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G.Apawms: Conchoid and Negative Circle 9

ARCHIMEDES hat nun das klassische Beweisverfahren fiir den vorliegenden Zweck
etwas modifiziert, indem er nicht von den Differenzen B — A4, sondern von den Ver-
hiltnissen B:A spricht. Statt zu beweisen, dass die Differenz B — A kleiner gemacht
werden kann als jede gegebene gleichartige Grosse F, beweist er, dass das Verhiltnis
B:A kleiner gemacht werden kann als ein gegebenes Streckenverhiltnis b:a mit
b > a. Mit dem Verhiltnis kann man etwas leichter rechnen als mit der Differenz,
denn die Oberflichen der beiden dhnlichen Rotationskérper verhalten sich wie die
Quadrate entsprechender Strecken und die Inhalte wie die Kuben.

Mit dieser modifizierten Exhaustion beweist ARCHIMEDES also, dass die Oberfliche
der Kugel gleich vier Grosskreisen ist und der Inhalt viermal so gross wie der eines
Kegels, dessen Basis ein Grosskreis und dessen Hohe der Kugelradius ist. Nun ist nach
Eupoxos dieser Kegel gleich einem Drittel des Zylinders mit gleicher Basis und glei-
cher Hohe; also ist die Kugel gleich 4/3 dieses Zylinders, das heisst gleich 2/3 des ihr
umbeschriebenen Zylinders.

Uberblicken wir nun den Beweis, so sehen wir, dass er sich in allen grossen Linien
als Produkt einer bewundernswert scharfsinnigen, bewussten Uberlegung verstehen
lasst. Einige Einfélle (wie die Verwandlung des Kegelmantels in eine gleich grosse
Kreisfliche und die Benutzung von Verhiltnissen statt Differenzen am Schluss) die-
nen nur zur eleganten Darstellung des Beweises. Wesentlich waren nur zwei Einfélle:
erstens das Ziehen der zu einer Seite parallelen Diagonalen in Figur 3, zweitens die
Zerlegung des Rotationskdrpers in Stiicke, die im Mittelpunkt X zusammenkommen
und durch Rotation von Dreiecken entstehen. Wir haben aber gesehen, wie man durch
bewusste Uberlegung die Einfille geradezu provozieren kann, indem man sich richtig
klarmacht, welche Schwierigkeit an der betreffenden Stelle zu iiberwinden ist und
welche Bedingungen die gesuchte Umformung oder Zerlegung zu erfiillen hat.

B.L.vaN DER WAERDEN, Ziirich.

Conchoid and Negative Circle

(Continued)

7.

The relation of the negative circle to the pair of conchoids is not one to one, for it
depends on the choice of the unit circle v2 The form (as distinct from the size and
location) of the Conchoid of N1coMEDESs as a Euclidean curve depends, like that of
the conic, on a single parameter of zero dimension. It is the ratio, say u, of the radial
parameter to the distance of the node from the base-line. To form a given ‘negative
circle’, any chosen point N along ¢, will serve as node (N’ or N" in figure 3) of the
‘auxiliary conchoid’ and will in turn determine the circle v2, i.e. the chosen unit by
which the two spaces are related. Moving the diametral point D into the central
position M (figure 5) whence proceed the tangents at the extremities L, L of the
latus rectum, the end-points (D, etc.) of the rotating satellite line become the upper
and lower vertices A, A of the conchoid. It is then easy to see that the condition,
relating the auxiliary conchoid to the negative circle which it will help to form, is that
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the ratio, ON:EA in figure 5, of the distance of the node from the point-at-infinity
to the radial parameter of the conchoid be equal to the eccentricity of the conic,
¢ = m|r. If the node is on the conic at L, figure 5, a conchoid with a cusp, u =1,
will be the outcome. If the node is within the conic (in the Euclidean sense), the
conchoid will have an isolated point at the node, 4 < 1; if outside the conic, it has
a real loop, u > 1. The resulting family of conchoids, with common base-line ¢ and
nodes along ¢, auxiliary to a given ‘negative circle’, will therefore have their vertices
along the lines, ML in figure 5, touching the latter at the extremities of the latus
rectum. These relationships are illustrated in figure 6 and will be gone into more
fully in § 11.

8.

Analytical Confirmation, proving that the diagonals of the moving parallelogram
in figures 3 and 4 envelop the required conic.
In homogeneous Cartesians, the corners Dj, etc. have the coordinates:

Y4y = "71}&_ + 7sin0 ]
Df, D;: ‘o
X Z,= — C(;n + 7 cosf 4+ m
C | &
YoZy= — Pl 7 sin 0
D;, Dy: ]
Xon foy == — ol cosh +m
m J
whence the diagonals are the lines:
DDy, DiD;: (rsinf) X — (rcosO +m)Y =42, (6)
giving in either case, by partial differentiation with respect to the parameter 6:
Y:X = —cotf. (7)

By the construction, the point D on ¢, common to both diagonals, has coordinates
X, Y such that Y:X = 4tanf. Equation (7) therefore confirms that the meeting-
point of successive diagonals—parameters 0, 0 4+ d—is the point T, such that DT
subtends a right angle at O, as of course it must do if the lines are to envelop a conic
with O as focus and c¢ as directrix.

Eliminating  between (6) and (7) and omitting the alternative solution X2+ Y2=0,

we obtain the envelope: 5 712
XY= (’;) (v + = (8)

m

clearly the point-equation of a conic with focus at the origin, eccentricity & = m/r,
and the line ¢ (Z: Y = —m) for directrix. Deriving the line-equation by the familiar

method, we obtain:
X2+ (y —m)2=r22? (9)

equation to the negative circle with radius  and median line ¢ (x:y:z = 0:m:1).
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It may be mentioned in passing that if the symbols (X,Y,Z), (x,v,2) in equations
(6) and (9) are interchanged, (6) becomes the obvious line-equation of the point-pair,
in which the Euclidean circle (9), polar-reciprocal to the given negative circle, meets
the moving diameter determined by 6, which is now the angle between this diameter
and the axis of Y. Calling the centre of the circle C, the ‘eccentricity’ m/r = & now
has the natural and obvious meaning; it is the eccentricity of O as origin, relative
to the given circle—the ratio of the distance OC to the radius. At the same time, in
the negative space determined by O, this circle counts as a conic, the same eccentricity
¢ being now the constant ratio of the negative distances of all the tangent lines from o
as focal line and C as director-point. (‘Focal line” and ‘director-point’ are the nega-
tive-Euclidean equivalents of focus and directrix; the constant ratio is not difficult
to prove and throws an interesting light on the relation of conics and Apollonian
circles.) The concept of ‘eccentricity’ thus has a double significance in either case.-For
the one space—whether positive or negative—for which the curve is a circle, it is the
distance, relative to the radius, of the central point or median line from the natural
origin, namely the infinitude of the other space, while for the latter it is the eccentricity
of the conic according to the classical definition.

Needless to say, in the above construction the roles of the two spaces can also be
reversed, though the resulting process will be more difficult and of less practical
value. That is to stay, starting from negative space and assuming that a fixed
negative or line-to-line distance can be transferred at will, the polar-reciprocal of the
conchoid, formed as a linewise curve, will lead to the construction of a Euclidean
circle pointwise.

9.

Equation (6) gives for the line-coordinates of the pair of tangents to the negative
circle from the diametral point 0:

x:y:2=(drsinf):(m T rcosf):1. (10)

This therefore is the parametral equation of the negative circle (9). 0 = 7 gives for
the parallel tangents from the (Euclidean) point-at-infinity of ¢, i.e. the tangents at
the ends of the major axis, x:y:2 = 0:(m 4 7):1. The significance of m - 7 in the
measyres of negative space is obvious. For 6 = 7/2 we have the tangents (ML in
figure 5) et the ends of the latus rectum, x:y:z2= 4 7:m:1. For the Euclidean
length of the semi-latus-rectum this gives OL = 1/r, a result which is easily confirmed
synthetically. (The ‘negative translation’, cf. § 2, with fixed point and line O, ¢,,
transforming ¢ into o, transforms the negative vector ¢/ in figure 5 into the
equivalent vector ol’, where !’ is the Euclidean parallel to OM through L. Hence
r=cl=o0l=1/0OL.)

The horizontal and vertical Euclidean lengths in figure 5 and the essential ratios
u, e—compare the similar triangles AEM, MOL—are as follows:

ME=ON=m, MO=EN=_'; EA=r OL=_1, |
u=FEAEN=FEA:MO; &=L0:0M =ME:EA, e,u::ME:MO:mz.[



G.ApawMs: Conchoid and Negative Circle © 13

The radius of the common unit circle v2 is given by the geometry of the figure; it is
/—1 times MO« ON=FEA -OL = 1.

Besides the values 7/2 and 0, for which the parallelogram of figure 3 becomes rect-
angular and degenerates, there are two other special values of the parameter 0,
namely:

(i) O=cos 1 (+e) and (ii) 0=sec ! (+eg). (12)

(i) are the values, real and distinct only if #» > m, for which a diagonal of the parallelo-
gram becomes perpendicular to ¢ and to the sides 2 m; this gives the tangents to the
ellipse at the ends of the minor axis. (ii) are the values, real and distinct only if » < m,
for which a diagonal is perpendicular to the other pair of sides, 2 7. This gives the
asymptotes of the hyperbola. For the construction of these special tangents the circle
on ON or that on E4 as diameter (figure 5) may be used, and it is easy to prove that
the resulting satellite lines have the required length; the details are here omitted.
For m = » (parabola), equations (12) give 6 = 0 or x, the special pairs of tangents
merging of course into o.

In the chosen coordinate system (origin at O) the auxiliary conchoid has the
equation:

72 {72 Y2 (Y TEA (v+ ﬁ)z(xu Y:i2mX2) (13)
m) | m i
the + and — in the final term referring to the two equal conchoids with nodes to the
left and right of O respectively, cf. figures 3 and 4.

Conchoid and negative circle touch at the points, real or imaginary, where they meet.
The conchoid remains—for Euclidean space—entirely outside the conic. This follows
readily from the original construction, from the geometry of the respective curves,
and from equations (8) and (13). The points of contact, 7 in figure 5, are the points
where the conic meets the circle on ON as diameter. For every value of & there will
be certain osculating conchoids, where the two points of contact merge into one.

Figure 6 indicates how as an outcome of this relation the conchoid appears as
envelope of its auxiliary conchoids. Analysis confirms that the envelope of the con-
choid-family (§ 7) breaks up into the lines ¢ and ¢,, each counting doubly, and the
required conic.

10.

We conclude with a brief reference to three-dimensional space and the negative-
Euclidean sphere (cf. §§ 1-3). The latter will of course be a quadric surface touching
the absolute cone borne by the point-at-infinity O. (This cone, being spherical?),

1) The term ‘spherical cone’ to denote any cone in perspective with the Kugelkreis is used for example
by Prof. L. N. G. Fivown in his Introduction to Projective Geometry (1935 edition, p. 303). (Sphdrischer
Kegel would presumably be the German equivalent.) I.. HEFFTER and L. KoEHLER, Analytische Geometrie,
Vol. II (G. Braun, Karlsruhe 1923), p. 2, use the term absoluter Kegel. Where the geometry of negative-
Euclidean space is concerned, it is, however, obviously better to reserve the designation ‘absolute’ for the
unique spherical cone carried by the point-at-infinity, determining the metric of the space. Kugelkreis
(for which there is no easy English equivalent) is an apt expression for the precise reason that every
Euclidean sphere contains this circle and every quadric containing it is a Euclidean sphere. In the same
way the negative-Euclidean sphere is determined by the absolute cone in the point-at-infinity, functioning
as ‘ Kugelkegel’.
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might well be named the Kugelkegel, by analogy to the Kugelkreis in the Euclidean
plane-at-infinity w.)

In its Euclidean aspect the negative sphere will be a spheroid or elliptic paraboloid
or hyperpoloid of rotation, with O as focus and with the median plane, say y (polar
to 0) as directrix-plane. We shall assume ¥ to be a horizontal plane, beneath O. The
spatial forms are easily imagined by rotating figures 4, 5, etc.—taking the plane of
the paper henceforward to be vertical—about the vertical axis through O (OM in
figure 5). The median line ¢ becomes the horizontal median plane y. The ‘commedial’
family of negative spheres appears as a family of spheroids, etc. with common focus O
and diregtrix-plane y.

The oo? lines of the median plane act as ‘diametral lines’, analogous to the oco?
diameters—lines through the central point—of a positive-Euclidean sphere. Every
diametral line, say d, carries an opposite pair of tangent planes to the negative sphere,
say A;, Ay, such that the negative distance y 4, =y 4, = » remains constant while 4
moves freely throughout y. Corresponding to the constant owtward radial distance
of all the points of a positive sphere from its centre, we have the picture of a
constant inward tangential sweep of all the planes of the negative sphere as from
its median plane.

To form the sphere from this idea we have recourse once more to the construction
of satellife lines, though these will need renewed definition. To this end, figure 2
(imagined vertical) may be taken as the cross-section of a three-dimensional space, at
once posﬁive and negative, with the point-at-infinity of the negative space at 0. The
broken circle is to represent the common unit sphere of the two spaces, say v2? (cf. § 1).
Let P be the cross-section of a line d, perpendicular to the plane of the paper, bearing
two planes 4,, 4,, shown in cross-section as the lines /;, /,. p will then be the polar line
of d; L,, L, the poles of 4,, A, with respect to v2. The positive or point-to-point and
negative or plane-to-plane distances are thus equated; L,L, = 4, 4,. We now rotate p
through 90° about an axis through O, parallel to 4, i.e. perpendicular to $ and to the
plane of the paper. Rotating in either of two opposite directions, we obtain the lines
p', p", which we define to be the principal satellites of the line d. They obviously
meet the planes 4;, 4, in points K,, K, on either side, such that, as in § 3,
K,K,= L,L,= 2, 4,. The negative distance of any two planes of d can be measured
as the positive distance of the points in perspective with them along either of its
two ‘principal satellites’.

11.

The satellites can now be used for the construction of the negative sphere directly
from the idea of constant inward distance of all its tangent planes from the median
plane. Before proceeding, we should, however, note two essential differences in the
‘satellite’ conception, as against the simpler two-dimensional case. The differences
are these: (1) The principal satellites of all the lines of space can no longer be obtained
by a single pair of correlations. For the rotation leading from p to ' or p” requires a
specific axis through O, the direction of which is determined by that of the original
line d. (To speak of correlations at all, the oot lines of space would require co? distinct
pairs of correlations, corresponding to the co? sheaves of parallel lines 4.) (2) The two
principal satellites are no longer the only ones, if by ‘satellite of 4’ we mean any line
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such that the negative distance from plane to plane of d equals the positive distance
of the points in which these planes meet the line.

In effect, it is obvious that either principal satellite (p’ or $” in figure 2, seen in its
three-dimensional aspect) can be moved continuously into co? other positions, such
that the distance K, K, of the points in which it meets the planes 4,, 4, remains unal-
tered. To begin with, ¢’ can be moved into co! positions parallel to itself in a plane
through p’, parallel to 4. Secondly, if moved into another parallel plane, nearer to 4,
it need only be turned through the appropriate angle to keep the distance K, K, still
unaltered. Within this nearer plane, it can then again be moved into co! parallel
positions. We thus obtain a special type of line-congruence, the oo? real lines of which
are all contained in a set of planes parallel to d, between (and including) the two
outermost planes in which the principal satellites p’, p” (figure 2) are situated. It is
the satellite congruence of the line d with respect to the chosen unit sphere. Conversely
and reciprocally, we can determine the co? real lines for which a given line, say s, will
serve as satellite. These and kindred problems lead to a number of interesting exam-
ples in the theory of line-congruences, which may be worth investigating.

12.

Returning now to the construction of the negative sphere, only the two principal
satellites of each diametral line (§ 10) will be required. Figure 3 may now be taken
as the cross-section of the spatial figure, with the ellipse (negative circle) representing
the negative sphere and the line ¢, once again, the median plane y. Let the point D
represent a diametral line d, perpendicular to the plane of the paper. d’, @” are then
the principal satellites of d, along each of which the constant radius, K'D; = etc. =7,
is measured off in the two opposite directions. dD; = dD; and dDy = dDj are then
the tangent planes borne by d. Clearly, if 4 moves parallel to itself in the plane y, 4’,
d” will rotate as before about the fixed points N, N” (cf. figure 4).

Assigning different directions to  within v, it is easy to recognize that the principal
satellites of all the lines of y form a line-congruence consisting of all the lines joining
the points of the vertical axis through O to the points of an Euclidean circle in the
horizontal plane y, (shown in cross-section as c,, figure 3), namely the circle with O
as centre and N’, N” as a pair of diametrically opposite points.

To express this analytically, let X, Y, Z, W be homogeneous Cartesian point-coor-
dinates with O as origin and W = 0 as the plane-at-infinity w. Making the Z-axis
vertical, Z = 0 is the plane y,, and mZ + W =0, or W:Z = —m, the plane y, m being
now the negative-Euclidean distance of the median plane inward from w. The
congruence of principal satellites of the diametral lines is then composed of all
the lines meeting the vertical axis X =Y = 0 and the horizontal circle Z = 0,
X2 4+ Y2— m2 W2 Marking off the constant Euclidean distance r along all these
satellites, in either direction as from their common points with y, we obtain an octic
surface, such as results for example by the rotation of the symmetrical pair of con-
choids in figure 4 about the vertical axis through O. Every diametral line 4 in y is
associated with four points of this surface, forming a parallelogram in a vertical plane
through O as in figure 3, and the two planes, joining @ to the diagonal pairs of these
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points, are the tangent planes from d to the required sphere. The three-dimensional
construction is thus completed.
As will be readily confirmed, the equation of the conchoidal octic surface is as
follows: / . i
[(X2 LY 2 m WY (24 IMK)~ r2 7 Wz]“ l
(14)
W4
= 4m WX YY) (24 )

For the plane Y = 0, this leads back (substituting Z, W for Y, Z respectively) to
equation (13) for the symmetrical pair of conchoids as in figure 4. As in figure 6, § 9,
a family of surfaces of this type will envelop each negative sphere. Inserting Z = 0 in
(14), we obtain W = 0 counting quadruply and the nodal circle X2+ Y2 —m2 W2=0
counting doubly; this circle is of course an isolated feature if the plane conchoid
sections have isolated points for nodes.

GEORGE ApaMS, Clent, Stourbridge (England).

Kleine Mitteilungen

Drei neue Niherungskonstruktionen fiir die Quadratur des Kreises

In dieser Zeitschrift!) wurden kiirzlich mehrere Verfahren mitgeteilt, um zu einem
gegebenen Kreis mit Zirkel und Lineal ein nahezu flichengleiches Quadrat zu kon-
struieren oder, was dasselbe ist, Naherungswerte fiir

Yn=1,77245385...

elementargeometrisch zu realisieren. Wir vermehren diese Moglichkeiten hier um drei
einfache und recht genaue Konstruktionen, deren Berechnung mit Hilfe der Satz-
gruppe des Pythagoras keinerlei Schwierigkeiten bietet.

Wir bezeichnen durchwegs mit O und » Mittelpunkt und Radius des gegebenen
Kreises, mit 4 und B Eckpunkte des Ndherungsquadrates.

a) Der Wert

V17 —8Y/3 = |/3,14359... = 1,77301...

ist zwar nur um wenig genauer als die oben erwdhnten Naherungen. Hingegen erlaubt er
eine bemerkenswert einfache Konstruktion (Figur 1). Mit dem Radius » schlagen wir aus
einem beliebigen Peripheriepunkt C des gegebenen Kreises den Bogen ODE, aus dem
Schnittpunkt D den Bogen OCE. Wird die Strecke EO iiber O hinaus um OF = 2v
verlangert, so schneidet der Kreis mit Zentrum F und Radius 3 » aus der Geraden CD

eine Sehne der Linge AB =17 l/lh7i—§ i/g: also die gesuchte Quadratseite. Man beachte
némlich, dass die Halfte dieser Sehne Kathete in einem rechtwinkligen Dreieck mit der
Hypotenuse FA = 37 und der zweiten Kathete 274 (r|/3)/2 ist.

1) E.VoeLLmy, Die Quadratur des Kreises in Niherungskonstruktionen, E1. Math. 5, 1215 (1950). A. Z1In-
NIKER, Zwet neue Ndherungskonstruktionen der Kreisquadratuyr mit Zirkel und Lineal, E1. Math. 6, 112-113
(1951). Neben den in diesen Mitteilungen zu findenden weitern Literaturvermerken sei u.a. auf TH. VAHLEN,
Konstruktionen und Approximationen (Teubner, Leipzig 1911), sowie auf ausserordentlich scharfe Nahe-
rungen von S. RAMANUJAN, Modular Equations and Approximations to 7, Quart. J. 45, 350-372 (1914)
hingewiesen.



	Conchoid and Negative Circle

