Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 8 (1953)
Heft: 5
Rubrik: Kleine Mitteilungen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Kleine Mitteilungen 107

Innere des Winkels ABC und schneidet daher (auf Grund der Anordnungsaxiome)
die Strecke AB, und zwar senkrecht. Somit kann dann der Beweis auf die iibliche
Art zu Ende gefiihrt werden.

Bemerkung: Ob ohne Verwendung der Axiome des Polygoninhaltes, allein aus den
Axiomen (1) bis (6), die Moglichkeit der Konstruktion des Lotféllens generell erweis-
bar ist, bleibt hier unentschieden. PauL BERNAYS, Ziirich.

Nachtrag 1)

Vom axiomatischen Standpunkt aus kann es als unerwiinscht erscheinen, dass in
den Axiomen (7) des Polygoninhaltes implizite, durch den Polygonbegriff, der (sonst
nicht auftretende) Begriff der endlichen Zahl zur Anwendung kommt. Diesem weniger
elementaren Charakter der Axiome (7) kann abgeholfen werden, indem man die
Axiome (7a) und (7c) folgendermassen abindert:

(a) Die Flachen der Dreiecke bilden ein Gréssensystem,

(c) bei der Zerlegung eines Dreiecks in zwei Teildreiecke durch eine Transversale
ist der Inhalt des ganzen Dreiecks gleich der Summe der Inhalte der Teildreiecke.

Auf Grund dieser «Axiome des Dreiecksinhaltes» kann zunichst der folgende Satz
bewiesen werden: Wird ein Viereck durch beide Diagonalen in Teildreiecke zerlegt,
so ist fiir jede der beiden Zerlegungen die Summe der Dreiecksinhalte die gleiche.
Dieser Fall liegt insbesondere bei jedem Parallelogramm vor. Wir kénnen demgemadss
als Flicheninhalt eines Parallelogramms eindeutig die Summe der Teildreiecks-
inhalte bei der Zerlegung durch eine Diagonale erkliren. Hiernach haben gleichsinnig
kongruente Parallelogramme, insbesondere kongruente Rechtecke, gleiche Flichen-
inhalte. Ferner ergibt sich der Satz, dass Parallelogramme mit gleicher Grundlinie
und gleicher Hohe gleichen Flicheninhalt haben, und somit ldsst sich auch der Eu-
klidische Beweis des pythagoreischen Lehrsatzes durchfithren. Endlich erhalten wir
auch den Satz vom Gnomon, und damit sind alle flichentheoretischen Hilfsmittel
fiir unsere Beweisfiihrung gewonnen.

Es sei noch bemerkt, dass mittels der Axiome des Dreiecksinhaltes die allgemeine
Lehre vom Polygoninhalt begriindet werden kann. Man hat dazu insbesondere den
Satz zu beweisen, dass bei jeder beliebigen Zerlegung eines Dreiecks in Teildreiecke
der Inhalt des ganzen Dreiecks gleich der Summe der Inhalte der Teildreiecke ist.
Daraus ldsst sich dann weiter folgern, dass fiir alle Zerlegungen eines Polygons in
Teildreiecke die Summe der Inhalte der Teildreiecke die gleiche Grosse ergibt. Diese
eindeutig bestimmte Grosse kann als der Polygoninhalt definiert werden, und es ist
dann der Satz beweisbar, dass Polygone dann und nur dann den gleichen Inhalt
haben, wenn sie (im iiblichen Sinne dieses Terminus) ergidnzungsgleich sind.

Kleine Mitteilungen

Einige Parabeleigenschaften

Die iibliche Konstruktion des Kriimmungsmittelpunktes M in einem beliebigen
Punkt P einer nicht zerfallenden Kurve zweiter Ordnung verliuft nach folgen-
dem Satz: Projiziert man den Schnittpunkt der Kurvennormalen % in P mit der

1) Bei der Korrektur hinzugefiigt.
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Hauptachse des Kegelschnittes in Richtung der Kurventangente ¢ in P auf den durch P
gehenden Durchmesser d, dann stellt dieser Punkt Q gleichzeitig die zur Hauptachse
orthogonale Projektion de=s zu P gehdrenden Krimmungsmittelpunktes M dar (Figur 1).

Fig.1

(1) Bei einer Parabel verhalten sich nun stets die Abstinde der Punkte P und Q
von der Leitlinie / wie 1 zu 3. Ist » die Abszisse des Parabelpunktes P, F der Brenn-
punkt und p der Parameter, dann gilt

P—{l=x+—§ und 13(?,:1,__2—%23:2-:(-}—75,

also P——{l:Q——ll:(x+—§—):3(x+—§—)=1:3.

Evgebnis 1: Der geometrische Ort der orthogonalen Projektionen der Kriimmungs-
mittelpunkte einer Parabel auf die Durchmesser d, die jeweils durch jene Parabel-
punkte gehen, die zu den betreffenden Kriimmungsmittelpunkten gehéren, ist eine
Parabel, die zur gegebenen affin liegt. Die Leitlinie der gegebenen Parabel ist Affini-
titsachse, und das Dehnungsverhiltnis in Richtung der urspriinglichen Parabelachse
betrdagt 1 zu 3.

(2) Aus Figur 1 ldsst sich noch eine andere einfache Ermittlung des Kriimmungs-
mittelpunktes M in einem Parabelpunkt P rasch ablesen. Die beiden schraffierten
Dreiecke der Figur 1 sind einander dhnlich. Der Ahnlichkeitsfaktor ist 1 zu 2, denn da

AP, 1,2y =2=A(Q, 3, 4), ist 34=12=2x.
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Ergebnis 2: Die auf einer Parabelnormalen gemessene Strecke vom Kriimmungs-
mittelpunkt bis zur Achse ist doppelt so gross wie der auf derselben Normalen gelegene
Abschnitt zwischen der Parabel und ihrer Scheiteltangente?).

(3) Der zum Punkt Q der Parabelnormalen » in P symmetrische Punkt R liegt auf
dem Brennstrahl PF (Figur 1). Er ist die orthogonale Projektion des Kriimmungs-
mittelpunktes M auf PF. Da

PR—PO—p+2x und P_F“=P—|l=g+x,

ist PR =2 PF.

Evgebnis 3: Die am Brennpunkt F gespiegelten Parabelpunkte P sind die orthogo-
nalen Projektionen der jeweiligen Kriimmungsmittelpunkte auf die durch F gehenden
Brennstrahlen.

Der geometrische Ort der Punkte R ist die am Brennpunkt F gespiegelte, gegebene
Parabel. Die Tangente in R geht durch Q.

Evgebnis 4: Das Lot im Brennpunkt F einer Parabel auf dem durch einen Parabel-
punkt P gehenden Brennstrahl halbiert den auf der Parabelnormalen in P gelegenen
Kriimmungshalbmesser.

Ergebnis 5: Fiir den Radius » eines durch den Brennpunkt einer Parabel gehenden
Kreises ¢, der die Parabel in einem ihrer Punkte P beriihrt, gilt » = g/4 (p ist der
Radius des Kriimmungskreises in P).

(4) Die gegebene Parabel und der Kriimmungskreis £ in einem ihrer Punkte P sind
in perspektiv-kollinearer Lage. P ist das Kollineationszentrum. Die Achse e muss
durch P hindurchgehen. Der Schnittpunkt T von 4 mit & ist dann das Bild des
uneigentlichen Parabelpunktes, und die Tangente v in diesem Punkt an den Kriim-
mungskreis wird zur Verschwindungsgeraden der Kollineation. Die Kollineations-
achse ¢ ist parallel zu v durch P. Ihr zweiter Schnittpunkt B mit 2 gehort ebenfalls
der Parabel an. Wegen der Gleichheit der Sehnen-Tangenten-Winkel « in P und T
ist auch < (¢,d) =a.

Evrgebnis 6: Spiegelt man die Tangente ¢ in einem Parabelpunkt P an dem durch
P gehenden Durchmesser, dann schneidet sie den Kriimmungskreis in P im (vierten)
Schnittpunkt mit der Parabel.

(5) Der am Schluss von (3) gewonnene Kreis ¢ schneidet die Parabelachse ein
zweites Mal im Punkte 4. Die Sehne PU wird von allen Kreispunkten, die nicht im
Winkelraum (¢, d) = « liegen, unter dem Winkel « gesehen. Wegen PU = PF gilt also
auch < PAF = «, das heisst die Strecke PA liegt auf e.

Evgebnis 7: Der die Parabel in einem Punkt P berithrende und durch den Brenn-
punkt F gehende Kreis ¢ schneidet die Parabelachse in jenem Punkt A4, der nach
Projektion aus P auf den Kriimmungskreis %2 in P den (vierten) Parabelschnittpunkt
mit % liefert.

Dieses Ergebnis gilt auch fiir den Parabelscheitel S. In diesem Grenzfall ist 4 = S.
In den Parabelpunkten mit der Ordinate + p fillt ¢ mit der Kurvennormalen » zu-
sammen. Die Parabel schneidet also die Kriimmungskreise in diesen Punkten in den
Schnittpunkten mit der Kurvennormalen. R. JaroBI, Braunschweig.

Eine neue Behandlung der metrischen Aufgaben
in der Zentralprojektion

In dieser Mitteilung behandle ich zwei Probleme der Zentralprojektion, ndmlich die
Bestimmung der wahren Linge einer Strecke und die-Umlegung einer Ebene in die
Bildebene. Die letztere ist gleichwertig mit dem Problem, in der kotierten Projektion
oder in der orthogonalen Darstellung auf zwei Bildebenen die wahre Gestalt der Schnitt-

1) Vgl. MULLER-KRUPPA, Lehrbuch der darstellenden Geometrie (Springer, Wien 1948).
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kurve eines Kegels mit einer Ebene zu bestimmen. Die Losung dieser Aufgaben ist
bekannt; ich werde aber fiir die Richtigkeit dieser bekannten Konstruktionen einen
neuen, sehr anschaulichen Beweis geben.

Lénge einer Strecke. Es sei eine Gerade g durch ihren Spurpunkt!) S und Fluchtpunkt
Q' und ein Punkt 4 auf g durch seine Projektion 4’ gegeben. Man kann, wie bekannt?),
den Abstand A4S auf folgende Weise bestimmen: 1. Man konstruiert zundchst den wahren
Abstand !/ des Punktes Q’ von dem Projektionszentrum C mittels der Umlegung der

Fig. 1 Fig.2

Geraden CQ’ um ihre orthogonale Projektion C,Q’ in die Bildebene (Figur 1). 2. Dann
zeichnet man einen Kreis &, den sogenannten Teilungskreis, um Q' mit dem Halbmesser /
(Figur 2). 3. Endlich projiziert man den Punkt 4’ von einem beliebigen Punkt T des
Teilungskreises k auf die durch S gehende und zu Q’T parallele Gerade. So ergibt sich
ein neuer Punkt A*; der gesuchte Abstand ist gleich der Linge der Strecke A*S.

Die Richtigkeit dieses Verfahrens ist leicht zu beweisen. Zeichnen wir in der Ebene
A’Q’C einen Kreis um @’ durch C und einen anderen um S durch 4 (Figur 2), so ist
der Radius des ersten Kreises gleich dem Radius des oben genannten Teilungskreises;

Fig.3

dagegen der Radius des zweiten Kreises gleich dem gesuchten Abstand. Die Geraden
Q’C und S4 sind parallel, so dass der Punkt 4’ einer der Ahnlichkeitspunkte der beiden
Kreise ist. (Wenn 4 und C auf derselben Seite der Bildebene liegen, so ist 4’ dusserer
Ahnlichkeitspunkt; sind dagegen 4 und C auf entgegengesetzten Seiten der Bildebene,
so ist A’ innerer Ahnlichkeitspunkt.) Wir denken uns nun die Ebene 4’Q’C in die Bild-
ebene umgelegt. Es ist klar, dass der Punkt 4’ auch Ahnlichkeitspunkt der umgelegten

1) Fiir die Benennungen siehe zum Beispiel R. HAussNER und W. HaAK, Darstellende Geometrie, Bd. 4
(de Gruyter, Berlin und Leipzig 1933).
%) Op.c., S.27.
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Kreise ist. Wenn man also auf die oben beschriebene Weise den Punkt 4* konstruiert,
so erhdlt man einen Punkt auf dem Umfange des um S (mit dem Radius SA4) gezeichne-
ten Kreises. Das heisst, SA*= S4, was zu beweisen war.

Umlegung einer Ebene in die Bildebene

Es ist ein wichtiger Satz in der Theorie der Zentralprojektion?!), dass die Bilder und
die Umlegungen aller Punkte einer Ebene miteinander in einer zemtvalen Kollineation
stehen,; die Achse dieser Kollineation ist die Spurgevade der Ebene, das Zentrum der Kol-
lineation ist die Umlegung des Projektionszentrums um die Fluchtgerade (Figur 3).

Bevor wir mit dem Beweis dieses Satzes beginnen, fiihren wir einige Bezeichnungen
ein. Es sei C das Projektionszentrum, n die Bildebene, o die gegebene Ebene, die wir
umlegen wollen, und P ein beliebiger Punkt dieser Ebene (Figur 4). Betrachten wir noch
die Mittelebene u der Ebenen = unf o, so ist leicht zu sehen, dass fiir die Ebene o die
Umlegung um s mit der Spiegelung an u dquivalent ist. Projizieren wir also P senkrecht
zu u auf die Bildebene 7z; so entsteht seine Umlegung (P). Wir projizieren ferner auch
den Punkt C in derselben Richtung auf die Bildebene, und bezeichnen die sich so
ergebende Projektion mit C°. Es sei C* der Schnittpunkt des Projektionsstrahles CC°
mit der Ebene ¢; dann ist (C*) = C°.

Die Geraden P(P) und CC° sind parallel, so dass sie eine neue Ebene ¢ bestimmen.
Die Ebene ¢ enthdlt die Gerade CP, so dass ihre Spurgerade C°(P) den Punkt P’ ent-
hilt. Mit anderen Worten, die Punkte C°, P’ und (P) liegen — fiir beliebige P — auf
einer Geraden, womit das Bestehen der obengenannten zentralen Kollineation bewiesen
und die Lage ihres Zentrums bestimmt ist. Die Achse dieser Kollineation ist offenbar
die Spurgerade s.

Auf Grund der oben gegebenen Definition kann man C° konstruieren; es wire aber
notig, erst die Lage des Punktes C* zu bestimmen. Dagegen, wenn wir noch die Flucht-
ebene ¢’ der Ebene o betrachten, kénnen wir C° auch als das Spiegelbild von C an der
Mittelebene von ¢’ und n auffassen. Wegen der Parallelitit von ¢ und ¢’ ist nimlich die
Mittelebene von ¢’ und = zur Mittelebene u von ¢ und = parallel, und C°® war die senk-
rechte Projektion von C an u.

Ferner ist die Spiegelung an der Mittelebene von ¢’ und = mit der Umlegung von ¢’
um ihre Spurgerade ¢’ dquivalent. Dies bedeutet aber, dass C° die Umlegung von C
um ¢’ ist.

Diese Behandlung ist deshalb interessant, weil man das Bestehen der zentralen
Kollineation und die Lage ihres Zentrums leicht und auf eine sehr natiirliche Weise
beweisen kann. G. SzAsz, Szeged (Ungarn).

Nahezu gleichseitige rationale und nahezu gleichschenklige
pythagoreische Dreiecke

I. Ein Dreieck mit den Seiten b —1, b, b +1 hat die Flache

sie ist rational, wenn b gleich dem doppelten Ziahler m,, eines jener Naherungsbriiche

my, 1 2 7 26 97 362
By, O’ 1’ 4’ 15’ 56’ 209’

von )/3 gesetzt wird, die grosser als }/3 sind, da m§,— 1 =3k}, ist. Ferner gelten die
Formeln

MEp1— 3RS = —2, m,+k, Y3=2"01(11Ly3)",

1) Op.c., S.29.
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mit deren Hilfe sich die Beziehungen
My=4My_g—My g, Ry=4k, o—k, o Ry=14k, (—ky 5, kiy=2ky, my,,
Rinia=Ropi1 My ,py, Myp=2m3, —1=06k3,+1, my, ,=mf, ,+1=3k3}, ,~1
ableiten lassen. Aus ihnen folgt: Die mit Hilfe der Rekursionsformeln
bu=4b, 1= by (bg=2, by=4), @u=by— (=1 c,=b,+(-1)"

errechneten Zahlen 1, 2, 3; 5, 4, 3; 13, 14, 15; 53, 52, 51; 193, 194, 195; 725, 724, 723...
sind Seiten rationaler Dreiecke, die sich mit wachsendem # gleichseitigen Dreiecken
nidhern. Ihr Fliacheninhalt ist

3
/n = 7k4n= 14fn—1—fn—2 (f0= 0, /1= 6):
ihr Inkreisradius
o m
On=Fen=40,_1—0n-2 (0=0,0=1), ctg—-=-"
2 k,

durchlduft simtliche Niherungsbriiche von ]/3, die schneller gegen 1/5 konvergierende
ctg (Bn/2) = Myy ks, jene, die grosser als )/3 sind, und ctg (y,/2) = 3 k,/m, Nebennaherungs-
briiche.

II. Fiir die Ndherungsbriiche

Mapsr _ 1 7 41 239 1393

Fanes 1’ 3° 290 169’ 985

von /2, die kleiner als J/2 sind, ist
2 k§n+1= m§n+l+ 1, kn= 2 m,_s+3 kn—z' m,=3m, 5+ 4 kn—-z'
Setzen wir nun ¢, =Ry, ., 8,4+ b, =my, .,, a,— b,=(—1)", so ist

at+bi=c:, a,+b,=3(a,_,+b,_,)+4c¢,_,, a,—b,=b,_1—a,_,
und
Ap= @p_1+2b, 1+2¢, ; (a,=0),

by=20ap_1+ by_1+2¢c,_, (by=1),
Cpn=28,_3+2b,_1+3¢,_; (cp=1).

Wir erhalten die Zahlen 0,1, 1; 4, 3, 5; 20, 21, 29; 120, 119, 169; 696, 697, 985; ...;
sie sind Seiten pythagoreischer Dreiecke, die sich mit wachsendem # gleichschenkligen
Dreiecken ndhern. tg(«/2) =}/(c — b)/(c + b) durchlduft die Naherungsbriiche

1 2 5 12

m_O
E 1’ 2’ 5° 12° 29°

fiir )2 — 1. Setzt man deren Nenner k und Zihler m in
a=2km, b=RkR3%—m?2 c=Fh%}+m?
ein, erhilt man Rekursionsformeln
ap=6a, 1—a, 3+4(—1)" by=6b,_1—b, 3—4(-1)" ¢,=6cy 1—Cp,,

aus denen sich obige Formeln ebenfalls ableiten lassen.



Kleine Mitteilungen 113

ITI. Verallgemeinerung von (II) : In pythagoreischen Dreiecken, fiirdie (1) b=(g/2)a 41
ist, ndhert sich bei wachsenden Seiten der Winkel & dem Wert

2 _ I/q“ q
arctg—q——Zarctg( —4—+1—7),

(2) in solchen, fiir die ¢ = (¢/2) @ + 1 ist, ndhert sich « dem Wert

2 l/q” q
arcsm—q——Zarctg(—- %+ 1+—2—).

Aus den Nidherungsbriichen fiir die runden Klammern ergeben sich folgende Formeln,
in denen fiir (1) das obere, fiir (2) das untere Vorzeichen zu nehmen ist:

a, =4 a, ;+ q bn—l + gCp_y (a(): O)'
q* q*
bnz +qa,,+ (—é— - 1) bn—l + 2 Cpn-1 (b0= 1)»
q° q?
Cp=Htqa,_,+ 'z—bn—1+(‘“2—+ 1) Cp1 (Co=1).

E. WaAGE, Graz.

A propos du pentagone?)

Sind A4’, B’, C’, D’ und E’ die Gegenpunkte der Ecken des regelmissigen Fiinfecks
ABCDE, dann gehen die Geraden EE’, DC’ und AB’ wegen der Symmetrie mit der
Achse EE’ durch einen Punkt P. Ist M der Mittelpunkt des Umkreises (auf diesem
liegen auch die Punkte 4’, ..., E’), dann ist » = MA’=PD und EB’= C’P; daher ist

dig— S$10=7, (1)

wobei 5,4 die Seite und d,, eine der Diagonalen eines regelmissigen Zehnecks in einem
Kreis mit dem Radius 7 ist.
Das rechtwinklige Dreieck A4’D gibt

s}o=2rA'D",
wobei ersichtlich A’D”=r — (d,,/2) ist. Man hat daher
Sfo=7 (27 —dy) =7 (7 — sy9). (2)

Wegen AD’|| ME’ ist Fliche AD’M = Fliche AD'E’. Da <{ AMD’= < D’AE’, ergibt
sich AM .-MD’=D’A.AE’, das heisst

S10 @10 =72 (3)

Die Gleichungen (1), (2) und (3) sind abhédngig; sie geben

w1 L r(f5+1)
10 — 2 ) 10 — 2 .

Mit Hilfe der rechtwinkligen Dreiecke A4’B’ und AA’D erhilt man die Seite

_rf10-2y5 g rVio+2ys
i b A AA il A

sy = 2 und die Diagonale 5

des regelmissigen Fiinfecks im Kreis mit dem Radius 7.

1) Siehe G.BILGER, El. Math. 8, Heft 3, 66 (1953).
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Die obige Ableitung enthidlt keinen Kunstgriff und bendétigt nur wenige der einfach-
sten Hilfssdtze. Dass man mit Hilfe tautologischer Umformungen aus den Gleichungen
(1) und (2) auch Gleichungen hoheren Grades, als es die Gleichung (19) am angefiihrten
Orte ist, erhalten kann, ist selbstverstdandlich. Jedenfalls sind die Gleichungen (1) und (2)
einfacher als das System der Gleichungen (1) bis (10) am angefiihrten Ort.

R.LAUFFER, Graz.

Anmerkung der Redaktion: Reiches Material iiber regelmissige Vielecke findet man
in der schonen Arbeit von G. DosTOR: Théorie générale des polygones étoilés, J. Math.
pures appl. 6, 343-386 (1880).

Aufgaben

Aufgabe 160. Es sind 2( ) nd 2( ot R ) zu bestimmen.
P. BUCHNER, Basel.

Lisung : Bedeutet S,, = a,,, die erste, T,, = a,,,_, die zweite der Summen in der Aufgabe,
so findet man mit dem Bildungsgesetz des Pascalschen Dreiecks sofort die Beziehungen
T,+S,=T,41, Sp+ T, 1=S,;1, also gilt allgemein a,=a,_,+a,_,. Wegen
So=ay=1, T,=a, = 1sind die a,, identisch mit den Fibonaccischen Zahlen1,1, 2,3, 5, .

Die bekannte explizite Darstellung ergibt sich aus der in der Umgebung von Null
giiltigen Reihenentwicklung

(1-—2—22)—1=b0+b12+b222+~~-.

Hier muss offenbar b; , , — b; ., —b; = 0 und by= b, = 1 gelten. Also ist a; = b;. Die Partial-
bruchzerlegung von (1 —z — z2%)~! gibt

- — ! WO ke o £ Vs
g (1 —z/ag) /5 o (1 —z/a) V5 2 :

Durch Reihenentwicklung der Partialbriiche folgt

(o <]

k=0
also ist

n+1_ gntil 1 145 \*t! 1—)5 \"*!
ay = = azl/ = I/ {( e ) B (_———5) }'
(g )"+ 1)'5 5 A 2
K. RIEDER, Riehen.

Eine Losung der Aufgabe findet man auch in E. NeT1TO, Lehrbuch der Kombinatorik
(Teubner, Leipzig 1927, S. 247), wo weitere dhnliche Summationen behandelt sind.
(Nachtridgliche Mitteilung des Aufgabenstellers.)

Weitere Lésungen sandten A. BAGER (Hjerring, Didnemark), L. BERNSTEIN (Tel-Aviv),
P.BoLLi1 (Genf), F. GoLDNER (London), R.LAUFFER (Graz), R. W.MERKEL (Karlsruhe).

Aufgabe 161. Eine Kegelfliche zweiter Ordnung mit der Spitze S werde von einer
Ebene ¢, in einem Kegelschnitt K, geschnitten. F sei ein Brennpunkt von K,. Man be-
weise: Liegt die Ebene ¢, spiegelbildlich zu ¢, in bezug auf die in F errichtete Normal-
ebene zu FS, so schneidet ¢; den Kegel in einem Kegelschnitt K; mit demselben Brenn-
punkt F. C. BINDSCHEDLER, Kiisnacht.
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