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pour éliminer ’angle # au bout de I’aréte si # est impair, au milieu de I’aréte si # est
pair, tous les nouveaux diedres étant des multiples de /4.

Nous avons ainsi transformé un polyédre a diédres rationnels en un polyédre
équivalent dont tous les diédres sont des multiples de @/4. Si 'on pouvait établir
qu’un tel polyédre est équivalent a un cube, on aurait montré que les conditions de
DEHN sont nécessaires et suffisantes pour 1’équivalence des polyédres. Pour I'instant,
nos résultats permettent seulement d’affirmer que: Si deux polyédres vérifient les
conditions de Dehn, leur différence est équivalente a un polyédre dont tous les diédres sont
des multiples de m[4. J.-P. SYDLER, Zurich.

Maximalstetige Kurven

Eine neue Charakterisierung der Kneser - Juelschen Bogen

Die reellen nichtanalytischen Kurven wurden zundchst von A. KNESER[1]}) im
Anschluss an eine Begriffsbildung voN STAUDTS [2] untersucht. CHR. JUEL [3] stiitzt
sich auf den Begriff des konvexen Bogens, von dem J. HJELMSLEV [4] gezeigt hat,
dass er zur Beschreibung der Gestaltverhiltnisse reeller Kurven geeignet ist. Kiirz-
lich hat L. LocHER-ERNST [5] eine Darstellung auf neuer Grundlage gegeben. Der
Kurvenbegriff in diesem Gebiet der Geometrie entspricht der anschaulichen Vorstel-
lung einer frei aufs Papier gezeichneten Linie, also der « Grundvorstellung, dass eine
ebene Kurve durch stetige Bewegung eines Punktes in einer Geraden und gleich-
zeitige Drehung der Geraden um den Punkt erzeugt wird, wobei sich die Richtung
der Bewegung und der Sinn der Drehung nur in einzelnen, singuldren Lagen der er-
zeugenden Elemente dndern» [1].

Es ist nun moglich — und soll hier ausgefithrt werden —, den Begriff des nirgends
singuldren Bogens (KNESER), des Elementarbogens (JUEL) oder des einfachen Ele-
mentarbogens (LOCHER) allein durch eine selbstdual gefasste Verschirfung der Stetig-
keit zu gewinnen, und zwar erweist sich das Kriterium als notwendig und hinreichend.
Wihrend der Begriff der Kurve mit iiberall eindeutiger und stetiger Tangente (vollig
stetige Kurve [3], §3) noch zu weit ist2) und durch ein weiteres Kriterium (Konvexitit
oder die sogenannten von-Staudtschen Sitze) eingeschrinkt werden muss, zeigt es
sich, dass die «Tangente im scharfen Sinn» nach BuseMANN und FELLER (6], [7]
unter Hinzunahme ihres Gegenstiickes das gewiinschte Kriterium ergibt, das wir
maximale Stetigkeit nennen.

1. Innere Stetigkeit und Ordnung (auf der Kurve)

Es sei eine linear geordnete stetige Menge K von Linienelementen Pp der pro-
jektiven Ebene gegeben. Es gelten in K die Zwischenrelationen und das Schnittaxiom.
Es gibt Intervallschachtelungen.

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis auf Seite 85.
%) Anmerkung bei der Korrektur: Die bei solchen Kurven moglichen Stellen werden in einer gleich-

zeitig im «Archiv der Mathematik» erscheinenden Arbeit untersucht: Ein Kritertum fiir die Kneser- Juel-
schen Kurven.
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2. Aussere Stetigkeit

Die Stetigkeit von K iibertridgt sich durch Schein und Schnitt auf die projizieren-
den Biischel 4 (Aufpunkte) und die schneidenden Geraden a (Testgeraden) der pro-
jektiven Ebene. Sei insbesondere Q, ¢; eine nach Pp konvergierende Folge von
Linienelementen aus K, so konvergiert die aus dem (festen) Aufpunkt A gebildete
Folge von Projektionsstrahlen (4Q,) nach (4 P) und die auf der (festen) Testgeraden a
gebildete Folge von Schnittpunkten (a ¢;) nach (a p).

4 5

Fig. 1 Fig. 2

3. Dualstetige Kurven (Juel: volligstetige Kurven)

Die Linienelemente von K seien ausserdem verbunden, das heisst, eine Sekante
durch P hat p und ein Tangentenschnittpunkt auf $ hat P zur Grenzlage, wenn der
Nachbarpunkt oder die Nachbartangente nach P oder p riicken:

aus Q,q, > Pp folgt (PQ,) >4 und (pg;) > P.

4. Von-Staudtsche Sitze, Regularitit (Gussere Ordnung)

Wenn sich durch Schein und Schnitt ausser der Stetigkeit auch die innere Ordnung
auf die projizierenden Biischel und schneidenden Punktreihen iibertrdgt, soll die
Kurve reguldr heissen. Dies wird durch die sogenannten von-Staudtschen Sitze
(Spezialfall eines auch die Singularititen enthaltenden Satzes der Geometrie der
Lage, [1] und [2], Nr. 197) formuliert:

Das Element Pp einer dualstetigen Kurve K ist regulir, wenn der Projektionsstrahl
aus A dann und nur dann die Vor- und Nachpunkte von P nicht trennt, wenn A
auf p liegt, ohne mit P identisch zu sein, und wenn — dual dazu — der Schnittpunkt
der Tangente mit a4 dann und nur dann die Vor- und Nachtangenten von p nicht
trennt, wenn a durch P geht, ohne mit p identisch zu sein (Figur 1).
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5. Maximale Stetigkeit

Eine dualstetige Kurve nach 3. heisse maximalstetig, wenn die Grenzlage irgend-
einer Sekante mit zusammenriickenden Schnittpunkten die Tangente und wenn -
dual dazu - die Grenzlage irgendeines Tangentenschnittpunktes mit zusammen-
riickenden Tangenten der Beriihrungspunkt ist (Figur 2):

aus Q,;, R,>P folgt (Q;R;) >4, undaus gq;,r;,>p folgt (q,r,) > P.

6. Formulierung der Behauptung und Beweisgang

Eine maximalstetige Kurve ist reguldr und umgekehrt. Zunichst wird der erste Teil
der Behauptung gezeigt, dann wird ein gewisses dyadisches Kontinuum K’ von

Fig. 3

Linienelementen eingefithrt und von diesem gezeigt, dass regulire Bogen sich als
Kontinua K’ darstellen lassen — was zugleich die allgemeine Parametrisierung und
die Konstruktion der fraglichen Bégen ergibt — und dass es maximalstetig ist.

maximalstetiger Bogen
e

7. Kurven und Bigen

Kontinuum K’ . - regulirer Bogen

Es empfiehlt sich, zunichst solche Teile von reguliren oder maximalstetigen
Kurven zu betrachten, bei denen keine mehrfachen Punkte oder Tangenten und auch
keine Tangenten durch andere Kurvenpunkte als ihren Beriihrungspunkt auftreten.
Dass in hinldnglich kleiner Umgebung eines Elementes stets ein solcher elementarer
Bogen abgegrenzt werden kann, ergibt sich unten.

8. Die maximalstetige Kurve ist regulir

a) Der Projektionsstrahl (Figur 3) AP trennt die Vor- und Nachpunkte von P.
Im gegenteiligen Fall gibe es, etwa auf der Nachseite, in jeder Umgebung von P
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einen Vorpunkt, aus welchem die Folge Q; ausgewihlt sei. Nun iiberschreitet aber in
geniigend kleiner Umgebung die stetige Kurve K auf der Nachseite die Strahlen
(AQ,), so dass man aus den Schnittpunkten R; eine Folge von Punktepaaren Q,, R;
bilden kann, welche nach P strebt, ohne dass die Verbindungsgeraden (Q,R;) nach
p konvergieren [sondern nach (4 P)], im Widerspruch zur maximalen Stetigkeit.

b) Die maximalstetige Kurve iiberschreitet nicht in jeder Umgebung von P die
Tangente p. Andernfalls liesse sich aus einem Punkt A4 auf  in hinldnglicher Entfer-
nung eine nach p strebende Folge von Tangenten ¢; an K bilden, deren Schnittpunkt
A jedoch nicht nach P strebt, wiederum im Gegensatz zur maximalen Stetigkeit.
Es gibt namlich unter der Beweisannahme aufeinanderfolgende Schnittpunkte, da

a Fig. 4 b

eine dichte Menge von Schnittpunkten zur Folge hitte, dass die Kurve mit der Tan-
gente identisch wire. Unter den die Kurvenpunkte aus A projizierenden Strahlen
gibt es wegen der aus der Stetigkeit erfliessenden Beschranktheit der Bogen letzte
Strahlen, welche nach der Voraussetzung der maximalen Stetigkeit Tangenten sind.
Diese schneiden sich in 4, und 4 ist fest + P (Figur 4a).

c¢) Die maximalstetige Kurve durchsetzt auch nicht die Tangente p i» P. Andern-
falls gdbe es in einer Umgebung von P4 Vor- und Nachpunkte Q und R auf ver-
schiedenen Seiten von p; diese sind nach a) auch durch eine von p verschiedene
Gerade g des Biischels P getrennt (Figur 45) und werden also aus P durch dasselbe
Biischelsegment beziiglich p, g projiziert. In geeigneter Umgebung liegen deshalb auf
einem Strahl s; - p dieses Biischels @, und R;. Ist nun/ eine nicht durch P gehende
Gerade mit A = (I ) und A, = (s; [), so gibt es, analog wie bei b), von 4; aus zwei
Tangenten g¢;, 7, an die Bégen Q,P, PR;. Mit Q,, R; > P konvergiert A; nach 4 + P,
gegen die maximale Stetigkeit.

Dies macht zusammen mit der analog zu zeigenden dualen Tatsache gerade den
Inhalt der von-Staudtschen Sitze aus. — Aus b) und c) folgt noch die obenerwihnte
Einfachheit der maximalstetigen Kurve in geniigender Nihe des betrachteten Ele-
mentes. Damit ist auch in der Umgebung eines Elementes einer maximalstetigen
Kurve die Voraussetzung fiir den Glittungssatz von LocCHER ([5], Seite 26) erfiillt,
und man kann um jedes Element einen «einfachen Bogen» ([5], Seite 28) abgrenzen.
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9. Parametrisierung und Konstruktion des einfachen reguliren Bogens

Es sei ein einfacher regulirer Bogen K mit Anfangs- und Endelementen Aa und
Bb gegeben. Z,z, sei ein auf K zwischen Aa und Bb befindliches Element. Es sei
weiterhin S; = (ab) und s, = (4B) (Figur 5). Dann liegen nach Voraussetzung die
Strahlen (4Z,) = sy und (BZ,) = s,; «<zwischen» a und s, bzw. b und s, im Sinn der

Fig.5

durch den Bogen induzierten Bewegung und ebenso die Schnittpunkte (az,) = Sy,
(bz) = Syy zwischen 4 und S; bzw. B und S,. Dadurch ist einer der vier dreieckigen
Punktbereiche, in die die projektive Ebene zerfillt, als innerer ausgezeichnet: G, be-
stehend aus den Schnittpunkten innerer Strahlen der Biischel (as,) und (bs,); und
ebenso kann man - dual dazu - die Gesamtheit der Strahlen, welche die inneren
Segmente (4S,) und (S,B) schneiden, als inneren Strahlenbereich g, auszeichnen. -
Es ist hier zweckmissig, die Punkte von G, und die Strahlen von g, als Elemente
eines Bereiches G, g, von Linienelementen (Doppelbereich) zusammenzufassen. Es ist
klar, was im folgenden die Wendung besagt : eine Folge von Doppelbereichen konver-
giert gegen ein Linienelement Pp (es sollen die Punktgebiete und Strahlengebiete
sich je fiir sich zusammenziehen, wobei jeder Punkt eines Gebietes mit mindestens
einem Strahl des entsprechenden Strahlenbereichs und umgekehrt inzidieren soll).
Dabei koénnen die Doppelbereiche geschachtelt sein (wenn wiederum Punkt- und
Strahlenbereiche je fiir sich in gegenseitiger Inzidenz und geschachtelt sind). — Die
«schwachen Figuren» von HjeLMSLEV [8] konnen als Beispiele dienen. — Die Drei-
ecke A4Sy, Z, und Z, S,, B bilden zwei in G, g, liegende Doppelbereiche Gg, go1, G11811
mit dem einzigen gemeinsamen Element Z,z,. Wihlt man nun in G, gy, zwischen Aa
und Z,z, das Element Z,z,, und in G,,g,, das Element Z,,z,,, so entstehen vier
weitere Doppelbereiche, deren Bezeichnung in ersichtlicher Weise nach Art der
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Ziffernfolge dyadischer Briiche gewdhlt ist (zum Beispiel Z,=Zg= Z50= """,
A=2Zy=Zy= Zyyp= -+, und entsprechend fiir die G, g, S, s):

Goor8oor: A SootZors @ So01 %01 s
Gour&oi:  ZonSonn 211, %o1511%1 »
Gio1 &101 Zy Sin1Zi1s % S101%11

Giigin ZyuSmB o, zsinb .

Man sieht, wie sich dieses Verfahren fortsetzen lisst: man wihlt in jedem Doppel-
bereich G g ein neues Zwischenelement Zz (das heisst in allen Doppelbereichen der-
selben Stufe simultan) und bezeichnet es durch dieselbe Indexfolge, deren Linge
die Iterationsstufe angibt. Den Indexfolgen entsprechen abbrechende dyadische
Briiche 0,7%/... So kann durch unbegrenztes Fortsetzen der Wahlakte eine auf der
Kurve iiberall dichte Menge von Elementen gewihlt werden. Dann lassen sich durch
alle endlichen und unendlichen Indexfolgen, das heisst durch alle reellen Zahlen von
<0, 1> in dyadischer Schreibweise alle Elemente der Kurve umkehrbar eindeutig
und ordnungstreu darstellen. Denn eine nichtabbrechende Indexfolge bedeutet eine
konvergierende Schachtelung von Doppelgebieten. Damit ist der Bogen stetig und
eineindeutig auf das Intervall zwischen 0 und 1 abgebildet und also parametrisiert.
Es ist ebenso klar, dass dasselbe Verfahren durch freze Wahlakte, zunichst von Z, z,
in G,g,, dann von Z, zy; und Z,, 2;, in den neuentstandenen G4, g,; und G,,g;; und
so weiter wiederum zu einem dyadischen Kontinuum K’ fiihrt und dass dies einen
einfachen regulidren Bogen liefert (wenn die einzige Einschrinkung beachtet wird,
dass die Elemente, zum Beispiel beurteilt durch die Projektionsstrahlen aus 4 und B,
und die Schnittpunkte auf 4 und b dicht zu liegen kommen). — Es ist nicht nétig, dies
im einzelnen zu verfolgen, da wir zeigen, dass das Kontinuum K’ maximalstetig und
a fortiori regulir ist.

10. Das dyadische Kontinuum K' ist maximalstetig

Es ist zu zeigen, dass mit irgend zwei Folgen von Punkten Q; R; von K’, welche
nach P streben, die Folge ihrer Verbindungsgeraden nach p strebt (durch die Ver-
wendung der selbstdualen Doppelbereiche ist der Nachweis des dualen Sachverhaltes
mit eingeschlossen).

a) P gehore nicht der Menge der Z an. Dann folgt aus der Konvergenz der Folge
der Q; R;, dass die Paare schliesslich in jeder Umgebung, also insbesondere in jedem
der G bleiben. Andererseits kann man bei festgehaltenem Index ¢ die Einteilung der
G so weit verfeinern, bis zum ersten Male die (ja im allgemeinen verschiedenen)
Punkte Q; und R, in verschiedenen G liegen. Dann gehért ihre Verbindungsgerade
aber dem zugeordneten Strahlenbereich g des letzten G an, in welchem noch @, und R;
gemeinsam liegen. So gibt es zu jedem ¢ ein kleinstes Strahlengebiet aus den g, wel-
ches (Q; R;) enthilt, und auch diese Strahlengebiete sind geschachtelt und konver-
gieren gegen p.

b) Im Fall, dass P ein Z ist, kénnen Q, und R; stets in verschiedenen G liegen.
Man kann aber in diesem Fall die beiderseits P liegenden G derselben Stufe vereinigen
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und dadurch gleichfalls eine Schachtelung von Doppelgebieten erhalten, welche sich
nach Pp zusammenzieht.

Damit ist die maximale Stetigkeit von K’ und nach 9. des reguliren, einfachen
Bogens gezeigt. Da sich aber um jedes Element Pp einer reguliren Kurve ein ein-
facher Bogen abgrenzen lidsst, folgt daraus die maximale Stetigkeit der regulidren
Kurve.

Das neue Kriterium erweist sich somit als notwendige und hinreichende, lokale Cha-
rakterisierung der Kneser-Juelschen Kurven.

11. Nuchiregulire dualstetige Kurven

Die Konstruktion des dyadischen Kontinuums K’ ergab die Existenz maximal-
stetiger Bogen. Ahnlich kénnen triadische Kontinua K” zur Konstruktion recht allge-
meiner nichtreguldrer dualstetiger Kurven beniitzt werden. Der Leitgedanke ist, an
einem regulidren Bogen eine Einbuchtung hervorzubringen, wodurch drei mit Wende-
punkten aneinanderstossende regulire Bogen entstehen, an welchen das Verfahren
wiederholt wird. So entsteht eine Folge dualstetiger Bogen, welche gegen eine dual-
stetige Kurve konvergiert, wenn die Variation des Tangentenschnittpunktes auf der
Anfangs- und Endtangente geeignet beschriankt wird. Beim resultierenden Bogen
finden sich in jeder Umgebung eines Punktes Wendepunkte. Diese Konstruktion?)
lasst sich leicht direkt durch ein triadisches Kontinuum bewerkstelligen. Man zeigt
dann unschwer, dass die entstehende Kurve dualstetig, aber nirgends maximalstetig
ist; auch ist keines der bei den Wahlakten auftretenden Elemente Z z regulir.

12. Zusammenfassung

Durch selbstdual gefasste Verschiarfung der Stetigkeit von Berithrpunkt- und Tan-
gentenexistenz ergibt sich ein notwendiges und hinreichendes Kriterium fiir die regu-
liren Kurven (das heisst die den von-Staudtschen Sitzen geniigen). Dabei handelt es
sich um ein lokales Kriterium. — Die Anregung zu dieser Untersuchung ging von
Aufgabe Nr.106 dieser Zeitschrift (L. LocHER) aus. Herrn G. BALASTER verdanke
ich wertvolle Kritik und Hilfe. G. UNGER, Ziirich.
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