlich des folgenden Satzes: Konver-
giert die Summe unabhédngiger stochastischer Variablen, die alle dieselbe Vertei-
lungsfunktion mit dem Mittelwert O haben, gegen eine bestimmte Grenzfunktion, so
ist diese Grenzfunktion die Normalverteilung.

Seien x4, %,, .... unabhéngige stochastische Variablen, die alle dieselbe Verteilungs-
funktion und alle den Mittelwert O haben. Sei weiter «,,(¢) die charakteristische Funk-
tion der Summe von # dieser Variablen. Bekanntlich ist

oo pn(t) = [0, (£)]2

Wird die Anzahl der Summanden verdoppelt, so wird also auf die Funktion () der
Operator

oan(t) = T{en(t)} = [ (8)]?

angewandt. Soll nun «,(f) > «(f) gelten, so soll sich durch diesen Ubergang nur die
Streuung, nicht aber die Gestalt dieser Funktion veridndern. Diese Grenzfunktion
muss also der Funktionalgleichung

«(t)2) = [a(t)]?

geniigen. Nehmen wir Logarithmen, so folgt

lnoc(t ]/2) == 2 Ina(?).
Hieraus (Potenzreihe!)
Ina(f) = A 2

Die Konstante muss in diesem Zusammenhang negativ sein, wir setzen also 4 = — ¢2/2.
Damit haben wir fiir die charakteristische Funktion o(f) diejenige der Normalvertei-
lung:
a(t) = e~ @2 1),
K. F. MoPPERT, Basel.

Kleine Mitteilungen

Einige Parabeleigenschaften?)

(6) Es ist (Figur 2) K3=S3—-SK=p+x—p=ux. Fiir den Mittelpunkt M des
Kriimmungskreises im Parabelpunkt P als Ahnlichkeitszentrum gilt ferner

3:z:ﬁgz2x:(2x+p)=x:(x+~§)=]{§:l-’—i§.

1) Vgl. hierzu G. P6LYA, Astron. Nachr. 209, 111 (1919); H. CRAMER, Mathematical Methods of Statistics
(Princeton University Press, Princeton 1946), Seite 214.
2) Siehe R. JakoBI1, Einige Parabeleigenschaften, El. Math. 8, Nr. 5, 107 (1953).
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Evgebnis 8: Aus dem Mittelpunkt K des Scheitelkriimmungskreises werden die auf
der Leitlinie gelegenen Gegenpunkte P der Parabelpunkte P jeweils in den Mittelpunkt
M des zu P gehtrenden Kriimmungskreises projiziert?).

(7) Weil A\ (P, 1, 5) =2 A (3, Q, M) ist, sind die auf der Normalen » gelegenen Strek-

ken 5P und M3 gleich lang.

o

Figur 2

Evgebnis 9: Auf der Normalen #» in einem Parabelpunkt P ist dic Strecke vom
Kriimmungsmittelpunkt M bis zur Achse gleich der Strecke von P bis zum Schnitt-
punkt von » mit der Ordinate im Achsenpunkt der Tangente in P.

(8) Da < FP3 = < F3P, ist H, als Fusspunkt des Lotes in F auf », auch Halbie-
rungspunkt von P3.

Evgebnis 10: Wird der Brennpunkt F orthogonal auf die Normale » in P projiziert,
so erhilt man damit den Halbierungspunkt H der auf » gelegenen Strecke zwischen

Figur 3 Figur 4

dem Kriimmungsmittelpunkt M und dem Schnittpunkt der Ordinate im Achsenpunkt
der Tangente.

(9) Unter dem zum Punkt P einer Kurve gehtrenden zweiten Kriimmungsmittel-
punkt MX versteht man den Mittelpunkt des Kriimmungskreises ihrer Evolute, und
zwar in dem zu P gehorenden Kriimmungsmittelpunkt M. Der auf der Evolutennor-
malen #X| ¢ im Punkt M gelegene Abschnitt zwischen der Affinnormalen in P und Mx

1) Vgl. F. WrTILEK, Tangenten- und Kriimmungskreiskonstruktionen an ebenen Kurven mittels Deutung
eines Kurvenparameters, Mh. Math. Phys. 65 (1951).
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wird durch M im Verhdltnis 1:3 geteilt!). Bei den Kegelschnitten fallen die Affin-
normalen mit den Durchmessern zusammen. Ist d der zur Achse parallele Durchmesser
in Pund »n* | »nin M, dann ist MXM = 3 MD, wenn D = (d, nX). Wird MD an » gespie-
gelt, so erhdlt man den auf dem Brennstrahl PF gelegenen Punkt N (Figur 3), und es
ist MM*=3MN.

Evgebnis 717: Der Brennstrahl PF teilt die Strecke zwischen dem zu P gehoérenden
ersten und zweiten Kriimmungsmittelpunkt M und MX* im Verhéltnis 1:2.

Figur 5

(10) Da (Figur2) {2P3=a= < F7P, ist 6F | n, wobei 6 = (¢, P2). Ausserdem
trifft 6F die Tangente ¢ im Punkt 8 = (¢, s). Da das A (6, 7, P) rechtwinklig, ist 6,7 || ».
Daraus folgt

7,3:7:?:6,8=F3:§=(~§~—x>:x.

Fiir den Parabelpunkt mit der Abszisse p/4 wird dieses Verhiltnis 1:1. In diesem Fall
(Figur 4) halbiert also der Punkt 7 die Strecke 3H, und es wird H7:HP =1:2, das
heisst, OH ist ein Drittel des Radius » von ¢. Da OM = 37, sind H und M konjugierte
Punkte beziiglich ¢, das heisst, die Tangente von M an ¢ beriihrt diesen Kreis im Brenn-
punkt F, und FH ist die Polare von M beziiglich c.

Evgebnis 712: Im Parabelpunkt mit der Abszisse p/4 geht die ¢c-Tangente im Brenn-
punkt F durch den Mittelpunkt M des Kriimmungskreises in P.

(11) Es soll (Figur 5) der zum Kriimmungskreis £ in einem Parabelpunkt P dhnliche
Kreis k,, beziiglich P und mit dem Modul 2, kollinear auf die Parabel p bezogen werden.
Die Verschwindungsgerade v,| v beriihrt %, im Punkte 7, dem Bild des unendlich
fernen Punktes T der Parabelachse. Dem Parabelpunkt B = (¢, k) wird der Schnitt-
punkt By= (e, k,) zugeordnet. Es entspricht also der Verbindungsgeraden B, T¥ die
Verbindungsgerade B,7,. Ihr Schnittpunkt 1 gehort der Kollineationsachse an. Nun
ist A\ (By, B,1)~ A (By, P, T,), mit dem Modul 2; das heisst, der Punkt 1 halbiert die
Strecke B,T,. Er muss daher auch auf v | v, liegen. v ist daher Kollineationsachse fiir
die kollineare Zuordnung p > &,.

1) W.BLASCHKE, Vorlesungen tiber Differentialgeometrie, Bd.2 (Springer, Berlin 1923), Seite 33.
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Evrgebnis 13: Bezieht man eine Parabel p kollinear auf den Kriimmungskreis in einem
ihrer Punkte P, dann schneidet sie die Verschwindungsgerade v in den Schnittpunkten
mit dem Kreis %, der zu % dhnlich liegt in bezug auf P, mit dem Modul 2.

(12) Im Hinblick auf das Zeichnen einer Parabel y2= 2 p x ist es bemerkenswert,
dass sich ihre Punkte P schon mit Hilfe eines einzigen rechtwinkligen Zeichendreieckes
ermitteln lassen. Aus dem rechtwinkligen Dreieck (Q, S, P) (Figur 6) folgt S1 = V2px.

Evgebnis 74: Fiir den im Scheitelpunkt S einer Parabel drehbar angebrachten rechten
Winkel (a, b) gilt: Die Ordinate des Schnittpunktes des einen Winkelschenkels a mit
einer festen und zur Parabelachse senkrechten Geraden 1* ist gleich der Ordinate des auf

Figur 6 Figur 7

dem anderen Winkelschenkel b gelegenen Parabelpunktes. Der Parameter der Parabel
ist (S - 1%)/2.
Mit Hilfe dieser Uberlegung lisst sich ein einfacher Parabelzeichner bauen.
Aus dem Polplan?) dieses Mechanismus gelangt man dann zu einer Tangentenkon-
struktion in P, die wiederum nur ein rechtwinkliges Zeichendreieck erfordert (Figur 6).
Vorschrift: 1. Im Schnittpunkt Q des Schenkels a des um S drehbaren rechten Winkels
(a, b) wird das Lot ¢ auf a errichtet.

2. Das Lot d in (¢, #) auf » wird mit dem Lot ¢ auf b in P im Punkt R zum Schnitt
gebracht.

3. Die Tangente ¢ in P ist senkrecht auf der Verbindungslinie RS.

(13) Fiir die folgende Konstruktionsaufgabe soll die gegebene Parabel als der in der
Zeichenebene gelegene Umrissmeridian eines Rotationsparaboloids gedeutet werden.
Jeder Rotationszylinder, dessen Achse ebenfalls in der Zeichenebene liegt und parallel
zur gegebenen Achse ist, hat mit dem Paraboloid, neben dem unendlich fernen Punkt
der Achse, eine ebene Schnittkurve gemeinsam. Diese ist eine Ellipse oder — wenn die
Achsen zusammenfallen — ein Kreis. Umgekehrt gilt das

Evgebnis 75: Die orthogonale Projektion einer auf einem Rotationsparaboloid gele-
genen Ellipse E (Mittelpunkt M, grosse Halbachse M4 = M B = a, kleine Halbachse
MC = MD = b) auf eine achsennormale Ebene ist ein Kreis EX mit dem Radius .

Es sollen nun die Schnittpunkte 4 und B einer Parabel mit einer Geraden g (nicht
parallel zur Achse) konstruiert werden. Zunidchst liefert das im Brennpunkt F der
Parabel errichtete Lot g¥ | g (Figur 7) auf der Leitlinie / einen Punkt V, der dieselbe
Ordinate hat wie der Mittelpunkt M der Strecke AB. Gemdss der rdumlichen Deutung

1) A. ReuscHEL, Uber ein einheitliches kinematisches Konstruktionsprinzip zur Ermittlung von Tangenten
und Kriimmungskreisen der Bahnkurven, Eingriffslinien, Hillbahnen und Polbahnen von ebenen bewegten
Systemen, Dissertation, Technische Hochschule Wien (1944).



80 Kleine Mitteilungen

wird der Parallelkreis K, der in der durch M gehenden Ebene liegt, in die Zeichenebene
geklappt. Durch MC, = b ist auch der umgeklappte Kreis EX bestimmt und damit die

Schnittpunkte 4 und B auf g.
Das Resultat wird im allgemeinen genauer sein als jenes, fiir das man die kollineare
Beziehung zwischen der gegebenen Parabel und ihrem Scheitelkriimmungskreis beniitzt.
R. JaxoBI1, Braunschweig.

Uber die gemeine Zykloide

Rollt ein Kreis auf einer Geraden, so beschreibt ein Punkt der Kreisperipherie eine
Kurve, die man als gemeine Zykloide bezeichnet. Mit Hilfe der Differential- und Inte-
gralrechnung kann man zeigen, dass die Linge L der Zykloide zwischen zwei auf-
einanderfolgenden Spitzen gleich dem Vierfachen des Durchmessers des rollenden

Figur 1

Kreises, der Flacheninhalt F, der von diesem Zykloidenbogen und der Geraden einge-
schlossen wird, gleich dem Dreifachen des Inhaltes des rollenden Kreises ist. Wir wollen
zeigen, wie man diese beiden Resultate auch ohne Differential- und Integralrechnung
herleiten kann.

Zu diesem Zweck beschreiben wir dem Kreis ein reguldres (2 #)-Eck ein und lassen
dieses Polygon auf der Geraden g abrollen. Dabezi beschreibt eine Ecke eine Kurve,
die mit # > oo gegen die Zykloide strebt (Figur 1). Wir miissen daher die Liange L,, des
Stiickes unserer Naherungskurve, das von einem Punkt auf der Geraden g bis zum
nichsten Punkt auf der Geraden g fiihrt, das also einer Umdrehung unseres Polygons
entspricht, und den Fliacheninhalt F,, , der von diesem Kurvenstiick und der Geraden g
eingeschlossen wird, berechnen. Dann gilt

L=1imL,, und F=Ilimk,,.
n—> 00 n—> 00

Das zu untersuchende Stiick unserer Naherungskurve besteht aus 2% — 1 Kreis-
bogen, deren Radien der Reihe nach gleich den von einer Ecke ausgehenden Seiten und
Diagonalen sind und die wir in der gleichen Reihenfolge mit a,, a,, ..., a,,_, bezeichnen.
Zu jedem dieser Kreisbogen gehort ein Zentriwinkel, der gleich ist einem Aussenwinkel
unseres reguldaren Polygons, also gleich 2 n/(2 #n) = n/n. Das zu untersuchende Fliachen-
stiick setzt sich aus 2# — 2 Dreiecken und 2# — 1 Kreissektoren zusammen. Jedes
dieser Dreiecke ist kongruent einem der Dreiecke, in die unser Polygon durch die von
einer Ecke ausgehenden Diagonalen zerlegt wird. Die Summe all dieser Dreiecksflachen
ist also gleich der Flidche f,, unseres reguliren Polygons. Um einen einfachen Ausdruck
fiir die Summe aller Sektorflichen zu erhalten, muss man beachten, dass a,und a, , ,
fiir 4 < » Katheten eines rechtwinkligen Dreiecks sind, dessen Hypotenuse der Durch-

messer des Kreises ist. Es ist also aﬁ—}— a, =47 fir p=1,2,...,n-1. Damit
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erhalten wir

2n-1 n—1

- 44 T

f'zn““fszfZ'z‘“f , f2n+§;{ “£+2 (@ + az 4 ,)
v=1 pn=1

7 7
= fon + o 472+ (n—1)4v3]=f,, + e dnri=f,, +2mnr?
und daraus

F=1lmF,, =av*+2nvr2=3ar2
n—>00

Fiir die Lange L, , findet man

2n-1 2n-1 2n-1
L 42:" -, n:AETCI Z:E’/AE: in o
ol — o - B - S pe
20 "uo on # n 2n’
=1 r=1 y=1

da a, und a,,_, in dem rechtwinkligen Dreieck mit der Hypotenuse 2 dem Winkel
u /(2 n) gegeniiberliegen und da

sin?” —sin{x — #*7) = sin (2%_«”)%-
2n 2n

4

ist. Unter Beniitzung der Formel

(pr1
P sin-? Tz )% Gin pZ“
Zsinva:_,f_ i A
v=1 sin %
erhalten wir
sin n 2n—1)=n 7
I _Z2av . 2n 2.2n s, 4n (e 1 n
. abn . i sin T 2n) 2|’
4 4
woraus sich fiir # ->oco L = 87 ergibt?). CHRISTIAN BLATTER, Basel.

Eine Parallelogrammaufgabe

Angeregt durch ein von Herrn VLAHAVAS?) analytisch gelostes, dhnliches Problem,
soll folgende Aufgabe konstruktiv behandelt werden: Gegeben sind in der Ebene vier
Punkte P, (1 =1, ..., 4) in allgemeiner Lage. Gesucht ist jenes Parallelogramm, das
einem gegebenen (x) 4hnlich ist und dessen Seiten oder deren Verlingerungen durch die
Punkte P, gehen.

_ Losung: In der komplexen Zahlenebene seien die Vektoren gegeben (siehe Figur 1):
P,Py=q, P,P,—b und e,, ¢,— ¢, ¢, die Einheitsvektoren in Richtung der Parallelo-
grammseiten. Aus der Figur folgt:

Zlielz—“a+u€1, zziegzb"}"vez.
Der Ubergang zu den konjugiert komplexen Grossen ergibt:

~Zli€1:a+[l€1, _lzi—éz:B“}‘VEz-

1) Anmerkung der Redaktion: Eine Verallgemeinerung obiger Flichenberechnung findet man in der
Losung zu Aufgabe 76, E1. Math. 5, 117 (1950).
%) G.N.V0Lanavas, Circonscrire un carré & un quadrilatére donné, EX. Math. 7, 37 (1952).
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Die Elimination von u und v» liefert:
20 i=a% —ae, 2Ai=be—Dbe,.

Aus der Ahnlichkeit von gegebenem und gesuchtem Parallelogramm folgt:

Man eliminiert noch 4,:

\/

Figur 1

Setzt man noch ¢=a—%b e,, so lautet die letzte Gleichung:
¢ El = E el,

das heisst, der Vektor ¢ muss die Richtung von ¢, haben.
Konstruktion: Der Vektor

_ hy .
c~a—7gbea

liasst sich sofort konstruieren (siehe Figur 2), wenn man zu dem Vektor a den um —«
gedrehten und im Verhiltnis 7,/k, gestreckten Vektor —b addiert. Wenn man von
vornherein festlegt, welche der parallelen Seiten durch P, und P, gehen sollen, so sind
zwel Losungen moglich, da man P,S durch P,S; ersetzen kann; im ganzen sind sechs
Losungen moglich.
Soll das gesuchte Parallelogramm speziell ein Quadrat sein, so ergibt sich die von
Herrn BucuHNER?) als trigonometrische Losung bezeichnete Konstruktion.
RupoLr Lubpwig, Braunschweig.

Bemerkung zu einer Aufgabe von Herrn van der Pol

Herr B. vaN DER PoL stellte in dieser Zeitschrift kiirzlich die folgende Aufgabe?):
Zeige, dass neben dem bekannten Satz

1 1 1 b4

1“*§+?—7:i:"'=—

1y P. BucHNER, Aus der Theorie der geometrischen Konstruktionen, El, Math. 1, 1-3 (1946).
2) Aufgabe 154, El. Math. 7, 48 (1952).
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auch gilt
1 1 1 b4

1:3-5 ~ 7-9:11 T 13715-17 7 48
Es liegt nahe, die Leibnizsche Reihe in der von Herrn vaN DER PoLr angedeuteten Rich-
tung weiter zu verallgemeinern und die Reihe der Kehrwerte der Produkte von je m
aufeinanderfolgenden ungeraden Zahlen zu betrachten. Es zeigt sich dabei, dass zur
Erzielung eines glatten Resultates die Glieder dieser Reihe im Falle eines ungeraden m

wie oben mit abwechselndem, bei geradem m dagegen mit konstantem Vorzeichen
genommen werden miissen. Unter Verwendung des Pochhammerschen Symbols

@o=1, (@p=afa+1)-(a+n—1)
kann dann die zu betrachtende Reihe offenbar wie folgt geschrieben werden:

l)km

__ o—m oo,,‘,(j o
P = 27" X110y - ko

Diese Reihe ist ihrerseits ein spezieller Fall einer noch allgemeineren, von GLAISHER
in einer grosseren Arbeit!) im wesentlichen mit reellen Methoden untersuchten Reihe.
Es ist vielleicht dennoch gestattet, darauf hinzuweisen, wie man durch eine einfache
Anwendung des Residuenkalkiils zu einer pridgnanten Darstellung fiir ¢(m)gelangen
kann, die iibrigens von GLAISHER nicht angegeben wurde.

Wir betrachten zunidchst die fiir 0 < x < 1 konvergente Reihe

o0
(—1)km _
_ n—-m o e alk+1ym-—1j2
p(m, x) = 2 k;;((l/z)ijm)mx :
Wegen
@(m, 1) = @(m)

und

dm _ x—llz

dam PO A= 2T 5

folgt bei Anwendung der bekannten Formel fiir m-fache Integration

1
—m _ m—1 ,—1/2
i = 0[O,

(m—1) 1 F g2m
2 m—1 i
| / 1 $22m dz'
- 00

Bei der letzten Umformung wurde die Invarianz des Integrals beziiglich der Substi-
tutionen z’= 1/z und z”= —z beniitzt. Da der Integrand eindeutig ist und im Unend-
lichen hinreichend stark verschwindet, ist das Integral gleich der (2 @ 7)-fachen Summe

1) J.W.L.GLAISHER, Summation of Series in which the r-th Term is the Reciprocal of the Product of the
Members of the r-th Set of n Consecutive Terms in an Arithmetical Progression, Messenger Math. 24, 124-171
(1894-1895).

2) In den folgenden Formeln steht ein oberes Vorzeichen jeweils fiir gerades, ein unteres fiir ungerades m.
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der Residuen in der obern Halbebene. Der Integrand ist dort singuldr in den Punkten

. m m
— 1 glimimk - k —
2y e , 2 < R < 2
und das Residuum ist
S NG SRR B
2m zgm—1 2mzpm \'F 4, '
Wegen
. 1 ’
M= (—1)ki—m, zk—-—=22005i@—
25 m
ergibt sich damit unmittelbar
__ — 1)k (cos YT
@(m) g 2 (—1) (cos - .

k| <m/2

Man findet hieraus leicht die folgenden algebraischen Ausdriicke fiir die ersten paar
Werte von m:

m = 1 2 3 4 5 6
oo L1 1 2-y2 sosy5 1-oy3
PI) =" "4 8 48 192 3840 46080

Mit Ausnahme des Wertes fiir m = 5 sind diese Resultate schon von GLAISHER, l.c.,
angegeben worden. P.HEe~ri1cI, Washington, D.C.

Uber die Schreibweise der Wurzeln

In der Mathematik gibt es drei Arten von Wurzeln:

1. Avithmetische Wurzeln: Das sind die Wurzeln aus arithmetischen Zahlen (ohne Vor-
zeichen), wie sie auf der ersten Entwicklungsstufe der Mathematik vorkommen (Arith-
metik, reine Geometrie, Goniometrie im rechtwinkligen Dreieck). Arithmetische Wur-
zeln sind absolute Zahlen und haben also kein Vorzeichen.

Beispiel: }/4=2.

2. Algebraische Wurzeln: Das sind die Wurzeln aus algebraischen Zahlen (mit Vor-
zeichen), wie sie auf der zweiten Entwicklungsstufe der Mathematik vorkommen (Al-
gebra, analytische Geometrie, Trigonometrie am Einheitskreis).

Die ungerade algebraische Wurzel einer algebraischen Zahl existiert immer, und
zwar eindeutig.

3 -
Beispiel: |[/—8 = —2.

Die gerade algebraische Wurzel kann dagegen nur aus einer positiven Zahl gezogen
werden, und das Ergebnis ist zweiformig.

Beispiel: }+4 = 42.

3. Komplexe Wurzeln: Das sind die Wurzeln aus komplexen Zahlen, wie sie auf der
dritten Entwicklungsstufe der Mathematik vorkommen. IThr Ergebnis ist mehrférmig:
Jede komplexe Zahl besitzt » verschiedene #-te komplexe Wurzeln.

L PP
Beispiel: Die dritte komplexe Wurzel aus —8, [/ —8, ergibt die drei Werte +1 + 7 /3
(fiir k& = 0), —2 (fiir 2 =1) und +1 —§ }/3 (fiir ¥ = 2). Hierbei muss unter dem Zeichen
V3 die arithmetische Quadratwurzel aus 3 verstanden werden.
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Die bisherigen Ausfiihrungen haben gezeigt, dass fiir die Bezeichnung der drei ver-
schiedenen Wurzeln (arithmetische, algebraische und komplexe) das gleiche Wurzel-
zeichen gebraucht wird. Dies scheint im allgemeinen keine nachteiligen Folgen zu
haben, da es ja Ofters vorkommt (zum Beispiel in der deutschen Sprache), dass das
gleiche Wort oder das gleiche Zeichen mehrere verschiedene Bedeutungen hat und der
gewiinschte Sinn sich im konkreten Falle meistens klar aus dem Zusammenhang ergibt.
Es braucht hierbei nur erwdhnt zu werden, dass das Wort « Wurzel» in der Algebra
zuweilen auch die Bedeutung «Losungswert» einer Bestimmungsgleichung besitzt.

Dennoch sollte in der Mathematik ein und dasselbe Zeichen nicht nach Belieben fiir
drei verschiedene Begriffe eingesetzt werden koénnen. Denn das widerspricht dem
eigentlichen Wesen der Mathematik, die als exakte Wissenschaft auch eine klare und
eindeutige Sprache haben sollte. Ausserdem sind Unklarheiten durchaus nicht ausge-
schlossen, was sich, besonders vom paddagogischen Standpunkt aus gesehen, sehr nach-
teilig auswirken kann.

Betrachten wir zum Beispiel den Ausdruck: a = /9 + ‘/Zﬁ Versteht man unter dem
Wurzelzeichen die arithmetischen Wurzeln, so ergibt sich eindeutig: a = 5. Betrachtet
man aber die algebraischen Wurzeln, so ergeben sich fiir ¢ die vier Lésungswerte:
4-5, 41, —1 und —5.

Ahnliche Unklarheiten kénnen bei Wurzelgleichungen und Wurzelfunktionen auf-
treten. So kann man zum Beispiel nicht immer ohne weiteres ersehen, ob es sich bei
der Bestimmungsgleichung

Vsx+1—)x+1=2

um nur eine oder vier verschiedene Wurzelgleichungen handelt.

Noch grosser kann die Unklarheit auf dem Gebiet der komplexen Zahlen werden.
Schreibt man i;/SA, so steht durchaus nicht fest, ob nur der Wert -2 oder die drei Werte
+2 (fiir k=0), —1 473 (fir k=1) und —1 — i}/3 (fiir & = 2) in Betracht gezogen
werden sollen. Bestimmt aber ist die hiufig anzutreffende Schreibweise }/—1 =
falsch; denn J/—1 ist auf komplexem Gebiete zweiférmig: |/—1 = +7.

Die grossten Irrtiimer kénnen entstehen, wenn man in der Algebra oder sogar auf
dem Gebiete der komplexen Zahlen Wurzelregeln anwendet, die nur in der Arithmetik
Giiltigkeit besitzen.

Setzen wir zum Beispiel in der Formel

Var = (i)
fiir w = 2, p = 4 und » = 4 ein, so ergdbe die Betrachtung der algebraischen Wurzeln:
416 = (4+2)* = +16.

Genau so unsinnig wird das Ergebnis, wenn man in der Formel:

. » =
im
fiir n =3, p = 2 und x = —27 einsetzt. Das Ergebnis wiirde lauten:

—3= ‘f/(~27)2' = f/729 = +3.

Der Fehler besteht in den beiden letzten Féllen darin, dass man eine in der Arith-
metik giiltige Regel auf die Algebra uneingeschrinkt ausgedehnt hat. Der Grundstock
des Ubels beruht aber auf dem Umstand, dass man fiir die arithmetischen und die alge-
braischen Wurzeln das gleiche Zeichen gebraucht, wodurch man zu den erwdhnten
Fehlern geradezu angespornt wird.

Eine Behebung dieses MiBstandes konnte wohl dadurch erreicht werden, dass die
Art der betrachteten Wurzeln (arithmetisch, algebraisch oder komplex) aus dem &dusse-
ren Zeichen direkt ersichtlich ware.
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Da die arithmetische Wurzel in der Mathematik und den Naturwissenschaften am
hiufigsten vorkommt und die Wurzelregeln fiir diese Art Wurzeln auch uneingeschrinkt
giiltig sind, wire es wohl angebracht, das althergebrachte Wurzelzeichen fiir die Be-
zeichnung der arithmetischen Wurzeln beizubehalten.

Fiir die Bezeichnung der komplexen Wurzeln kénnte man das Zeichen V wiéhlen,
das an die Verwandtschaft zwischen komplexen Zahlen und Vektoren deutlich erinnert.
Ein neues Zeichen fiir die algebraischen Wurzeln wiare dann nicht notwendig, da jede
algebraische Wurzel als Sonderfall einer komplexen Wurzel angesehen werden kann.
Durch einen Index konnte man die einzelnen Wurzelwerte noch unterscheiden.

Beispiele : R
Vé=2; Va4=142; Yoi=+2; Jé=-2.
k=0 k=1

f/8_= 2 ?V§= die Gesamtheit der Werte +2, —1 +7}/3, —1 —jJ/3;

e

§=12; J8=—1+7)3; J&=—-1—j}3.
k=1 k=2

k=0

fi

‘f/gl = f/["ﬂz 2; allgemeiner: WZ[ = 7{/}5

Fiir die Bezeichnung der reellen negativen ungeraden Wurzel einer reell negativen
Zahl koénnte man iibrigens ohne Missverstandnis das alte Wurzelzeichen beibehalten.

Beispiel: f/?_g' - f/f“
8, B 8, (B,
aber V—8 +1+7V3; V— =+1—4V3; 1/[——8]:‘1/-8‘:=2.

Schliesslich konnte man die erwdhnte Unterscheidung zwischen den drei Arten von
Wurzeln sinngemaéss auch auf die Potenzen mit gebrochenen Exponenten iibertragen.
R. RosEg, Saarbriicken.

Bemerkung der Redaktion: Es gibt mehrere Biicher, in denen auf die im obigen Artikel
genannten Schwierigkeiten aufmerksam gemacht und die Schreibweise der Wurzeln
sorgfiltig diskutiert wird. Zum Beispiel: P. BUCHENER, Algebra (vierter Teil, zweite
Auflage) (Orell-Fiissli-Verlag, Ziirich 1953), Seite 26 f.

Aufgaben

Aufgabe 184. In der Gruppentheorie werden fiir nichtkommutative Gruppen spe-
zielle hohere Kommutatoren auf folgende Weise rekursiv definiert:

(#,y)=xyx"ty?
(x’ Y, y) = [(27, y)’ y] nyx"lyxy“l x-—ly—l usw.

Enthilt der Kommutator # Elemente y, so ist

on
(Z, Vs Vsoons y) :Hxakybk,
k=1

wo ay, = (—1)¥+1, Man bestimme b, als Funktion von &. E. Trost, Ziirich.
Losung: Der n-te Kommutator der betrachteten Folge sei (¥, y),,, also

(%, yh=xyx"ty L
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