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VII eine Kurve mit unendlich vielen Umldufen erhalten. Die Konstruktion ergibt eine
Spirale mit einer Symmetrieachse und zwei Wickelpunkten (Figur 13).
Der Neigungswinkel « ist in diesem Falle (mit «,= 0)

" ds 1 s

= 82

“= J Risy

(13)
Variiert s von 0 bis zur halben Periode $/2 = ax, so lauft tatsidchlich « von 0 bis
oo. Die Berechnung der Parameterdarstellung der Kurve fithrt auf nichtelementare
Integrale:

24 oL
* cosa do " sine da
x—za[u,—/—r;(‘/;—a‘)z 5 yzza‘u./’l_}_(ua)z " (14‘)
0 0
Die Koordinaten der Wickelpunkie dieser Doppelspirale sind
— -1/p _ ~Ung (LY o ve (1 ] 1
Xp=Fame 't y, a[e Ez(M) e Lz( M) )- (15)

Die Doppelspirale hat zwischen ihren beiden Wickelpunkten die endliche Linge 4 a .
W. KLEPPER, Karlsruhe.

Kleine Mitteilungen

Zwei Minimumprobleme iiber konvexe Rotationskorper

A. Einleitung

Vom Verfasser ist folgender Satz I bewiesen worden?):

Satz I: Bei vovgeschviebeney Kovperidnge | und vovgeschriebener Mevidiankurvenlinge
L besitzen Zylinder und nur sie kleinstes Integral dev mittlern Krviimmung M, symme-
trische Doppelkegel und nur diese Kovper grosstes M.

In den analogen (L, F)- und (L, V)-Problemen liegen die Verhéltnisse nicht so giinstig.
Immerhin gestattet die verwendete elementare Methode, folgende Sdtze zu beweisen:

Satz I1: Bei vorgeschviebeney Kovpevlinge |l und vovgeschriebeney Mervidiankuvvenldnge L
besitzen Kegelstiompfe (im weitern Sinne) und wnur diese Kovper Rleinste Oberfliche F.

Satz II1: Bei vorgeschriebener Kovpervldnge I und vovgeschviebener Mevidiankurven-
lange L besitzen

41

im Intervvall 0L < 3 Zylinder,

im Intervall —43—l— <L <V21 Kegelstimpfe (im engern Sinne),
im Intervall Y21<L < o0 Kegel

und nuv diese Korper kleinstes Volumen V.

1) W.GroBNER und N. HoFREITER, Integraltafel, Bd.2 (Springer, Wien und Innsbruck 1950), Nr.333
67a und 66a. Es ist

’

o
. et . = | .
Ei(x) = —v/‘_-tA dt, sowie  Ei(x) = é-E1,+(x) -+ 5 Ei—(x),
X

wobei Eit(x) = Ei(—xe~*7) und Ei~(x) = Ei(—x¢!7) gilt.
?) Ein Minimum-Maximum-Problem iiber konvexe Rotationskérper.
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Wie schon 6fters angefiihrt, bedeutet die Einfiihrung der polygonalen Rotationskorper
keine Beschrinkung der Allgemeinheit?).
Beziiglich der verwendeten Methode verweise ich auf eine schon publizierte Arbeit?).

|
|
o
|
!

Figur 1

Figur 2

Fiir die Teilklasse der Kegelstiimpfe (im weitern Sinne), der die Minimalkérper an-
gehoren, entnimmt man der Figur 1 folgende Daten:

L=2p+ )2+ 422,
F=2n(pt4 204 p)I2+ 429), (1)
V= j—gi (3p%+ A2).
Mittels der Substitution p =1¢/2 gehen sie iiber in

L =1(q + secy),
2

l
F::nT(qz—l» 2gsecy + tg2y), (1a)

w3
—_ 2 2
V=35 3¢+ tgy).

B. Beweise
a) (L, F)-Problem
Durch Elimination der Parameter ¢, y folgt aus (1a):
2F—a(L2—123) =0, (2)

Die Gleichung der Kegelstiimpfe besagt, dass derartige Korper, wenn sie in L iiber-

einstimmen, auch gleiches F besitzen. Die zugehotrige Kurve in einer (L, F)-Ebene ist
als Parabel bestindig von unten konvex.

Wir wenden uns jetzt dem Doppelkegelstumpf 1,3) zu. Seine Masszahlen sind (Figur 2):
L=R+p+V(R=p) + 5+ (1= P+ (- %)?,
F=n[R2+p2+ (R+p1) (R~ p1)2 + 22+ (b1 + p) V(b1 — P)2 + (1 —%)2].

(3)

1) Vgl. H. HADWIGER, Etnige neue Evgebnisse tiber extremale konvexe Rotationskérper, Abh. math. Sem.
Univ. Hamburg 18, 38—52 (1952).

2) H. Bier1, Kurvendiskussion als Methode, Mitt. Naturf. Ges. Bern § (1950).

3) In die Klasse I werfen wir alle konvexen Rotationskdrper, deren Aquatorradius » am Rande liegt, in

die Klasse II alle iibrigen. Der Index gibt die Zahl der Kegelstiimpfe (im weitern Sinne) an, aus denen
der Korper aufgebaut ist.
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Wenn » das Intervall x; < » < I durchlduft, so entsteht eine einparametrige Doppel-
kegelstumpfschar. Man berechnet:

Ly=cosg —cosy; F,=a[(R+p,y) cosp— (p,+ p) cosy],

aF _ n (R — p) cosy (4)
ar ~ T (BEAp) + cosp — cosy

Mit wachsendem » nimmt ¢ monoton ab, ¥ monoton zu, also dF/dL monoton ab. Die
Kurve ist daher bestindig von unten konkav, so dass wegen der Konvexitiat der Kegel-
stumpfkurve die betrachteten Korper nicht extremal sein kénnen. Selbstverstindlich
darf der obere Kegelstumpf durch einen Kegel ersetzt werden, was die Teilklasse I, erst
vollstindig macht.

Das Verfahren ldsst sich schrittweise auf polygonale Rotationskorvper von 2,3, ..., n
Segmenten anwenden, so dass bei gleichbleibenden Schliissen der Beweis fiir die Teil-
klasse I geleistet ist.

In der Teilklasse II liegen die Verhdltnisse etwas verwickelter. Fiir den unsymme-
trischen Doppelkegelstumpf 11, berechnet man (Figur 3):

L=p+p,+ ) (R—p)2+a:+ ) (R—p):+ (I — 27, } (42)
F=nlpi+p2+ (R+p)VR—p1)2+ 22+ (R+p)Y(R—p)2+ (I — #)2].
Wir setzen:
2F —a([2—1%) =A. , (5)

Einfiihren von (4a) in (5) liefert

A*=2x(l~—x)[1—tg(i}— '2’1) tg(-}-%)]. (5a)

Mit Ausnahme der Stellen ¥ =0, o =n/2; ¥ =1, y = n/2 ist (5a) positiv definit. Fiir
jeden vom Nullpunkt verschiedenen Punkt der L-Achse ist aber 4 negativ. Also liegt
die Kurve der betrachteten Doppelkegelstiimpfe ganz nicht unterhalb der Kegelstumpf-
kurve, und die betrachteten Korper sind nicht extremal. Wieder darf man einen oder
sogar beide Kegelstiimpfe durch Kegel ersetzen, so dass der genannte Tatbestand fiir
die ganze Teilklasse II, zutrifft. Von ihr aus erreicht man mit der oben angewendeten
Deformation die ganze Teilklasse II. Wegen des bestandigen Wechselspiels Konvexitat—
Konkavitdt ist damit der Satz allgemein bewiesen.

Das Ergebnis ldsst sich durch die Ungleichung

e

F = = (L2—1?) (Gleichheitszeichen nur fiir Kegelstiimpfe) (6)

N

ausdriicken.
Das behandelte Problem ist ein nichttriviales Beispiel fiir ein uneigentliches absolutes
Minimum.
b) (L, V)-Problem
In einer (L, V)-Ebene lautet die Gleichung der Zylinderkurve (A = 0)

_al 2
v="Tr0 - (7)
die Gleichung der Kegelkurve (4= p)
ol (12—
vzl BT (8)

Beide Kurven sind von unten konvex und schneiden sich, wie man durch Gleichsetzen
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der rechten Seiten und Ausrechnung der linken Seiten von (7), (8) feststellt, rechts
vom Nullpunkt noch genau einmal im Punkte P* mit den Koordinaten

o (1+V3) o i3 _
A V=T—(2*V3)- (9)

Uberdies verliuft die Kegelkurve im Intervall 0 < L < L* oberhalb, im Intervall

Dr

Figur 3 Figur 4

IX < L < oo unterhalb der Zylinderkurve. Bei dieser Sachlage existiert offenbar eine
Enveloppe. Die Nullstellen der Enveloppenbedingung

oV oL oV oL

op oA 0L op
sind
a) A=0 (Zylinderkurve, geometrischer Ort von Kurvenenden),

_Veran Ll e,
b) p= c PoA=o V36 p2— 12 ;
(10)
! !
0 AP AP
SSe oSS
Mit Hilfe von (10) gewinnt man durch Einsetzen und Elimination:
nl
e 2_ 42
V=g 3L —413). (11)

Die Enveloppe, eine Pavabel, ist ebenfalls von unten konvex. Ferner wichst die Steigung

des ganzen Kurvenzuges CEC’ (Figur 4) mit wachsendem L monoton, so dass fiir die

geplanten Korperdeformationen die glinstigsten Voraussetzungen vorhanden sind?).
Die Masszahlen des Doppelkegelstumpfes I, lauten:

L=R+p+(R—p)?+ 2+ V(1= p)*+ (= »7% l
] (12)
V=TI R Rp - pip—pY) + T BEpup Y. |
Man berechnet:
L,=cosp —cosy; V,= const. (13)

1) Der Kegelstumpf mit dem Bildpunkt P XX senkrecht unter PX besitzt die Koordinaten
1(1 3 13 -
LXX — #(_il{_)_; pxx= """ (3 V3 —2).
2 96

Sein Volumen ist nur um rund 0,0079%, kleiner als VX!



Aufgaben 67

Mit wachsendem x» nimmt dV/dL monoton ab. Also ist die Kurve von unten konkav
und liegt deshalb ganz nicht unter dem Kurvenzug CEC’ (Figur 4). Das Verfahren
lasst sich beliebig oft wiederholen, so dass die Koérper der Teilklassen I, I,,..., I,
nicht extremal sein kénnen. Um in der Teilklasse II entsprechend operieren zu kénnen,
miissen wir zeigen, dass der Doppelkegelstumpf II, nicht extremal ist. Dies ist aber
leicht. Durch partielle Antisymmetrisation') wird er ndmlich in einen Doppelkegel-
stumpf I, tibergefiihrt, der gleiches Volumen, aber grosseres L aufweist, so dass er fiir
das Extremum tatsdchlich ausfillt. Wie im ersten Beispiel ldsst sich der Beweis jetzt
miihelos zu Ende fiihren?). H. BIERI, Bern.

Ein Vorschlag zur Logarithmentafel

Alle dekadisch geschriebenen Zahlen vom Rang Null nenne ich dekadische Stamm-
zahlen. Stammzahlen seien angedeutet durch N, Zahlen vom Rang » seien angedeutet
durch N,. Jede Zahl vom Rang # ldsst sich zerlegen in das Produkt aus ihrer Stammzahl
und der Potenz 107. Der dekadische Logarithmus der Stammzahl N, heisst Mantisse
aller Numeri N, die zu dieser Stammzahl gehoéren. Der dekadische Logarithmus einer
Zahl N, setzt sich additiv zusammen aus seiner Mantisse und der Kennziffer. Die
Kennziffer des Logarithmus einer Zahl N, ist dabei identisch mit dem Rang 7.

Praktische Kennziffervegel

1. Betrachte einen Numerus N,: Die Anzahl der Stellen, um die das Komma ver-
schoben werden muss, damit die Stammzahl erreicht wird, ist die Kennziffer des
Logarithmus.

Die Kennziffer ist positiv, wenn der Numerus grosser ist als seine Stammzahl.

Die Kennziffer ist Null fiir alle Stammzahlen.

4. Die Kennziffer ist negativ, wenn der Numerus kleiner ist als seine Stammzahl.

w N

Es wire zweifellos ein Vorteil, wenn die Logarithmentafel so eingerichtet wire, dass
man von diesen durchsichtigen Kennzifferregeln Gebrauch machen konnte. Es miissten
dazu im Rand der Logarithmentafel effektiv die Stammzahlen von 1,000 bis 9,999
stehen, und es miisste der Vordruck der Mantisse, die ja aus drucktechnischen Griinden
in Vordruck und Hauptdruck zerlegt ist, effektiv mit 0,... geschrieben werden.

Muster: num Ly= N, l L,=log Ny = mant N, fiir alle »

‘ 01 2 3 4 5 6 7 8 9

6,77 ‘ 0,83 085

H.HoLLIGER, Ziirich.

Aufgaben

Aufgabe 178. In einer Urne befinden sich a, Zettel mit der Nummer 1, a, Zettel
mit Nummer 2, ..., a, Zettel mit dem Aufdruck k. Ein Zettel wird gezogen. Enthilt
derselbe die Nummer 1, so wird er in die Urne zuriickgelegt. Enthélt aber der Zettel den
Aufdruck b+1, so wird dafiir ein Zettel mit der Nummer b —1 in die Urne gelegt.
Diese Operation wird n-mal ausgefiihrt. Wie gross ist alsdann die Wahrscheinlichkeit,
einen Zettel mit der Zahl 1 zu ziehen? P. BucHNER, Basel.

1) Nur der untere Kegelstumpf wird deformiert, und zwar so, dass sein Volumen unveriandert bleibt.
?) Die Extremalkorper des vorliegenden Problems sind auch Extremalen im (I; F, V)-Problem!
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