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weiss, dass man mit etwas mehr Anstrengung den andern Apfel auch noch erreichen
kann, während ein Zuschauer, der nur sieht, dass man den einen Apfel gerade erreicht
hat, darüber im Zweifel ist. Man hat eben nicht nur den Apfel, sondern auch das Gefühl
der Bewegungen, die man ausgeführt hat, um ihn zu pflücken.

Das Gefühl, dass eine Beweismethode noch weiter reicht, ist manchmal trügerisch.
Oft stellt sich nachher heraus, dass in den höheren Fällen eine neue Schwierigkeit
auftaucht. Trotzdem gehören solche Ahnungen über die Tragweite von Beweismethoden

zu den nützlichsten Wegweisern bei der mathematischen Forschung.
B. L. van der Waerden, Zürich.

Über die natürliche Gleichung

R(s) (j,a\l + cos—\

I.

Eine Eilinie ist eine geschlossene doppelpunktsfreie Kurve, deren Krümmung
x IjR festes Zeichen hat. Ihre natürliche Gleichung R R(s) ist eine periodische
Funktion R(s) R(s + u) der Bogenlänge s, deren (nicht notwendig primitive!)
Periode u der Umfang der Eilinie ist. Wegen des Vierscheitelsatzes für Eilinien muss
R(s) innerhalb eines Periodenintervalls 0 fg s < u mindestens vier relative Extrema,
also R'(s) mindestens vier Nullstellen haben.

L. Bieberbach1) erwähnt als einfaches Beispiel einer natürlichen Gleichung, die
keine Eilinie kennzeichne, die positive Funktion R 2 + sins der primitiven Periode

2 n, deren Ableitung in 0 ?g s < 2 tt ja nur an zwei Stellen verschwinde. Es ist
die Absicht dieser Zeilen, zu zeigen, dass diese Schlussweise nicht stichhaltig ist. Es
wird hier nämlich irrtümlich die primitive Periode 2 n gleich dem Umfang u gesetzt.

Wir werden im Gegensatz zu der Aussage von Bieberbach zeigen, dass allgemeiner
die Funktion

R(s)-=iAa{x + cos-a} (1)

für bestimmte X > 1 und ju> 0 stets die natürliche Gleichung einer Eilinie sein kann.
(A und ja sind dimensionslose Parameter, die Konstante a hat die Dimension einer
Länge.) Die primitive Periode p 2an von (1) kann dann natürlich wegen des
Vierscheitelsatzes nicht identisch mit dem Umfange u der Eilinie sein. Es ist vielmehr
u mp 2amn (m > 1, ganz). Die Eilinie wird dann 2w^4 Scheitel haben. Das
Studium der Kurven (1) wird sich auch deshalb lohnen, weil sich bei ihnen einige
interessante gestaltliche Verhältnisse ergeben.

II.
Einen Überblick über den Verlauf der Kurven (1) kann man sich konstruktiv auf

folgende Art2) verschaffen. Wir tragen R R(s) in einem rechtwinkligen Koordina-

*) L.Bieberbach, Differentialgeometrie (Teubner, Leipzig 1932, S.25).
2) K. Strubecker, Vorlesung über Differentialgeometrie an der TH. Karlsruhe 1948/49.
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tensystem (Figur 1 a) auf und ersetzen innerhalb der gleich langen Bogenstücke As die
Krümmungsradien R(s) durch Mittelwerte Rt. Die Kurve wird nun durch Kreisbögen

As der Radien Rt approximiert (Figur lb). Auf den Normalen der Punkte Pt

R \

ajull+11 m

R=du(A+cos§}

dal

ajulA-l)

RD R, R

Rn R,VA LL.umU-^4h-Mstut So Pt31 5

Figur la Figur 16

tragen wir jeweils die Radien Rt PtMz ab, schlagen um Mt den Kreis vom Radius

Rt und tragen auf ihm den Bogen As PtPt+1 ab, wodurch der neue Kurvenpunkt
Pl+1 entsteht.

Es genügt, auf diese Art den Kurvenbogen S0SX zu konstruieren, der zu der halben
primitiven Periode pß an gehört. Der zur zweiten Halbperiode gehörige Bogen

F"igur 2

SXS2 ist nämlich zu SQSX symmetrisch. Die Kurve besteht dann in ihrem weiteren

Verlauf aus lauter zu S^S2 kongruenten Teilbögen S2SA, S^S^, und liegt damit in
ihrem ganzen periodischen Verlaufe fest.

Die Krümmungsmittelpunkte M% sind übrigens die Ecken eines Tangentenpolygons

der Evolute der Linie (1).
Aus Symmetriegründen schneiden sich alle Scheitelnormalen nQ, nx, n2)... in einem

festen Punkt Z, den wir als das Zentrum der Kurve (1) bezeichnen. Aufeinanderfolgende

Scheitelnormalen nk und nk+1 schneiden sich dabei stets unter demselben

Winkel ax/2. Die Kurve schliesst sich nun dann und nur dann nach genau einem vollen
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Umlauf um das Zentrum Z, wenn
m ai 2 n (m > 1, ganz) (2)

ist. Dann ergibt sich stets eine Eilinie, deren Umfang u 2amn ist. Fur den
ausgeschlossenen Fall m -= 1 erhalt man eine nicht geschlossene Kurve mit uneigentlichem

/77-_>

m-J

*

Figur 3 Figur 4

*

07-_r

Figur 5 Figur 6

Zentrum Z^ (Figur 2); offenbar schwebte allein dieser Fall L. Bieberbach vor. Für
m =- 2; 3; 4;... haben wir Eilinien mit 2w=-4;6;8;... Scheiteln und w Symmetrieachsen

(Figuren 3, 4, 5, 6).
Die Kurve (1) schliesst sich dann und nur dann nach genau x Umläufen, wenn

<7 0LX 2 T TT

ist. Für o* -= 1 kann sie jedoch nie Eilinie sein.

Wir befassen uns zunächst nur mit den Eilinien des Falles (2).

(3)
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III.
Der Neigungswinkel der Kurventangenten von (1) gegen die positive ^-Richtung ist

«-«» Jr% rfrr-i arct^(l/r;4^ _'«)¦ W

Für s 0 möge a 0 sein; dann wird a0 0. Nach der ersten halben primitiven
Periode p\2 - an von (1) besitzt die Kurve den Neigungswinkel

0LX 2 71

Wegen (2) erhalten wir daraus die folgende notwendige und hinreichende Bedingung
dafür, dass (1) die natürliche Gleichung einer Eilinie ist:

/* y™_
x

• (w > 1, ganz) (5)

Die natürliche Gleichung dieser Eilinie lautet dann

*(s)=^i (A+cO- (A>1) (6)

Hierin stecken noch zwei willkürliche Parameter m und A. Aus (4) wird nun mit a0 0

2
ol(s) - are *(^r;!-*T.)- m

Die kartesischen Koordinaten der Punkte unserer Eilinie sind bekanntlich

x ~ xo / cosa(s) ds, y — y0 - / sina(s) (is.

Ihre bequeme komplexe Darstellung in der Gaußschen Zahlebene lautet mit z x + iy:
S /,— 5 \2/w

1 (l/A + 1 cos
*

f- i l/A - 1 sm-^
••»>,&-/*- ;°- ,TiS—-' äs. (8)

Führt man a statt s als Integrationsvariable ein, so erhält man nach etwas Rechnung
schliesslich r

z-z0-=amVV-l / cos«<*a +i[ ™?*<L 1

(9)ü r [ y A — cos m a JA — cos ra a j
v '

Die Integrale sind für alle ganzen m elementar lösbar. Die Darstellung (8) lässt den
entscheidenden Einfluss von m auf die Gestalt der Eilinie erkennen.

IV.

Im einfachsten Falle m 2 (Eilinie mit 4 Scheiteln und 2 Symmetrieachsen,
'> 2 a n) lautet nach der Substitution A + cos (sja) t das Integral (8)

l/A + l f dt i]/-~— f — dt~
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Dessen Auswertung ergibt die folgende Parameterdarstellung der Eilinie

-4A+l A+1-2/
-2 arCC0S

A + f
1/^- l or nr r - (A - 1) + 2t

y-yo--<*y—2 «rcCof - xjx—.
Die kartesische Gleichung ist dann für x0 aV(k+ l)/2 und y0^-0

(10)

l/A + 1 cos __-?=-,- )/A -"l Cof —7=^- - (11)
a/2 (A4- 1) a/2(A-1)

Diese transzendente Eilinie ist keine Ellipse, wie man vielleicht aus Figur 3 vermuten
könnte; sie weicht jedoch von der Ellipse mit gleichen Hauptachsen um kaum mehr
als Strichstärke ab.

V.

Wir studieren noch den Einfluss des Parameters A auf die Eilinien mit 2 m Scheiteln.

Der Umfang dieser A-Schar ist immer u 2amn. Mit wachsendem A->oo
geht (6) in die natürliche Gleichung des Kreises R ma über. Die Eilinie bläht sich zu
einem Kreise gleichen Umfangs auf. Wegen

Rmin R(an + 2akn) =ma 1/yxr' R™<™ R(2akn) ma Vy_ry

gehen mit A -> 1 der Scheitelkrümmungsradius Rmin gegen 0, aber alle Radien
R(s) 4= Rmin gegen oo. Die Eilinie zerfällt in Geradenstücke. Die Scheitel Rmin gehen
jedoch in Ecken über. Da die Symmetrieeigenschaften der Kurve bei dem Grenzübergang

erhalten bleiben, erhalten wir ein regelmässiges m-Eck mit der Seitenlänge
u\m 2 an. Dabei ist unter einem Zweieck die doppelt durchlaufene Strecke der
Länge 2an zu verstehen. Vgl. dazu für m 3 (6 Scheitel, 3 Symmetrieachsen) die

Figur 7 mit den Werten A 1; 1,01; 1,2; 3,0 und oo.

VI.
Es liegt nahe, unter den Eilinien mit ungeradem m für spezielle A Gleichdicke

(Eilinien fester Breite d) zu vermuten. Es gilt:
1. Der Umfang des Gleichdicks ist u dn.
2. Alle Normalen sind Doppelnormalen, und die beiden Krümmungsmittelpunkte

auf den Doppelnormalen fallen in einem Punkte zusammen.
In den Scheiteln unserer Eilinie musste dann gelten

^ (Rmin + Rmax) TTjj^j 2man nd u.

Daraus folgt
2 ma Tt

\fu2~ (2 man)2

Da u 2m an ist, wird A oo. Es folgt: Nur die Grenzlagen A oo (Kreise) sind
Gleichdicke.
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VII.

61

Für nicht ganze m erhalten wir eine Reihe eigenartiger Kurven, die - wie oben
schon festgestellt wurde - nicht mehr eilinig sind, aber sich für rationale m schhessen.
Wir ersetzen also m durch die positive rationale Zahl a\x. Wir erhalten aus (2) die

tf7-J

*

tot

Figur ",

A-J

A-/J

Figur 8 Figur 9

Gleichung (3). Aus dieser folgt: Die neuen Kurven schliessen sich nach genau t vollen
Umläufen. Sie durchlaufen die Periode 2 an von R(s) genau o'-mal. Die Kurven
besitzen ein Zentrum Z, sie haben 2 o Scheitel und a Symmetrieachsen, der Umfang ist
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u 2 aan (Figuren 8, 9, 10 und 11) k->oo liefert wieder einen Kreis R (ajr) a
mit x-fachem Umlauf und dem Gesamtumfange u r2Rn 2oan. Mit A -> 1

erhalt man em <r-Eck, das zum Beispiel im Falle a =- 5, r 2 em regelmassiger
5-Stern (Pentagramm) ist (Figur 8).

m-j
1-12

Figur 10 Figur 11

Der Sonderfall r - 1 fallt auf die schon behandelten Eilmien a — m zurück. Im
Falle 0 1 erhalten wir (wie bei m 1) Kurven mit uneigentlichem Zentrum Z^
(vgl. Figur 12, cr/r 1/2, 1 Symmetrieachsenrichtung, 2 Umlaufe).

l-u

Figur 12 Figur 13

Die Integrale (9) sind auch noch fur rationale m elementar losbar.
Fur irrationale m schhessen sich die Kurven nicht, sie smd dann notwendig

transzendent.

VIII.
Beim Grenzübergang A -> 1 gingen wir stets von der natürlichen Gleichung (6) aus

und erhielten regelmassige Vielecke. In der Darstellung fl) erhalten wir fur A 1

R(s) ju a 11 f- cos — J 2 ju a cos2
2 a

(12)

Setzen wir m (5) m -= 0[r -= /i m2-^!, so geht mit A-> 1 r ->00. Wir müssen nach
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VII eine Kurve mit unendlich vielen Umlaufen erhalten. Die Konstruktion ergibt eine
Spirale mit einer Symmetrieachse und zwei Wickelpunkten (Figur 13).

Der Neigungswinkel a ist in diesem Falle (mit a0 0)

*^J R(s) =J*2ä- (13>

Variiert s von 0 bis zur halben Periode p/2 an, so lauft tatsächlich a von 0 bis
oo. Die Berechnung der ParameterdarStellung der Kurve fuhrt auf nichtelementare
Integrale

-. f cos ol dix -, /' sm ol da _,x 2apJrTWii)t, y 2ap 1 + {fta)t. (14)
0 ö

Die Koordinaten der Wickelpunkte dieser Doppelspirale smd

xw=±a7te-1l", ya=a\e-1l"Tt(~)-6^Et(-^y) (15)

Die Doppelspirale hat zwischen ihren beiden Wickelpunkten die endliche Lange 4 an.
W. Klepper, Karlsruhe.

Kleine Mitteilungen

Zwei Minimumprobleme über konvexe Rotationskörper

A Einleitung
Vom Verfasser ist folgender Satz I bewiesen worden2)
Satz I Bei vorgeschriebener Korperlange l und vorgeschriebener Meridiankurvenlange

L besitzen Zylinder und nur sie kleinstes Integral der mittlem Krümmung M', symmetrische

Doppelkegel und nur diese Korper grosstes M
In den analogen (L, F)- und (L, V)-Problemen liegen die Verhaltnisse nicht so gunstig

Immerhin gestattet die verwendete elementare Methode, folgende Satze zu beweisen
Satz II Bei vorgeschriebener Korperlange l und vorgeschriebener Meridiankurvenlange L

besitzen Kegelstumpfe (im weitern Sinne) und nur diese Korper kleinste Oberflache F
Satz III' Bei vorgeschriebener Korperlange l und vorgeschriebener Meridiankurv

enlange L besitzen
4 /

im Intervall 0 ^ L ^ — Zylinder,

im Intervall — < L < j/2 / Kegelstumpfe (im engern Sinne),

im Intervall j/2 / fg L < oo Kegel

und nur diese Korper kleinstes Volumen V

x) W Grobner und N Hofreiter, Integraltafel, Bd 2 (Springer, Wien und Innsbruck 1950), Nr 333,
67 a und 66 a Es ist

oo

re-t __ i i
Ei(x) — /— dt, sowie Et(x) - Ei+(x) \- Ei~(x),

J t 2 2
x

wobei Ei+(x) Et(—xe~tn) und Et~~(x) Ei(~xexn) gilt
2) Fin Minimum Maximum Problem über konvexe Rotationskörper
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