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weiss, dass man mit etwas mehr Anstrengung den andern Apfel auch noch erreichen
kann, wihrend ein Zuschauer, der nur sieht, dass man den einen Apfel gerade erreicht
hat, dariiber im Zweifel ist. Man hat eben nicht nur den Apfel, sondern auch das Gefiihl
der Bewegungen, die man ausgefiihrt hat, um ihn zu pfliicken.

Das Gefiihl, dass eine Beweismethode noch weiter reicht, ist manchmal triigerisch.
Oft stellt sich nachher heraus, dass in den hoheren Fillen eine neue Schwierigkeit
auftaucht. Trotzdem gehoren solche Ahnungen iiber die Tragweite von Beweismetho-
den zu den niitzlichsten Wegweisern bei der mathematischen Forschung.

B. L. vaAN DER WAERDEN, Ziirich.

Uber die natiitliche Gleichung
R() =pa (z + cosg-)

I.

Eine Eilinie ist eine geschlossene doppelpunktsfreie Kurve, deren Kriimmung
# = 1/R festes Zeichen hat. Ihre natiirliche Gleichung R = R(s) 1st eine periodische
Funktion R(s) = R(s 4+ #) der Bogenldnge s, deren (nicht notwendig primitive!)
Periode # der Umfang der Elilinie ist. Wegen des Vierscheitelsatzes fiir Eilinien muss
R(s) innerhalb eines Periodenintervalls 0 < s < # mindestens vier relative Extrema,
also R’(s) mindestens vier Nullstellen haben.

L.B1EBERBACH!) erwihnt als einfaches Beispiel einer natiirlichen Gleichung, die
keine Eilinie kennzeichne, die positive Funktion R = 2 4 sins der primitiven Peri-
ode 27, deren Ableitung in 0 < s < 2z ja nur an zwei Stellen verschwinde. Es ist
die Absicht dieser Zeilen, zu zeigen, dass diese Schlussweise nicht stichhaltig ist. Es
wird hier nimlich irrtiimlich die primitive Periode 2 & gleich dem Umfang u gesetzt.

Wir werden im Gegensatz zu der Aussage von BIEBERBACH zeigen, dass allgemeiner

die Funktion .
R(s) :M(A + cos—a‘) (1)

fiir bestimmte 4 > 1 und u > 0 stets die natiirliche Gleichung einer Eilinie sein kann.
(A und u sind dimensionslose Parameter, die Konstante a hat die Dimension einer
Linge.) Die primitive Periode p = 2 a «t von (1) kann dann natiirlich wegen des Vier-
scheitelsatzes nicht identisch mit dem Umjfange u der Eilinie sein. Es ist vielmehr
u=mp=2ammna (m>1, ganz). Die Eilinie wird dann 2 m = 4 Scheitel haben. Das
Studium der Kurven (1) wird sich auch deshalb lohnen, weil sich bei ihnen einige
interessante gestaltliche Verhiltnisse ergeben.

1L

Einen Uberblick iiber den Verlauf der Kurven (1) kann man sich konstruktiv auf
folgende Art?) verschaffen. Wir tragen R = R(s) in einem rechtwinkligen Koordina-

1) L..BieBERBACH, Differentialgeometrie (Teubner, Leipzig 1932, S.25).
?) K.STRUBECKER, Vorlesung iiber Differentialgeometrie an der TH. Karlsruhe 1948/49.
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tensystem (Figur 1a) auf und ersetzen innerhalb der gleich langen Bogenstiicke 4s die
Kriimmungsradien R(s) durch Mittelwerte R;. Die Kurve wird nun durch Kreis-
bogen As der Radien R; approximiert (Figur 15). Auf den Normalen der Punkte P,
a
sulie 1) b=

R=auld +cos 3/

Ul + 1

qulh-1] 1 1

Figur la Figur 15

tragen wir jeweils die Radien R; = P,M; ab, schlagen um M, den Kreis vom Radius

R; und tragen auf ihm den Bogen A4s = P:Pi +1 ab, wodurch der neue Kurvenpunkt
P, , entsteht.

Es geniigt, auf diese Art den Kurvenbogen S:Sl zu konstruieren, der zu der halben
primitiven Periode $/2 = a 7 gehort. Der zur zweiten Halbperiode gehérige Bogen

Figur 2

S:S2 ist ndmlich zu S:,\S1 symmetrisch. Die Kurve besteht dann in ihrem weiteren

Verlauf aus lauter zu S:S2 kongruenten Teilbogen S,S;, S4Sg, ... und liegt damit in
ithrem ganzen periodischen Verlaufe fest.

Die Kriimmungsmittelpunkte M, sind iibrigens die Ecken eines Tangentenpoly-
gons der Evolute der Linie (1).

Aus Symmetriegriinden schneiden sich alle Scheitelnormalen #g, #;, #,, ... in einem
festen Punkt Z, den wir als das Zentrum der Kurve (1) bezeichnen. Aufeinander-
folgende Scheitelnormalen 7, und 7., schneiden sich dabei stets unter demselben
Winkel «,/2. Die Kurve schliesst sich nun dann und nur dann nach genau ecnem vollen
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Umlauf um das Zentrum Z, wenn
moy, =27 (m > 1, ganz) (2)

ist. Dann ergibt sich stets eine Eilinie, deren Umfang = 2 a m 7 ist. Fiir den ausge-
schlossenen Fall m = 1 erhdlt man eine nicht geschlossene Kurve mit uneigentlichem

Figur 5 Figur 6

. Zentrum Z, (Figur 2); offenbar schwebte allein dieser Fall L. BIEBERBACH vor. Fiir
m=2;3;4;... haben wir Eilinien mit 2m =4, 6; 8; ... Scheiteln und m Symmetrie-
achsen (Figuren 3, 4, 5, 6).

Die Kurve (1) schliesst sich dann und nur dann nach genau v Umldufen, wenn

o =217 (3)

ist. Fiir ¢ = 1 kann sie jedoch nie Eilinie sein.
Wir befassen uns zunéchst nur mit den Eilinien des Falles (2).
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I11.
Der Neigungswinkel der Kurventangenten von (1) gegen die positive x-Richtung ist
_[.d _ 2 § ( -1 s
0= R T e % \V;T;f 834 ) (4)

Fir s =0 moge o = 0 sein; dann wird «y= 0. Nach der ersten halben primitiven
Periode $/2 == a7zt von (1) besitzt die Kurve den Neigungswinkel

2 7
2 ‘ul/ﬁ; 1 27
Wegen (2) erhalten wir daraus die folgende notwendige und hinreichende Bedingung

dafiir, dass (1) die natiirliche Gleichung einer Eilinie ist:

w = (m > 1, ganz) (5)

B m
ZE 1
Die natiivliche Gleschung dieser Eilinie lautet dann

R(s) = ﬂ’?}“ (2 + cos _) 2>1) (6)

Hierin stecken noch zwei willkiirliche Parameter » und A. Aus (4) wird nun mit ag= 0

2 A—1
O((S) = ‘m' arc tg (1/2”‘1[_1‘ tg25a> . (7)

Die kartesischen Koordinaten der Punkte unserer Eilinie sind bekanntlich

X — Xg= //‘cos a(s)ds, ¥y — ~/ sine(s) ds.

Ihre bequeme komplexe Darstellung in der GauBschen Zahlebene lautet mit z2=x+17y:

N

. ([//1 + 1 cos ; +i Vl — 1sin ‘27;) 2
z — 2, -/ et ) ds :/ e e i g, (8)

Fiihrt man « statt s als Integrationsvariable ein, so erhdlt man nach etwas Rechnung

schliesslich
cos o doc . sina da
z»wzo-—aml//'lzﬁl{/l 1 0 osm

cosm o — COsSm a

(9)

Die Integrale sind fiir alle ganzen m elementar l16sbar. Die Darstellung (8) ldsst den
entscheidenden Einfluss von m auf die Gestalt der Eilinie erkennen.

IV.

Im einfachsten Falle m =2 (Eilinie mit 4 Scheiteln und 2 Symmetrieachsen,
# = 2a 7) lautet nach der Substitution A + cos(s/a) = ¢ das Integral (8)

L ) L P
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Dessen Auswertung ergibt die folgende Parameterdarstellung der Eilinie

A+1 A+1—2t
%= Xo= —a |/~ arccos -, l
(10)
y— 30— —a |/t ! Areqop ~* V2L J
Die kartesische Gleichung ist dann fiir x,= al/(/l+ 1_)—/2 und y,=:0
Vit Teos ot VTG0l Y 1)

V alf2(i—1)
Diese transzendente Eilinie ist keine Elhpse, wie man vielleicht aus Figur 3 vermuten

konnte; sie weicht jedoch von der Ellipse mit gleichen Hauptachsen um kaum mehr
als Strichstdrke ab.

V.
Wir studieren noch den Einfluss des Parameters 4 auf die Eilinien mit 2 m Schei-
teln. Der Umfang dieser A-Schar ist immer % = 24 m . Mit wachsendem A - co

geht (6) in die natiirliche Gleichung des Kreises R = m a iiber. Die Eilinie bldht sich zu
einem Kreise gleichen Umfangs auf. Wegen

Rmm—R(aatJrZakn)——mal/;:i, Rpyes=R(2akn) = V_;I_J:_;
gehen mit A > 1 der Scheitelkrimmungsradius R,,;, gegen 0, aber alle Radien
R(s) + R,,;» gegen oco. Die Elilinie zerfillt in Geradenstiicke. Die Scheitel R,,;, gehen
jedoch in Ecken iiber. Da die Symmetrieeigenschaften der Kurve bei dem Grenziiber-
gang erhalten bleiben, erhalten wir ein regelmdissiges m-Eck mit der Seitenlinge
u/m = 2 a ;. Dabei ist unter einem Zweieck die doppelt durchlaufene Strecke der
Linge 2a 7z zu verstehen. Vgl. dazu fiir m =3 (6 Scheitel, 3 Symmetrieachsen) die
Figur 7 mit den Werten A =1; 1,01; 1,2; 3,0 und co.

VI.

Es liegt nahe, unter den Eilinien mit ungeradem m fiir spezielle A Gleichdicke (Ei-
linien fester Breite d) zu vermuten. Es gilt:

1. Der Umfang des Gleichdicks ist u = d .

2. Alle Normalen sind Doppelnormalen, und die beiden Kriimmungsmittelpunkte
auf den Doppelnormalen fallen in einem Punkte zusammen.

In den Scheiteln unserer Eilinie miisste dann gelten

7 (Rmin+ Rmam) = “"':ﬁ::_:— 2ma T =7 d =Y.

yir

1= 2man
N Yut— (2 man)?

Daraus folgt

Da u = 2m an ist, wird A = oco. Es folgt: Nur die Grenzlagen A = oo (Kreise) sind
Gleichdicke.
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VII.

Fiir nicht ganze m erhalten wir eine Reihe eigenartiger Kurven, die — wie oben
schon festgestellt wurde — nicht mehr eilinig sind, aber sich fiir rationale m schliessen.
Wir ersetzen also m durch die positive rationale Zahl g/v. Wir erhalten aus (2) die

Figur 8 Figur 9

Gleichung (3). Aus dieser folgt : Die neuen Kurven schliessen sich nach genau v vollen
Umliufen. Sie durchlaufen die Periode 2 a  von R(s) genau g-mal. Die Kurven be-
sitzen ein Zentrum Z, sie haben 2 ¢ Scheitel und ¢ Symmetrieachsen, der Umfang ist
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u=2acgn (Figuren 8, 9, 10 und 11). 4 - oo liefert wieder einen Kreis R = (¢/7) a
mit z-fachem Umlauf und dem Gesamtumfange ¥ =t2Rn=20an. Mit 1 > 1
erhdlt man ein o-Eck, das zum Beispiel im Falle ¢ =5, T = 2 ein regelmissiger
5-Stern (Pentagramm) ist (Figur 8).

Figur 10 Figur 11
Der Sonderfall 7 =- 1 fillt auf die schon behandelten Eilinien ¢ = m zuriick. Im

Falle ¢ =1 erhalten wir (wie bei w = 1) Kurven mit uneigentlichem Zentrum Z,,
(vgl. Figur 12, o/t = 1/2, 1 Symmetrieachsenrichtung, 2 Umléufe).

|
|
|
|
|
|

Figur 12 Figur 13

Die Integrale (9) sind auch noch fiir rationale # elementar 16sbar.
Fiir irrationale m schliessen sich die Kurven nicht, sie sind dann notwendig tran-
szendent.

VIII.
Beim Grenziibergang A -1 gingen wir stets von der natiirlichen Gleichung (6) aus
und erhielten regelmissige Vielecke. In der Darstellung (1) erhalten wir fiir =1

R(S)zﬂa(l-l—COS':—) :ZMaCOSZ'_z_‘Ed_. (12)

Setzen wir in (5) m =oft = u VA2 — 1, so geht mit A > 1 7 > co. Wir miissen nach
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VII eine Kurve mit unendlich vielen Umldufen erhalten. Die Konstruktion ergibt eine
Spirale mit einer Symmetrieachse und zwei Wickelpunkten (Figur 13).
Der Neigungswinkel « ist in diesem Falle (mit «,= 0)

" ds 1 s

= 82

“= J Risy

(13)
Variiert s von 0 bis zur halben Periode $/2 = ax, so lauft tatsidchlich « von 0 bis
oo. Die Berechnung der Parameterdarstellung der Kurve fithrt auf nichtelementare
Integrale:

24 oL
* cosa do " sine da
x—za[u,—/—r;(‘/;—a‘)z 5 yzza‘u./’l_}_(ua)z " (14‘)
0 0
Die Koordinaten der Wickelpunkie dieser Doppelspirale sind
— -1/p _ ~Ung (LY o ve (1 ] 1
Xp=Fame 't y, a[e Ez(M) e Lz( M) )- (15)

Die Doppelspirale hat zwischen ihren beiden Wickelpunkten die endliche Linge 4 a .
W. KLEPPER, Karlsruhe.

Kleine Mitteilungen

Zwei Minimumprobleme iiber konvexe Rotationskorper

A. Einleitung

Vom Verfasser ist folgender Satz I bewiesen worden?):

Satz I: Bei vovgeschviebeney Kovperidnge | und vovgeschriebener Mevidiankurvenlinge
L besitzen Zylinder und nur sie kleinstes Integral dev mittlern Krviimmung M, symme-
trische Doppelkegel und nur diese Kovper grosstes M.

In den analogen (L, F)- und (L, V)-Problemen liegen die Verhéltnisse nicht so giinstig.
Immerhin gestattet die verwendete elementare Methode, folgende Sdtze zu beweisen:

Satz I1: Bei vorgeschviebeney Kovpevlinge |l und vovgeschriebeney Mervidiankuvvenldnge L
besitzen Kegelstiompfe (im weitern Sinne) und wnur diese Kovper Rleinste Oberfliche F.

Satz II1: Bei vorgeschriebener Kovpervldnge I und vovgeschviebener Mevidiankurven-
lange L besitzen

41

im Intervvall 0L < 3 Zylinder,

im Intervall —43—l— <L <V21 Kegelstimpfe (im engern Sinne),
im Intervall Y21<L < o0 Kegel

und nuv diese Korper kleinstes Volumen V.

1) W.GroBNER und N. HoFREITER, Integraltafel, Bd.2 (Springer, Wien und Innsbruck 1950), Nr.333
67a und 66a. Es ist

’

o
. et . = | .
Ei(x) = —v/‘_-tA dt, sowie  Ei(x) = é-E1,+(x) -+ 5 Ei—(x),
X

wobei Eit(x) = Ei(—xe~*7) und Ei~(x) = Ei(—x¢!7) gilt.
?) Ein Minimum-Maximum-Problem iiber konvexe Rotationskérper.
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