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Uber das Rechnen mit Operatoren

Der Zweck des nachfolgenden Artikels besteht darin, den praktisch titigen Mathe-
matiker darauf aufmerksam zu machen, dass er haufig Operatorenrechnung anwen-
det, ohne sich dessen bewusst zu werden ; dass ithm andererseits dieses Bewusstsein zu
tieferer Erkenntnis der Zusammenhédnge verhelfen kann. Den Mathematiklehrer mag
dieser Artikel veranlassen, den Gesichtspunkt der Operatorenrechnung in den oberen
Klassen des Gymnasiums als logische Fortsetzung des Funktionsbegriffs erscheinen
zu lassen. Allerdings, Operatorenrechnung ist ein «weites Feld»; der Titel dieses
Artikels ist fast eine Anmassung. Was folgt, soll als Anregung, nicht als Uberblick
aufgefasst werden.

Was ist ein Operator ? Diese Frage wird wohl am klarsten beantwortet, wenn man
sich an die Frage erinnert: Was ist eine Funktion ? Die Antwort auf die zweite Frage
ist jedem geldufig. Sind ndmlich zwei Mengen M und M’ gegeben, die beziehentlich
Elemente m und m’ enthalten, und ist jedem Element m ein Element m’ zugeordnet,
so haben wir eine Funktion auf M. Nun ist in dieser allgemeinen Definition des
Funktionsbegriffs diejenige des Operators als Spezialfall bereits enthalten: Die Funk-
tion ist ndmlich dann Operator, wenn sowohl die Elemente  als auch m’ selbst
Funktionen sind.

Wir erldutern die abstrakte Definition des Operatorbegriffs an einigen Beispielen.

1. Sei M die Menge der Funktionen des reellen Argumentes x, die fir 0 = x <1
definiert sind. Sei f(x) eine solche Funktion. Dieser Funktion wird durch die Vorschrift

F(x) = T{{(x)} = 2 {(x) (1)

eine andere zugeordnet ; dies ist also ein einfaches-Beispiel eines Operators. Als «Argu-
mentvorrat » haben wir hier alle zwischen 0 und 1 definierten Funktionen, als Werte-
vorrat dieselbe Menge. Es ist klar, dass wir hier Eineindeutigkeit zwischen Argument-
funktion und Funktionfunktion haben.

2. Sei M dieselbe Menge wie vorher, sei a(x) eine feste, zwischen 0 und 1 definierte

Funktion. Sei jetzt F(x) = T{f(x)} = a(x) f(). 2)

Hier haben wir bereits ein einfaches Beispiel eines Operators mit einem «Kerny,
niamlich der Funktion a(x) [natiirlich ist im vorigen Beispiel a(x) = 2].
3. Anwendbar auf differenzierbare Funktionen ist der Operator

F(x) = T{{(%)} = f'(%). (3)
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4. Anwendbar auf stetige Funktionen ist der Operator

= T{f0} = [ 16) as. )

Fiir praktische Anwendung wichtig sind die folgenden Operatoren:
5. Es ist bei vorgegebenem K(x, ?)

Flx) = T{f()} = [ K(x, ) 1) 5)

ein Integraloperator mit dem «Kern» K(x, f).
6. Es ist bei vorgegebenem g(¢)

F(x) = T{/(x) w/éx“tﬂﬂﬂ—g*f ©)

ein «Faltungsoperator».

Hier kann natiirlich (6) als Spezialfall von (5) aufgefasst werden. Ebenso ist (4)
Spezialfall von (6) fiir 2 < x < b [und damit wieder von (5)], wenn die Funktion g in
(6) definiert ist durch g(&) = 0 fiir £ < 0; g(&) =1 fiir £ = 0.

Aus dem Gesagten ist bereits klar, dass sich in der Operatorenrechnung dieselben
Fragen aufdringen wie in der klassischen Funktionenlehre, zum Beispiel die Frage
nach dem Umkehroperator eines gegebenen Operators. Hier ist zum Beispiel (3) der
Umkehroperator von (4), wihrend (4) nur unter besonderen Voraussetzungen der
Umkehroperator von (3) ist.

Besonders einfach zu behandeln sind die sogenannten linearen Operatoren, das
heisst Operatoren T{f(x)}, fiir die

T{af(x) +bgx)}=aT{f(x)}+ b T{g(x)}

gilt. Alle bisher genannten Beispiele waren lineare Operatoren.

Ein spezifisches Hilfsmittel der Operatorenrechnung ist das Rechnen mit den
Eigenwerten und Eigenfunktionen eines Operators. Sei namlich T ein gegebener Ope-
rator. Ist dann fiir eine gewisse Zahl % die Funktionalgleichung

T{f(x) } =k f(x)

l6sbar, so heisst £ Eigenwert, und eine 16sende Funktion f heisst zugehdrige Eigen-
funktion. Fiir den Operator (3) ist jede Zahl & Eigenwert; die zugehorige Eigenfunk-
tion ist e*#. Beim Operator (1) gehort zum Eigenwert 2 jede beliebige Funktion, jede
andere Zahl ist Eigenwert mit der Eigenfunktion f(x) = 0.

Die Laplace-Transformation ist ein Operator mit der Eigenschaft, dass die Funk-
tionfunktion im wesentlichen mit x multipliziert wird, wenn man die Argumentfunk-
tion differenziert. Darauf beruht ihre Anwendbarkeit auf Differentialgleichungen.
Sie ist ein Operator vom Typus (5), also linear. Durch die Bedingung der Linearitit
ist sie dann aber, zusammen mit der obigen Bedingung, im wesentlichen auch
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bestimmt. Denn zunéchst ist klar, dass T{f'} = x T{/} unl6sbar ist, da sonst fiir f = e®
folgen wiirde:

T{e“} = T{ew}.
Also muss man den Ansatz versuchen: T{f'} = xT{f} — A. Fiir f = e°® folgt wegen

der verlangten Linearitit:

c T{e”} = xT{e”} — A, also T{ecw} = —-:-/im

c— X

Insbesondere, wenn wir von jetzt an A = /(0) setzen:

T{eos} — 1

c—x "

Also gilt fiir ¢ = 0O:
T{1} = i und weiter T{1} = T{x'} = x T{x} + 0; hieraus T{x}= %5 UswW.

Dadurch ist die Transformation jeder Funktion, die in eine Potenzreihe entwickelbar
ist, gegeben.

Ich will nun ein einfaches Beispiel skizzieren, das fiir die allgemeine Methode wohl
recht instruktiv ist.

Sei AB ein einseitig gekriimmter Kurvenbogen, bei dem die Tangenten in den End-
punkten A und B aufeinander senkrecht stehen. Von diesem Bogen werde die Evol-
vente gebildet mit dem Punkt A4 als Aufpunkt. Es entsteht ein Bogen A'B, der die
fiir den Bogen AB genannten Eigenschaften auch hat. Nun wird vom Bogen 4'B die
Evolvente gebildet mit B als Aufpunkt; es entsteht der Bogen A’'B’. Es gilt nun der
folgende Satz von JoHANN BErRNoULLI: Wird dieses Verfahren unbegrenzt fortgesetzt,
so konvergiert es, die Grenzkurve ist ein Zykloidenbogen, gleichgiiltig von welcher
Kurve AB ausgegangen wird?).

Soi y = f(x) die Bogenlinge der Kurve vom Aufpunkt aus gerechnet, x sei der
Winkel zwischen der Kurvennormalen im variabeln Punkt und der Kurvennormalen
im Aufpunkt. Der Ubergang von der Kurve AB zur Kurve A’B’ bedeutet, dass auf
die Funktion ein Operator angewandt wird ; eine Iterierung des Verfahrens bedeutet
eine Iterierung des Operators. Es zeigt sich, dass dieser Operator die Eigenwerte
1/2n +1)2 hat (n=0,1, 2,...); die zugehorigen Eigenfunktionen sind die Funk-
tionen 1 — cos(2 n + 1) x. Diese stellen im fraglichen Intervall ein abgeschlossenes
(nicht orthogonales) System dar?); jede Ausgangsfunktion kann also nach ihm ent-
wickelt werden. Bei Anwendung des Operators bleibt also der Anteil von a (1 — cos x)
an der Ausgangsfunktion erhalten, wihrend der Anteil aller andern Eigenfunktionen
verkleinert wird, weil ihre Eigenwerte kleiner als 1 sind. Somit konvergiert die Grenz-
funktion gegen a (1 — cos x), das heisst gegen die Funktion des Zykloidenbogens.

Die Fourier-Analyse der Ausgangsfunktion erscheint hier als das addquate Mittel;
esist interessant, zu wissen, dass EULER sie bei diesem Problem ad hoc erfunden hat3).

1) Man erinnere sich hier an die Huygenssche Korrektur der Pendeluhr (fiir grosse Pendelschwingungen).
Moglicherweise wurde BErNouLLI dadurch zu seiner Entdeckung angeregt.

%) Es zeigt sich hier, dass die folgende Frage in der Operatorenrechnung fundamental ist: Wie muss
ein Operator beschaffen sein, damit das System seiner Eigenfunktionen abgeschlossen ist ?

3) Auf dieses Problem wurde ich durch einen Seminarvortrag von Herrn Dr. A. HowALp unter Herrn Prof.
Dr. A. Spei1ser aufmerksam gemacht. Herrn Prof. SPEISER verdanke ich auch den historischen Hinweis.
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Zum Schluss geben wir noch einen Beweis eines Spezialfalls des zentralen Grenz-
wertsatzes der Wahrscheinlichkeitsrechnung, ndmlich des folgenden Satzes: Konver-
giert die Summe unabhédngiger stochastischer Variablen, die alle dieselbe Vertei-
lungsfunktion mit dem Mittelwert O haben, gegen eine bestimmte Grenzfunktion, so
ist diese Grenzfunktion die Normalverteilung.

Seien x4, %,, .... unabhéngige stochastische Variablen, die alle dieselbe Verteilungs-
funktion und alle den Mittelwert O haben. Sei weiter «,,(¢) die charakteristische Funk-
tion der Summe von # dieser Variablen. Bekanntlich ist

oo pn(t) = [0, (£)]2

Wird die Anzahl der Summanden verdoppelt, so wird also auf die Funktion () der
Operator

oan(t) = T{en(t)} = [ (8)]?

angewandt. Soll nun «,(f) > «(f) gelten, so soll sich durch diesen Ubergang nur die
Streuung, nicht aber die Gestalt dieser Funktion veridndern. Diese Grenzfunktion
muss also der Funktionalgleichung

«(t)2) = [a(t)]?

geniigen. Nehmen wir Logarithmen, so folgt

lnoc(t ]/2) == 2 Ina(?).
Hieraus (Potenzreihe!)
Ina(f) = A 2

Die Konstante muss in diesem Zusammenhang negativ sein, wir setzen also 4 = — ¢2/2.
Damit haben wir fiir die charakteristische Funktion o(f) diejenige der Normalvertei-
lung:
a(t) = e~ @2 1),
K. F. MoPPERT, Basel.

Kleine Mitteilungen

Einige Parabeleigenschaften?)

(6) Es ist (Figur 2) K3=S3—-SK=p+x—p=ux. Fiir den Mittelpunkt M des
Kriimmungskreises im Parabelpunkt P als Ahnlichkeitszentrum gilt ferner

3:z:ﬁgz2x:(2x+p)=x:(x+~§)=]{§:l-’—i§.

1) Vgl. hierzu G. P6LYA, Astron. Nachr. 209, 111 (1919); H. CRAMER, Mathematical Methods of Statistics
(Princeton University Press, Princeton 1946), Seite 214.
2) Siehe R. JakoBI1, Einige Parabeleigenschaften, El. Math. 8, Nr. 5, 107 (1953).
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