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Die Unendlichkeit der Zahlenreihe1)

Es freut mich, hier m Ihrem Kreise sprechen zu können, in Basel mit seiner altehr-
wurdigen mathematischen Tradition, und über einen Gegenstand, der wohl auch
innerhalb der Mathematik als altehrwurdig bezeichnet werden kann, namhch über
die natürlichen Zahlen

Auch die Frage, ob es etwas Unendliches gibt, ist schon sehr alt, manche sagen ja,
andere sagen nein, das gilt auch heute noch

Versuche, die Unendlichkeit der Zahlenreihe zu beweisen, also zu zeigen, dass es zu
jeder Zahl immer eine noch grossere Zahl gibt, smd im letzten Jahrhundert gemacht J

worden, ich nenne hier

Bolzano 1851 Paradoxien des Unendlichen (§13)
Frege 1884 Die Grundlagen der Arithmetik (§ 78ff)
Dedekind 1887 Was sind und was sollen die Zahlen p (§ 5)

Besonders die spatere Entwicklung der Mengenlehre hat dann aber gezeigt, dass diese
Beweise nicht ausreichend smd

Dedekind zum Beispiel gibt in seiner Schrift einen strengen Aufbau des Openerens
mit den naturlichen Zahlen unter der Voraussetzung, dass es unendlich viele Dmge
gibt Fur diese Voraussetzung gibt er aber eine Begründung, die man nicht als
stichhaltig betrachten kann Dedekind schhesst etwa so Er betrachtet die Welt der
denkbaren Dmge. Dazu gehört das eigene Ich und zu jedem Ding der Gedanke an dieses

Dmg. So erhalt man also den Gedanken an das Ich, dann den Gedanken an den
Gedanken an das Ich usf und damit scheinbar eine- unendliche Reihe von Gedanken
Aber doch nur scheinbar Wenn man namhch diese Reihe wirklich zu bilden
versucht, dann sieht man, dass man diese Gedanken sehr bald schon nicht mehr
voneinander unterscheiden kann, besonders, wenn man die natürlichen Zahlen noch nicht
hat, mit denen man sie zahlen konnte, und man sieht auch, dass man bald schon
diese Gedanken nicht mehr weiter bilden kann Die Reihe dieser Gedanken ist nicht
unendlich.

Diese Überlegung zeigt nun aber auch, dass es nicht selbstverständlich ist, dass die
Reihe der natürlichen Zahlen unendlich ist. Auch hier konnte es eine Stelle geben, wo
man einfach nicht mehr weiterkommt Wenn es tatsächlich nichts Unendliches gibt,
dann ist auch die Zahlenreihe nicht unendlich

x) Vortrag vor der Mathematischen Gesellschaft Basel, gehalten am 29 Jum 1%3 - Es ist fur unsere
Zeitschrift eine Ehre, diesen bedeutenden Vortrag veröffentlichen 7u dürfen Die Redaktion
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Wenn wir diese Frage nun entscheiden wollen, ob die Zahlenreihe endlich oder ob
sie unendlich ist, dann müssen wir zuerst sagen, was die natürlichen Zahlen sind oder
was wir hier darunter verstehen wollen, denn sonst hat die Frage keinen Sinn.

Was also sind die natürlichen Zahlen in der Mathematik
Es sind hier auf jeden Fall nicht die Zahlwörter eins, zwei, drei, vier usw. Es sind

auch nicht die Zahlzeichen 1, 2, 3, 4 usw. Es sind auch nicht etwa hintereinander-
gesetzte Striche////..., obschon alle diese Dinge ganz gut zum Zählen gebraucht
werden können. Wenn wir zählen, dann verwenden wir die Zahlwörter eins, zwei,
drei, vier usw.; aber damit kommen wir nicht sehr weit, ganz bestimmt nicht bis
ins Unendliche.

Was sind nun also die Zahlen, wie sie in der Mathematik vorkommen Diese sollen
auf jeden Fall von der Sprache unabhängig sein, die wir gerade sprechen, und dann
sollen sie vor allem auch unvergänglich sein, während doch diese Striche zum
Beispiel sehr rasch vergänglich sind. Die Zahlen, die Euler untersucht hat, sind genau
dieselben, die wir auch heute noch untersuchen; sie sind also wirklich unvergänglich.

Also diese Zahlwörter und Zahlzeichen sind nichts anderes als Namen oder
Bezeichnungen für die Zahlen selbst, genau so, wie das Wort «Haus» nur ein Name ist
für ein Haus, in dem man wirklich wohnen kann.

Wenn aber die Zahlen unvergänglich sind, so folgt schon, dass sie nicht realer,
materieller Natur sind, denn bei materiellen Dingen können wir immer annehmen, dass
sie vergänglich sind. Die Zahlen sind also ideelleJDinge, und das ist auch das erste und
allereinfachste, was wir in der reinen Mathematik wirklich brauchen: Wir brauchen
ideelle Dinge, mit denen wir operieren und über die wir etwas aussagen können.

Dazu brauchen wir aber noch mindestens eine Beziehung zwischen diesen Dingen,
denn mit Dingen ohne jede Beziehung können wir nicht viel anfangen.

Eine solche Beziehung einfachster Art ist nun gerade bei den natürlichen Zahlen
gegeben, nämlich die Beziehung, dass zum Beispiel die Zahl 4 auf 3 folgt. Wir sagen
dafür auch, 4 ist der Nachfolger von 3, oder 3 ist der Vorgänger von 4; es ist das
einfach eine unsymmetrische Beziehung zwischen 4 und 3, die wir auch durch einen
Pfeil darstellen können: 4 -> 3. Ich lasse den Pfeil absichtlich von 4 nach 3 gehen
und nicht umgekehrt; denn in der umgekehrten Richtung wissen wir ja noch nicht,
wie weit wir kommen; in dieser Richtung kommen wir zunächst bis zu 1: 3 -> 2 -> 1.

Dies ist also eine ursprünglich gegebene Beziehung zwischen diesen Zahlen, eine
Grundbeziehung, die nicht schon andere Beziehungen als gegeben voraussetzt. Wir
können diese Beziehung auch mit einem Buchstaben bezeichnen, etwa mit ß, und
dann sagen, es gilt 4ß3, 3 02, 2 01.

Es ist nun zweckmässig, auch noch 1 ß 0 zu setzen, also eine Null einzuführen,
welche Vorgänger von Eins, aber selbst keine natürliche Zahl sein soll, und diese Null
soll auch keinen Vorgänger haben. Jede natürliche Zahl hat dann genau einen Vor>-

gänger, die Null hat keinen.
Nach diesen Vorbereitungen können wir jetzt die Null und die natürlichen Zahlen

vollständig definieren:
Definition

Die Null und die natürlichen Zahlen sind ideelle Dinge, die durch eine Grundbeziehung
ß miteinander verknüpft und allein durch diese Grundbeziehung festgelegt sind. Dabei soll
noch folgendes gelten:
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1)00^ gilt nicht. Das heisst, Null hat keinen Vorgänger.

2) Z(n), wenn nßO oder nßm mit Z(m), aber nicht nß a und nßb mit a^b.
Dabei bedeutet Z(n): n ist eine natürliche Zahl. 2) besagt also, dass n eine natürliche

Zahl ist, wenn es genau einen Vorgänger hat, der entweder die Null oder selbst eine
natürliche ZahJ ist. Dies soll auch nur in diesem Fall gelten, das heisst, genauer wird
noch gefordert:

3) Z(n) gilt nur, wenn notwendig.

Dies besagt also, dass n nur dann eine natürliche Zahl ist, wenn aus i) und 2) folgt,
dass es eine natürliche Zahl sein muss.

Wenn zum Beispiel für ein Ding x gilt x ß x, so dass also x sein eigener Vorgänger
ist, dann ist x keine natürliche Zahl; denn wenn man annimmt, dass x keine natürliche
Zahl ist, dann muss es auch nach 2) keine sein, also nach 3) ist es keine. Aus der
Annahme, dass Z(x) gilt, würde nach 2) auch Z(x) folgen; aber diese Annahme ist
nicht notwendig, und deshalb gilt Z(x) nicht.

Dagegen ist 1 wegen 1 ß0 notwendig eine natürliche Zahl; ebenso 2 mit 2ßl usf.
Das System der natürlichen Zahlen ist also nicht leer, es enthält die Zahlen 1, 2, 3, 4;
es ist eindeutig bestimmt, denn irgendein gegebenes n muss entweder nach 1) und 2)

notwendig eine natürliche Zahl sein, oder dies ist nicht der Fall, dann ist es keine.
Schliesslich sind die natürlichen Zahlen hierdurch auch widerspruchsfrei definiert,

denn es wird nichts Unmögliches verlangt: Nur wenn ein Ding n gewisse Eigenschaften
hat, dann ist es eine natürliche Zahl, sonst nicht.

Insbesondere wird also nicht verlangt, dass es zu jeder Zahl m eine darauffolgende
Zahl n mit nßm geben müsse. Ob es das gibt, das muss ja gerade noch untersucht
werden.

Man kann aber jetzt schon Sätze über die natürlichen Zahlen herleiten, und zwar
insbesondere den Schluss von n auf n + 1, das heisst das Prinzip der vollständigen
Induktion; nur muss dieses Prinzip so formuliert werden, dass die Existenz von n + 1

nicht schon vorausgesetzt wird. Man kann es so formulieren:

Vollständige Induktion

sU(n) sei eine beliebige Aussage über natürliche Zahlen.
Wenn 91(1) gilt und aus der Voraussetzung, dass %(m) gilt und n eine auf m folgende

natürliche Zahl ist, folgt, dass auch %(n) gilt, dann gilt %(n) für alle natürlichen Zahlen n.

Es wird also nicht gefordert, dass es zu jedem m ein solches n geben müsse.
Der Beweis geht so: Man betrachtet die Gesamtheit der Zahlen n, für die H(n)

richtig ist. Zu dieser Gesamtheit gehört die Zahl 1, und wenn m dazu gehört und n
eine natürliche Zahl ist, die auf m folgt, so gehört auch n dazu; also gehören alle
diejenigen n dazu, die nach 2) notwendig natürliche Zahlen sind. Dies sind aber nach
3) alle natürlichen Zahlen überhaupt. Also gilt %(n) für alle natürlichen Zahlen n.

Nun kommen wir wieder zu der Frage, ob die Zahlenreihe unendlich ist, ob es also

zu jeder dieser Zahlen m eine Zahl n gibt, so dass nßm gilt.
Es scheint nun wohl so, als ob dies in der Welt der ideellen Dinge eigentlich

selbstverständlich wäre, denn man sieht zunächst keinen Grund, der einen hindern würde,
zu jeder Zahl m eine folgende Zahl n anzunehmen.
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In Wirklichkeit gibt es aber einen solchen Grund, und dass dies der Fall ist, das sieht
man bei der Betrachtung der Ordnungszahlen

Ich will hier die Ordnungszahlen nur anschaulich erklaren, sie sollen ja nur zum
Vergleich dienen

Wenn wir die natürlichen Zahlen anschaulich erklaren wollen, dann können wir
etwa so sagen Wir beginnen mit der Zahl 1 und setzen dann hinter jede Zahl, die

wir auf diese Weise erhalten, eine neue Zahl So erhalten wir die Zahlen 1, 2, 3, 4, 5,
und dies geht anscheinend immer weiter bis ms Unendliche

Bei den Ordnungszahlen ist es nun so Man beginnt hier zweckmassig mit 0, dann
kommt 1, und dann setzt man hinter jede Zahlenreihe, die man auf diese Weise erhalt,
eine neue Zahl

So erhalt man zunächst die endlichen Qrr1m]n_gs7ahlen 0, 1, 2, 3, 4, 5 die man
gewöhnlich ebenso bezeichnet wie die natürlicher^^

Hinter diese Reihe der endlichen Ordnungszahlen setzt man dann wieder eine neue
Zahl ax, dann co + 1. co -f 2 usw hinter alle diese die Zahl ojJ&J&, dann eo_+ co.j^J
usw und auch diese Konstruktion kann man anscheinend immer weiter fortsetzen

In Wirklichkeit geht dies aber nicht, denn hinter die Reihe aller Ordnungszahlen
kann man keine neue Ordnungszahl mehr setzen, denn dies wäre doch em Widerspruch

wenn man schon alle Ordnungszahlen hat, dann gibt es keine neue mehr
Man kann sogar zeigen, dass es unter diesen Ordnungszahlen eine grosste gibt1),

also eine bestimmte letzte Ordnungszahl L, und hinter diese Zahl L kann man dann
keine weitere Ordnungszahl mehr setzen, weil es eben keine mehr gibt

Es ist also gar nicht selbstverständlich dass man hinter jede Zahl eine weitere
setzen kann, bei den Ordnungszahlen geht es nicht, es fragt sich, ob es bei den naturlichen

Zahlen geht, oder ob es nicht auch da eine grosste gibt
Um dies zu entscheiden, muss man sich zuerst klarmachen, was der Grund ist,

dass man bei den Ordnungszahlen schliesslich nicht mehr weiterkommt Der Grund
liegt nicht einfach m dem Woit «alle», das ist em klarer und logisch einwandfreier
Begriff Der eigentliche Grund liegt vielmehr in einem unei fulibaren Zirkel Die
Konstruktionsvorschrift fur die Ordnungszahlen ist zirkelhafter Natur, sie bezieht
sich ganz deutlich auf sich selbst, und dieser Zirkel ist eben schliesslich nicht mehr
erfüllbar Es heisst ja m der Vorschrift, man solle hinter jede Zahlenreihe, die man
durch eben diese erst zu definierende Vorschrift erhalt, eine neue Zahl setzen

Und wie ist es bei den natürlichen Zahlen Nun, da ist die KonstruktionsVorschrift
genau ebenso zirkelhaft es heisst doch auch da, man solle hinter jede Zahl, die man
durch eben diese erst zu definierende Vorschrift erhalt, eine neue Zahl setzen, auch
das konnte unmöglich sein Auch bei der fiuheren Definition der natürlichen Zahlen
kommt das Z(m) in der Definition von Z(n) schon vor Dieser Zirkel lasst sich nicht
einfach wegschaffen

Wenn man nun diesen Zirkel nicht wegschaffen kann, dann muss man eben zeigen,
dass er bei den natürlichen Zahlen unschädlich ist Aber auch das ist nicht so einfach,
man muss sich erst klarmachen, wann em solcher Zirkel etwas schaden kann, und
dazu muss man ein allgemeineres System von Dingen untersuchen als das der natürlichen

Zahlen, namhch em solches, m dem der Schaden wirklich auftritt Man konnte

l) Vgl Les Entretiens de /urtch 1938, Zürich 1941, S 177
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die Ordnungszahlen nehmen, besser ist aber em noch allgemeineres System, das der
reinen Mengen, deren Elemente nur wieder reme Mengen sind

Ich will jetzt genauer erklaren, was wir unter einer reinen Menge oder kurz unter
einer Menge verstehen wollen Wie gesagt, ist es eine Verallgemeinerung dei natürlichen

Zahlen Der Unterschied ist im wesentlichen nur der, dass eine natürliche Zahl
immer nur einen Vorganger hat, wahrend eine Menge beliebig viele Vorganger haben
kann Fur eine Menge M kann also auch fur a 4= b 4= c gelten M ß a, M ß b, M ß c

usw wobei diese Dmge a, b, c usw auch wieder Mengen sein sollen Die «Vorganger»
nennt man dann die Elemente von M und schreibt M {#, b, c, } Dies erklart
auch den Namen «Menge», m Wirklichkeit smd aber die Mengen auch nur ideelle
Dmge, welche durch die ^-Beziehung mit ihren Elementen verknüpft sind

Die genaue Definition der Mengen lautet nun so

Definition
Die Mengen sind ideelle Dinge, die durch eine Grundbeziehung ß miteinander verknüpft

und allem durch diese Grundbeziehung festgelegt sind Dabei soll noch folgendes gelten

a) Jede Menge bestimmt ihre Elemente, das heisst die Mengen, zu denen sie die

Beziehung ß besitzt

Wenn also eine Menge gegeben ist so sind auch ihre Elemente gegeben Fs gilt aber
nicht das Umgekehrte, wenn bestimmte Mengen gegeben smd, dann braucht es nicht
eine Menge zu geben, welche gerade diese Mengen als Elemente besitzt, das darf man
nicht verlangen

Eine weitere Forderung bezieht sich auf die Identität von Mengen

b) Die Mengen M und N sind identisch immer, wenn möglich

ALo immer dann, wenn die Annahme, dass die Mengen M und N identisch smd,
keinen Widerspruch enthalt, soll M N sein

Wenn also zum Beispiel / — ¦[/]• und K |i\} gesetzt wird, so folgt / K Man
konnte sagen, das ist selbstverständlich, denn die Mengen / und K unterscheiden sich

tatsächlich nicht, dann darf man auch nicht festsetzen, dass sie verschieden smd, das

wäre em Widerspruch Es gibt aber Falle, wo diese Entscheidung nicht so einfach ist
deshalb wird b) gefordert

Es ist noch eine weitere Bedingung notig, namhch

c) M ist Menge immer, wenn möglich

Es konnte sonst sein, dass es gar keine Mengen gibt Also immer, wenn die
Annahme, M sei eine Menge, keinen Widerspruch enthalt, dann soll M eine Menge sein

Es folgt nun, dass es Mengen gibt Zum Beispiel die Null ist die Nullmenge, die kein
Element besitzt, die natürliche Zahl 1 ist die Menge, die 0 als Element enthalt,
2 enthalt 1 als Element usw also die naturlichen Zahlen sind bestimmte Mengen

Das System aller Mengen ist also nicht leer, es ist eindeutig und widerspruchsfrei
festgelegt, denn es wird wieder nirgends etwas Unmögliches verlangt, nur wenn ein
Ding gewisse Eigenschaften hat, dann ist es eine Menge

Es gibt aber Falle, wo es zu gegebenen Elementen keine zugehörige Menge gibt
So zum Beispiel, wenn man alle Mengen betrachtet, die sich nicht selbst enthalten,
also alle Mengen N, fur die NßN nicht gilt, so gibt es keine Menge, die alle und
nur diese Mengen N enthalt, denn sie musste sich selbst enthalten, wenn sie sich
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nicht enthalt, und durfte sich nicht enthalten, wenn sie sich enthalt Der Grund
warum diese Menge nicht existiert, ist also wieder em unei fulibarer Zirkel m der
Definition der Menge.

Es kann aber sein, dass eine zirkelhaft definierte Menge doch existiert, zum Beispiel
die Menge aller Mengen enthalt sich selbst und alle anderen Mengen, hier ergibt sich
kein Widerspruch, diese Menge existiert, sie ist aber zirkelhafter Natur

Es gibt aber auch Mengen, die zirkelfrei definiert smd, so zum Beispiel die
Nullmenge 0, die 1, die 2 Hier tritt bei der Definition keinerlei Zirkel auf, dies sind
explizite Definitionen

Es kommt nun darauf an, diese beiden Falle gut voneinander zu unterscheiden
Welches smd die zirkelfreien und welches die zirkelhaften Mengen?

Flier ergibt sich aber wieder eine Schwierigkeit Diese Unterscheidung kann nicht
explizit, also nicht in zirkelfreier Weise gegeben werden Ware dies namhch möglich,
dann konnte auch die «Menge aller zirkelfreien Mengen» explizit, also zirkelfrei erklart
werden, sie wäre dann selbst eine zirkelfreie Menge, aber als solche musste sie sich
selbst enthalten, und eine sich selbst enthaltende Menge können wir doch nicht als

zirkelfrei bezeichnen
Diese Unterscheidung zwischen zirkelfreien und zirkelhaften Mengen kann also

nur durch eine implizite Definition gegeben werden, hier kommt man mit einfachem
Konstruieren nicht weiter Um nicht an die anschauliche Vorstellung gebunden zu
sein, schreiben wir «2-frei» an Stelle von «zirkelfrei» und definieren

I Eine Menge ist z frei, wenn ihre Elemente z frei sind und sie selbst nicht vom
Begriff «z-frei» abhangt

II Eine Menge ist z-ftei nur, wenn notwendig

Eine Menge ist vom Begriff az frei» unabhängig, wenn sie sich auf Grund ihrer
Definition nicht ändert, gleichgültig, welche Mengen als z frei bezeichnet werden Mit
andern Worten Man macht zunächst die Annahme, irgendwelche gegebene Mengen
seien z-irei und die andern nicht Solange noch nicht feststeht, welche Mengen z frei
sind, ist diese Annahme zulassig Wenn dann eine Menge M auf Grund ihrer Definition
unabhängig von dieser Annahme eindeutig festliegt, dann ist sie vom Begriff az frei»
unabhängig

Die «Menge aller 2-freien Mengen» ist vom Begriff az frei» abhangig, denn sie ändert
sich nach dieser Definition, sobald man neue Mengen als z frei bezeichnet Wird keine
Menge als^-frei bezeichnet, dann ist es die Nullmenge, werden alle als z frei bezeichnet,
dann ist es die Menge aller Mengen Die Menge kann aber auch nicht auf andere
Weise ohne diesen Begriff definiert werden, denn sonst wäre sie 2-frei und musste sich
selbst enthalten, was, wie sich zeigen wird, nicht sein kann Aber die Nullmenge ist
vom Begriff «2-frei» unabhängig, weil man sie als «Menge ohne Elemente» definieren
kann, ohne diesen Begriff zu verwenden, dies bleibt immer dieselbe Menge

Es mag auffallen, dass es Mengen gibt, die von einem bestimmten Begriff abhangen,
die man also nicht definieren kann, ohne diesen Begriff zu Hilfe zu nehmen Dass es

das aber gibt, zeigt sich schon an einem andern Beispiel Die «Menge aller Mengen»
ist vom Begriff «alle» abhangig Wenn man namhch diese Menge definieren konnte,
ohne den Begriff «alle» zu verwenden, dann konnte es keinen Widerspruch ergeben,
wenn man noch weitere Mengen bilden wollte, und das darf doch nicht sein.
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Ich will jetzt zeigen dass eine z freie Menge sich nicht selbst enthalten kann Dies
folgt aus der horderung II Wenn namhch M sich selbst enthalt, also MßM gilt, dann
kann man die Menge M zunächst als z haft, das heisst als nicht 2-frei bezeichnen Dann
enthalt sie nicht nur z freie Elemente cie muss also nach I nicht z frei sein, und
nach II ist sie es auch nicht Also Jede sich selbst enthaltende Menge ist z haft

Aber die naturlichen Zahlen smd z frei Dies ergibt sich mit dem Induktionsprinzip
0 und 1 smd z freie Mengen Wenn n {mj ist und m ist z frei, dann ist auch n
z frei, denn n enthalt nur em z freies Element und ist vom Begriff «2-frei» unabhängig
Also smd alle natürlichen Zahlen z frei

Dass jede naturliche Zahl von allen ihr vorangehenden verschieden ist, folgt schon

aus den Forderungen 2) und 3)

Nun ist aber immer noch nicht bewiesen, dass es unendlich viele Zahlen gibt, dass

es also zu jeder Zahl m eine Zahl n {mj gibt Da die natürlichen Zahlen z-freie
Mengen sind, genügt es, allgemeiner zu zeigen, dass es zu jeder z freien Menge M
eine Menge N gibt, die sie als einziges Element enthalt N — {M}

Dazu will ich zuerst einen scheinbar komplizierteren, m Wirklichkeit aber emfache-
len 1 all betrachten, um zu zeigen, wie man nun eine solche Existenz in nichttrivialen
1 allen beweisen kann Ich will zeigen dass die Menge aller z freien Mengen existiert

Sie werde mit U bezeichnet Die Annahme, U sei selbst eine z freie Menge, fuhrt zu
einem Widerspruch, denn dann musste sie sich selbst enthalten, und das geht nicht
Nun mache ich die Annahme U sei eine z hafte Menge Diese Annahme enthalt
keinen Widerspruch, denn erstens ist dann U tatsächlich eine neue, von allen
gegebenen verschiedene Menge, denn die gegebenen smd ja alle z frei, und zweitens ist U
auch nach Definition z-ha.it, namhch vom Begriff az frei» abhangig, denn sonst konnte
es nicht zu einem Widerspiuch fuhren wenn man U nachträglich als z frei bezeichnet
Wenn aber die Annahme dass U eint z hafte Menge ist, keinen Widerspruch enthalt
dann ist sie ei füllt, und U existiert also

Genau so folgt nun aber allgemeiner
Wenn die Annahme, eine Gesamtheit V ton z freien Mengen bilde eine z freie Menge,

zu einem Widerspruch fuhrt, dann bildet V eine z hafte Menge
Zum Beweis braucht man oben nur U durch die zu V gehörige Menge zu ersetzen
Dieser Satz wird nun angewendet auf die Gesamtheit, die aus der einen z-freien

Menge M besteht
Wenn die Annahme, diese Gesamtheit bilde eine z freie Menge, zu einem Widerspruch

fuhren wurde, dann wurde sie eine z hafte Menge bilden Das tut sie mm aber

nicht, denn die Menge N — {M} ist nicht z haft sie enthalt ja nur 2-freie Mengen
und ist selbst nicht vom Begriff az frei» abhangig Also ist die gemachte Annahme
falsch, und die Annahme, dass N eine z freie Menge ist, kann keinen Widerspruch
enthalten Daiaus folgt aber dass N existiert, und damit ist bewiesen, dass es zu

jeder naturlichen Zahl eine folgende gibt, dass also die Zahlenreihe unendlich ist
Um noch em Bild zu gebrauchen, ist es also so Das Unendliche ist einem zunächst

verschlossen Wenn man es haben will dann muss man es aufschlössen Dazu braucht
man einen Schlüssel, und diesen Schlüssel muss man umdrehen Dieses Umdrehen
bedeutet aber einen Zirkel Wenn man einen solchen erfüllbaren Zirkel nicht zulasst,
dann bekommt man das Unendliche eben nicht Wenn man dies aber zulasst, dann
bekommt man es P Finsler, Zürich.
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