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Die Unendlichkeit der Zahlenreihe D)

Es freut mich, hier in Threm Kreise sprechen zu kénnen, in Basel mit seiner altehr-
wiirdigen mathematischen Tradition, und iiber einen Gegenstand, der wohl auch
innerhalb der Mathematik als altehrwiirdig bezeichnet werden kann, nidmlich iiber
die natiirlichen Zahlen.

Auch die Frage, ob es etwas Unendliches gibt, ist schon sehr alt; manche sagen ja,
andere sagen nein, das gilt auch heute noch.

Versuche, die Unendlichkeit der Zahlenreihe zu beweisen, also zu zeigen, dass es zu
jeder Zahl immer eine noch grossere Zahl gibt, sind im letzten Jahrhundert gemacht
worden ; ich nenne hier ‘

Borzano 1851: Paradoxien des Unendlichen (§13).
FRrREGE 1884: Die Grundlagen der Arithmetik (§ 781f.).
DEDEKIND 1887: Was sind und was sollen die Zahlen ? (§5).

Besonders die spitere Entwicklung der Mengenlehre hat dann aber gezeigt, dass diese
Beweise nicht ausreichend sind.

DEDEKIND zum Beispiel gibt in seiner Schrift einen strengen Aufbau des Operierens
mit den natiirlichen Zahlen unter der Voraussetzung, dass es unendlich viele Dinge
gibt. Fiir diese Voraussetzung gibt er aber eine Begriindung, die man nicht als stich-
haltig betrachten kann. DEDEKIND schliesst etwa so: Er betrachtet die Welt der denk-
baren Dinge. Dazu gehért das eigene Ich und zu jedem Ding der Gedanke an dieses
Ding. So erhilt man also den Gedanken an das Ich, dann den Gedanken an den
Gedanken an das Ich usf. und damit scheinbar eine unendliche Reihe von Gedanken.
Aber doch nur scheinbar. Wenn man ndmlich diese Reihe wirklich zu bilden ver-
sucht, dann sieht man, dass man diese Gedanken sehr bald schon nicht mehr von-
einander unterscheiden kann, besonders, wenn man die natiirlichen Zahlen noch nicht
hat, mit denen man sie zihlen konnte; und man sieht auch, dass man bald schon
diese Gedanken nicht mehr weiter bilden kann. Die Reihe dieser Gedanken ist nicht
unendlich.

Diese Uberlegung zeigt nun aber auch, dass es nicht selbstverstéindlich ist, dass die
Reihe der natiirlichen Zahlen unendlich ist. Auch hier kénnte es eine Stelle geben, wo
man einfach nicht mehr weiterkommt. Wenn es tatsichlich nichts Unendliches gibt,
dann ist auch die Zahlenreihe nicht unendlich.

1) Vortrag vor der Mathematischen Gesellschaft Basel, gehalten am 29. Juni 1958. - Es ist fiir unscre
Zeitschrift eine Ehre, diesen bedeutenden Vortrag verdffentlichen zu diirfen. Die Redaktion.
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Wenn wir diese Frage nun entscheiden wollen, ob die Zahlenreihe endlich oder ob
sie unendlich ist, dann miissen wir zuerst sagen, was die natiirlichen Zahlen sind oder
was wir hier darunter verstehen wollen, denn sonst hat die Frage keinen Sinn.

Was also sind die natiirlichen Zahlen in der Mathematik ?

Es sind hier auf jeden‘l—féfﬁﬂhicflf die Zahlwérter eins, zwei, drei, vier usw. Es sind
auch nicht die Zahlzeichen 1, 2, 3, 4 usw. Es sind auch nicht etwa hintereinander-
gesetzte Striche////..., obschon alle diese Dinge ganz gut zum Zihlen gebraucht
werden konnen. Wenn wir zihlen, dann verwenden wir die Zahlworter eins, zwei,
drei, vier usw.; aber damit kommen wir nicht sehr weit, ganz bestimmt nicht bis
ins Unendliche.

Was sind nun also die Zahlen, wie sie in der Mathematik vorkommen ? Diese sollen
auf jeden I'all von der Sprache unabhingig sein, die wir gerade sprechen, und dann
sollen sie vor allem auch unverginglich sein, wihrend doch diese Striche zum Bei-
spiel sehr rasch verginglich sind. Die Zahlen, die EULER untersucht hat, sind genau
dieselben, die wir auch heute noch untersuchen; sie sind also wirklich unverginglich.

Also diese Zahlworter und Zahlzeichen sind nichts anderes als Namen oder Be-
zeichnungen fiir die Zahlen selbst, genau so, wie das Wort «Haus» nur ein Name ist
fiir ein Haus, in dem man wirklich wohnen kann.

Wenn aber die Zahlen unverginglich sind, so folgt schon, dass sie nicht realer, ma-
terieller Natur sind, denn bei materiellen Dingen kénnen wir immer annehmen, dass
sie vergdnglich sind. Die Zahlen sind also ideelle Dinge, und das ist auch das erste und
allereinfachste, was wir in der reinen Mathematik wirklich brauchen: Wir brauchen
ideelle Dinge, mit denen wir operieren und {iber die wir etwas aussagen konnen.

Dazu brauchen wir aber noch mindestens eine Beziehung zwischen diesen Dingen,
denn mit Dingen ohne jede Beziehung kénnen wir nicht viel anfangen.

Eine solche Beziehung einfachster Art ist nun gerade bei den natiirlichen Zahlen
gegeben, namlich die Beziehung, dass zum Beispiel die Zahl 4 auf 3 folgt. Wir sagen
dafiir auch, 4 ist der Nachfolger von 3, oder 3 ist der Vorginger von 4; es ist das
einfach eine unsymmetrische Beziehung zwischen 4 und 3, die wir auch durch einen
Pfeil darstellen kénnen: 4 - 3. Ich lasse den Pfeil absichtlich von 4 nach 3 gehen
und nicht umgekehrt; denn in der umgekehrten Richtung wissen wir ja noch nicht,
wie weit wir kommen ; in dieser Richtung kommen wir zunichst bis zu 1: 3 >2 >1.

Dies ist also eine urspriinglich gegebene Beziehung zwischen diesen Zahlen, eine
Grundbeziehung, die nicht schon andere Beziehungen als gegeben voraussetzt. Wir
konnen diese Beziehung auch mit einem Buchstaben bezeichnen, etwa mit £, und
dann sagen, es gilt 483, 382, 26 1.

Es ist nun zweckmdissig, auch noch 1§ 0 zu setzen, also eine Null einzufiihren,
welche Vorginger von Eins, aber selbst keine natiirliche Zahl sein soll, und diese Null
soll auch keinen Vorgidnger haben. Jede natiirliche Zahl hat dann genau einen Vor-
ginger, die Null hat keinen.

Nach diesen Vorbereitungen kénnen wir jetzt die Null und die natiirlichen Zahlen
vollstdndig definieren:

Defini®on :

Die Null und die natiirlichen Zahlen sind ideelle Dinge, die durch eine Grundbeziehung
B miteinander verkniipft und allesn durch diese Grundbeziehung festgelegt sind. Dabei soll
noch folgendes gelten: ’



P. FinsLer: Die Unendlichkeit der Zahlenreihe 31

1) 0 B x gilt nicht. Das heisst, Null hat keinen Vorginger.
2) Z(n), wenn n 0 oder nBm mit Z(m), aber nicht n B a und nf b mit a + b.

Dabei bedeutet Z(n): n ist eine natiirliche Zahl. 2) besagt also, dass » eine natiirliche
Zahl ist, wenn es genau einen Vorginger hat, der entweder die Null oder selbst eine
natiirliche Zah] ist. Dies soll auch nur in diesem Fall gelten, das heisst, genauer wird
noch gefordert:

3) Z(n) gilt nur, wenn notwendig.

Dies besagt also, dass #» nur dann eine natiirliche Zahl ist, wenn aus 1) und 2) folgt,
dass es eine natiirliche Zahl sein muss.

Wenn zum Beispiel fiir ein Ding x gilt x § x, so dass also x sein eigener Vorginger
ist, dann ist x keine natiirliche Zahl; denn wenn man annimmt, dass x keine natiirliche
Zahl ist, dann muss es auch nach 2) keine sein, also nach 3) ist es keine. Aus der
Annahme, dass Z(x) gilt, wiirde nach 2) auch Z(x) folgen; aber diese Annahme ist
nicht notwendig, und deshalb gilt Z(x) nicht.

Dagegen ist 1 wegen 1 8 0 notwendig eine natiirliche Zahl; ebenso 2 mit 2 1 usf.
Das System der natiirlichen Zahlen ist also nicht leer, es enthilt die Zahlen 1, 2, 3, 4;
es ist eindeutig bestimmt, denn irgendein gegebenes #» muss entweder nach 1) und 2)
notwendig eine natiirliche Zahl sein, oder dies ist nicht der Fall, dann ist es keine.

Schliesslich sind die natiirlichen Zahlen hierdurch auch widerspruchsfrei definiert,
denn es wird nichts Unmégliches verlangt : Nur wenn ein Ding n gewisse Eigenschaften
hat, dann ist es eine natiirliche Zahl, sonst nicht.

Insbesondere wird also nicht verlangt, dass es zu jeder Zahl m eine darauffolgende
Zahl n mit »n B m geben miisse. Ob es das gibt, das muss ja gerade noch untersucht
werden.

Man kann aber jetzt schon Sitze tiber die natiirlichen Zahlen herleiten, und zwar
insbesondere den Schluss von 7 auf n + 1, das heisst das Prinzip der vollstindigen
Induktion; nur muss dieses Prinzip so formuliert werden, dass die Existenz von n+1
nicht schon vorausgesetzt wird. Man kann es so formulieren:

Vollstindige Induktion

W(n) ser eine beliebige Aussage iiber natiirliche Zahlen.
Wenn W(1) gilt und aus der Voraussetzung, dass W(m) gilt und n eine auf m folgende
natiirliche Zahl ist, folgt, dass auch W(n) gilt, dann gilt W(n) fiir alle natiirlichen Zahlen n.

Es wird also nicht gefordert, dass es zu jedem m ein solches # geben miisse.

Der Beweis geht so: Man betrachtet die Gesamtheit der Zahlen #, fiir die A(n)
richtig ist. Zu dieser Gesamtheit gehort die Zahl 1, und wenn m dazu gehért und »
eine natiirliche Zahl ist, die auf m folgt, so gehort auch # dazu; also gehoren alle die-
jenigen n dazu, die nach 2) notwendig natiirliche Zahlen sind. Dies sind aber nach
3) alle natiirlichen Zahlen tiberhaupt. Also gilt A(xn) fiir alle natiirlichen Zahlen 7.

Nun kommen wir wieder zu der Frage, ob die Zahlenreihe unendlich ist, ob es also
zu jeder dieser Zahlen m eine Zahl » gibt, so dass n f m gilt.

Es scheint nun wohl so, als ob dies in der Welt der ideellen Dinge eigentlich selbst-
verstindlich wire, denn man sieht zunichst keinen Grund, der einen hindern wiirde,
zu jeder Zahl m eine folgende Zahl #» anzunehmen.
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In Wirklichkeit gibt es aber einen solchen Grund, und dass dies der FFall ist, das sieht
man bei der Betrachtung der Ordnungszahlen.

‘Ich will hier die Ordnungszahlen nur anschaulich erkldren; sie sollen ja nur zum
Vergleich dienen.

Wenn wir die natiirlichen Zahlen anschaulich erkliaren wollen, dann kénnen wir
etwa so sagen: Wir beginnen mit der Zahl 1 und setzen dann hinter jede Zahl, die
wir auf diese Weise erhalten, eine neue Zahl. So erhalten wir die Zahlen 1, 2, 3,4, 5, ...,
und dies geht anscheinend immer weiter bis ins Unendliche.

Bei den Ordnungszahlen ist es nun so: Man beginnt hier zweckmaissig mit 0, dann
kommt 1, und dann setzt man hinter jede Zahlenreihe, die man auf diese Weise erhilt,
eine neue Zahl.

So erhdlt man zunéichst die e%d_li_g_hgn_ﬂm\ngszahlen 0,1,2,3,4,5..., die man
gewohnlich ebenso bezeichnet wie die natiirlicken Zahlen.

Hinter diese Reihe der endlichen Ordnungszahlen setzt man dann wieder eine neue
Zahl @, dann @ {1, @+ 2 usw., hinter alle diese die Zahl w - @, dann w + @ 4.1
usw., und auch diese Konstruktion kann man anscheinend immer weiter fortsetzen.

In Wirklichkeit geht dies aber nicht, denn hinter die Reihe aller Ordnungszahlen
kann man keine neue Ordnungszahl mehr setzen, denn dies wire doch ein Wider-
spruch: wenn man schon alle Ordnungszahlen hat, dann gibt es keine neue mehr.

Man kann sogar zeigen, dass es unter diesen Ordnungszahlen eine grosste gibtl),
also eine bestimmte letzte Ordnungszahl L, und hinter diese Zahl L kann man dann
keine weitere Ordnungszahl mehr setzen, weil es eben keine mehr gibt.

Es ist also gar nicht selbstverstdndlich, dass man hinter jede Zahl eine weitere
setzen kann; bei den Ordnungszahlen geht es nicht, es fragt sich, ob es bei den natiir-
lichen Zahlen geht oder ob es nicht auch da eine grésste gibt.

Um dies zu entscheiden, muss man sich zuerst klarmachen, was der Grund ist,
dass man bei den Ordnungszahlen schliesslich nicht mehr weiterkommt. Der Grund
liegt nicht einfach in dem Wort «alle»; das ist ein klarer und logisch einwandfreier
Begriff. Der eigentliche Grund liegt vielmehr in einem unerfiillbaren Zirkel: Die
Konstruktionsvorschrift fiir die Ordnungszahlen ist zirkelhafter Natur, sie bezieht
sich ganz deutlich auf sich selbst, und dieser Zirkel ist eben schliesslich nicht mehr
erfillbar. Es heisst ja in der Vorschrift, man solle hinter jede Zahlenreihe, die man
durch eben diese erst zu definierende Vorschrift erhilt, eine neue Zahl setzen.

Und wie ist es bei den natiirlichen Zahlen ? Nun, da ist die Konstruktionsvorschrift
genau ebenso zirkelhaft: es heisst doch auch da, man solle hinter jede Zahl, die man
durch eben diese erst zu definierende Vorschrift erhilt, eine neue Zahl setzen; auch
das konnte unmoglich sein. Auch bei der fritheren Definition der natiirlichen Zahlen
kommt das Z(m) in der Definition von Z(n) schon vor. Dieser Zirkel ldsst sich nicht
einfach wegschaffen.

Wenn man nun diesen Zirkel nicht wegschaffen kann, dann muss man eben zeigen,
dass er bei den natiirlichen Zahlen unschidlich ist. Aber auch das ist nicht so einfach;
man muss sich erst klarmachen, wann ein solcher Zirkel etwas schaden kann, und
dazu muss man ein allgemeineres System von Dingen untersuchen als das der natiir-
lichen Zahlen, nimlich ein solches, in dem der Schaden wirklich auftritt. Man kénnte

1y Vgl. Les Entretiens de Zurich 1938, Ziirich 1941, S, 177.
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die Ordnungszahlen nehmen ; besser ist aber ein noch allgemeineres System, das der
reinen Mengen, deren Elemente nur wieder reine Mengen sind.

Ich will jetzt genauer erkldren, was wir unter einer reinen Menge oder kurz unter
einer Menge verstehen wollen. Wie gesagt, ist es eine Verallgemeinerung der nattir-
lichen Zahlen. Der Unterschied ist im wesentlichen nur der, dass eine natiirliche Zahl
immer nur einen Vorgdnger hat, wihrend eine Menge beliebig viele Vorginger haben
kann. Fiir eine Menge M kann also auch fiir a & b+ ¢ gelten M fa, MBb, Mf¢
usw., wobei diese Dinge a, b, ¢ usw. auch wieder Mengen sein sollen. Die « Vorgénger»
nennt man dann die Elemente von M und schreibt M = {a, b, ¢, ...}. Dies erklirt
auch den Namen «Menge»; in Wirklichkeit sind aber die Mengen auch nur ideelle
Dinge, welche durch die §-Beziehung mit ihren Elementen verkniipft sind.

Die genaue Definition der Mengen lautet nun so:

Definition
Die Mengen sind ideelle Dinge, die durch eine Grundbeziehung 8 miteinander verkniipft
und allein durch diese Grundbeziehung festgelegt sind. Daber soll noch folgendes gelten .

a) Jede Menge bestimmt ihve Elemente, das heisst die Mengen, zu denen sic die
Beziehung B besitzt.

Wenn also eine Menge gegeben ist, so sind auch ihre Elemente gegeben. Es gilt aber
nicht das Umgekehrte ; wenn bestimmte Mengen gegeben sind, dann braucht es nicht
eine Menge zu geben, welche gerade diese Mengen als Elemente besitzt ; das darf man
nicht verlangen.

Eine weitere Forderung bezieht sich auf die /dentitdt von Mengen:

b) Die Mengen M und N sind identisch immer, wenn moglich.

Also immer dann, wenn die Annahme, dass dic Mengen M und N identisch sind,
keinen Widerspruch enthilt, soll M = N sein.

Wenn also zum Beispiel 7 = {I} und K = {K} gesetzt wird, so folgt I - K. Man
koénnte sagen, das ist selbstverstdndlich, denn die Mengen I und K unterscheiden sich
tatsachlich nicht, dann darf man auch nicht festsetzen, dass sie verschieden sind, das
wire ein Widerspruch. Es gibt aber Fille, wo diese Entscheidung nicht so einfach ist;
deshalb wird b) gefordert.

Es ist noch eine weitere Bedingung nétig, ndmlich

c) M st Menge immer, wenn moglich.

Es konnte sonst sein, dass es gar keine Mengen gibt. Also immer, wenn die An-
nahme, M sei eine Menge, keinen Widerspruch enthilt, dann soll M eine Menge sein.

Es folgt nun, dass es Mengen gibt. Zum Beispicl die Null ist die Nullmenge, die kein
Element besitzt; die natiirliche Zahl 1 ist die Menge, die 0 als Element enthilt,
2 enthilt 1 als Element usw.; also die natiirlichen Zahlen sind bestimmte Mengen.

Das System aller Mengen ist also nicht leer; es ist eindeutig und widerspruchsfrei
festgelegt, denn es wird wieder nirgends etwas Unmégliches verlangt; nur wenn ein
Ding gewisse Eigenschaften hat, dann ist es eine Menge.

Es gibt aber Fille, wo es zu gegebenen Elementen keine zugehérige Menge gibt.
So zum Beispiel, wenn man alle Mengen betrachtet, die sich nicht selbst enthalten,
also alle Mengen N, fiir die N 8 N nicht gilt, so gibt es keine Menge, die alle und
nur diese Mengen N enthilt, denn sic miisste sich selbst enthalten, wenn sie sich
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nicht enthilt, und dirfte sich nicht enthalten, wenn sie sich enthilt. Der Grund,
warum diese Menge nicht existiert, ist also wieder ein unerfiillbarer Zirkel in der
Definition der Menge.

Es kann aber sein, dass eine zirkelhaft definierte Menge doch existiert ; zum Beispiel
die Menge aller Mengen enthilt sich selbst und alle anderen Mengen, hier ergibt sich
kein Widerspruch, diese Menge existiert, sie ist aber zirkelhafter Natur.

Es gibt aber auch Mengen, die zirkelfrei definiert sind, so zum Beispiel die Null-
menge 0, die 1, die 2. Hier tritt bei der Definition keinerlei Zirkel auf; dies sind
explizite Definitionen.

Es kommt nun darauf an, diese beiden Fille gut voneinander zu unterscheiden.
Welches sind die zirkelfreien und welches die zirkelhaften Mengen ?

Hier ergibt sich aber wieder eine Schwierigkeit: Diese Unterscheidung kann nicht
explizit, also nicht in zirkelfreier Weise gegeben werden. Wire dies ndmlich méglich,
dann konnte auch die «Menge aller zirkelfreien Mengen» explizit, also zirkelfrei erklirt
werden, sie wire dann selbst eine zirkelfreie Menge, aber als solche miisste sie sich
selbst enthalten, und eine sich selbst enthaltende Menge kénnen wir doch nicht als
zirkelfrei bezeichnen.

Diese Unterscheidung zwischen zirkelfreien und zirkelhaften Mengen kann also
nur durch eine implizite Definition gegeben werden ; hier kommt man mit einfachem
Konstruieren nicht weiter. Um nicht an die anschauliche Vorstellung gebunden zu
sein, schreiben wir «z-frei» an Stelle von «zirkelfrei» und definieren:

I. Eine Menge ist z-frei, wenn thve Elemente z-frei sind und sie selbst nicht vom
Begriff «z-frei» abhingt.

11. Eine Menge ist z-frei nur, wenn notwendig.

Eine Menge ist vom Begriff «z-frei» unabhingig, wenn sie sich auf Grund ihrer
Definition nicht dndert, gleichgiiltig, welche Mengen als z-frei bezeichnet werden. Mit
andern Worten: Man macht zunichst die Annahme, irgendwelche gegebene Mengen
seien z-frei und die andern nicht. Solange noch nicht feststeht, welche Mengen z-frei
sind, ist diese Annahme zuléssig. Wenn dann eine Menge M auf Grund ihrer Definition
unabhingig von dieser Annahme eindeutig festliegt, dann ist sie vom Begriff «z-frei»
unabhingig.

Die «Menge aller z-freien Mengen» ist vom Begriff «z-frei» abhdngig, denn sie dndert
sich nach dieser Definition, sobald man neue Mengen als z-frei bezeichnet. Wird keine
Menge als 2-frei bezeichnet, dann ist es die Nullmenge ; werden alle als z-frei bezeichnet,
dann ist es die Menge aller Mengen. Die Menge kann aber auch nicht auf andere
Weise ohne diesen Begriff definiert werden, denn sonst wire sie z-frei und miisste sich
selbst enthalten, was, wie sich zeigen wird, nicht sein kann. Aber die Nullmenge ist
vom Begriff «z-frei» unabhingig, weil man sie als «Menge ohne Elemente» definieren
kann, ohne diesen Begriff zu verwenden ; dies bleibt immer dieselbe Menge.

Es mag auffallen, dass es Mengen gibt, die von einem bestimmten Begriff abhdngen,
die man also nicht definieren kann, ohne diesen Begriff zu Hilfe zu nehmen. Dass es
das aber gibt, zeigt sich schon an einem andern Beispiel: Die «Menge aller Mengen»
ist vom Begriff «alle» abhdngig. Wenn man nidmlich diese Menge definieren konnte,
ohne den Begriff «alle» zu verwenden, dann konnte es keinen Widerspruch ergeben,
wenn man noch weitere Mengen bilden wollte, und das darf doch nicht sein.
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Ich will jetzt zeigen, dass eine z-freie Menge sich nicht selbst enthalten kann. Dies
folgt aus der IForderung II. Wenn namlich M sich selbst enthilt, also M f M gilt, dann
kann man die Menge M zunichst als 2-haft, das heisst als nicht z-frei bezeichnen. Dann
enthédlt sie nicht nur z-freic Elemente, sie muss also nach I nicht z-frei sein, und
nach II ist sie es auch nicht. Also: Jede sich selbst enthaltende Menge ist z-haft.

Aber die natiirlichen Zahlen sind z-frei. Dies ergibt sich mit dem Induktionsprinzip:
0 und 1 sind z-freie Mengen. Wenn # == {m} ist und m ist z-frei, dann ist auch »
z-frei, denn » enthélt nur ein z-freies Element und ist vom Begriff «z-frei» unabhingig.
Also sind alle natiirlichen Zahlen z-frei.

Dass jede natiirliche Zahl von allen ihr vorangehenden verschieden ist, folgt schon
aus den IForderungen 2) und 3).

Nun ist aber immer noch nicht bewiesen, dass es unendlich viele Zahlen gibt, dass
es also zu jeder Zahl m eine Zahl »n = {m} gibt. Da die natiirlichen Zahlen z-freie
Mengen sind, geniigt es, allgemeiner zu zeigen, dass es zu jeder z-freien Menge M
eine Menge N gibt, die sie als einziges Element enthilt: N = {M}.

Dazu will ich zuerst einen scheinbar komplizierteren, in Wirklichkeit aber einfache-
ren IYall betrachten, um zu zeigen, wie man nun eine solche Existenz in nichttrivialen
I'dllen beweisen kann. Ich will zeigen, dass die Menge aller z-freien Mengen existiert.

Sie werde mit U bezeichnet. Die Annahme, U sci selbst eine z-freie Menge, fithrt zu
einem Widerspruch, denn dann miisste sie sich selbst enthalten, und das geht nicht.
Nun mache ich die Annahme, U sei eine z-hafte Menge. Diese Annahme enthilt
keinen Widerspruch, denn erstens ist dann U tatsdchlich eine neue, von allen gege-
benen verschiedene Menge, denn die gegebenen sind ja alle z-frei, und zweitens ist U
auch nach Definition z-haft, namlich vom Begriff «z-frei» abhdngig, denn sonst kénnte
es nicht zu einem Widerspruch fithren, wenn man U nachtréglich als z-frei bezeichnet.
Wenn aber die Annahme, dass U eine z-hafte Menge ist, keinen Widerspruch enthilt,
dann ist sie erfiillt, und U existiert also.

Genau so folgt nun aber allgemeiner:

Wenn die Annahme, eine Gesamtheit V von z-freien Mengen bilde eine z-freie Menge,
zu etnem Widerspruch fithrt, dann bildet V eine z-hafte Menge.

Zum Beweis braucht man oben nur U durch die zu V' gehoérige Menge zu ersetzen.

Dieser Satz wird nun angewendet auf die Gesamtheit, die aus der einen z-freien
Menge M besteht:

Wenn die Annahme, diese Gesamtheit bilde eine z-freie Menge, zu einem Wider-
spruch fiihren wiirde, dann wiirde sic eine z-hafte Menge bilden. Das tut sie nun aber
nicht, denn die Menge N = {M } ist nicht z-haft, sie enthdlt ja nur z-freie Mengen
und ist selbst nicht vom Begriff «z-frei» abhingig. Also ist die gemachte Annahme
falsch, und die Annahme, dass N eine z-freie Menge ist, kann keinen Widerspruch
enthalten. Daraus folgt aber, dass N existiert, und damit ist bewiesen, dass es zu
jeder natiirlichen Zahl eine folgende gibt, dass also die Zahlenreihe unendlich ist.

Um noch ein Bild zu gebrauchen, ist es also so: Das Unendliche ist einem zunéichst
verschlossen. Wenn man es haben will, dann muss man es aufschliessen. Dazu braucht
man einen Schliissel, und diesen Schliissel muss man umdrehen. Dieses Umdrehen
bedeutet aber einen Zirkel. Wenn man einen solchen erfiillbaren Zirkel nicht zulisst,
dann bekommt man das Unendliche eben nicht. Wenn man dies aber zuldsst, dann
bekommt man es. P. FINSLER, Ziirich.



	Die Unendlichkeit der Zahlenreihe

