
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 8 (1953)

Heft: 4

Artikel: Maximalstetige Kurven

Autor: Unger, G.

DOI: https://doi.org/10.5169/seals-16920

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-16920
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


G. Unger: Maximalstetige Kurven 79

pour eliminer l'angle ß au bout de l'arete si n est impair, au milieu de l'arete si n est

pair, tous les nouveaux diedres etant des multiples de tz/4.
Nous avons ainsi transforme un polyedre k diedres rationnels en un polyedre

equivalent dont tous les diedres sont des multiples de n\\. Si l'on pouvait etablir
qu'un tel polyedre est equivalent k un cube, on aurait montre que les conditions de

Dehn sont necessaires et süffisantes pour l'equivalence des polyedres. Pour l'instant,
nos resultats permettent seulement d'affirmer que: Si deux polyedres verifient les

conditions de Dehn, Uuy difference est equivalente ä un polyedre dont tous les diedres sont
des multiples de ix\\. J.-P. Sydler, Zürich.

Maximalstetige Kurven
Eine neue Charakterisierung der Kneser-Juelschen Bögen

Die reellen nichtanalytischen Kurven wurden zunächst von A. Kneser[1]x) im
Anschluss an eine Begriffsbildung von Staudts [2] untersucht. Chr. Juel [3] stützt
sich auf den Begriff des konvexen Bogens, von dem J. Hjelmslev [4] gezeigt hat,
dass er zur Beschreibung der GestaltVerhältnisse reeller Kurven geeignet ist. Kürzlich

hat L. Locher-Ernst [5] eine Darstellung auf neuer Grundlage gegeben. Der
Kurvenbegriff in diesem Gebiet der Geometrie entspricht der anschaulichen Vorstellung

einer frei aufs Papier gezeichneten Linie, also der « Grundvorstellung, dass eine
ebene Kurve durch stetige Bewegung eines Punktes in einer Geraden und gleichzeitige

Drehung der Geraden um den Punkt erzeugt wird, wobei sich die Richtung
der Bewegung und der Sinn der Drehung nur in einzelnen, singulären Lagen der
erzeugenden Elemente ändern» [1].

Es ist nun möglich - und soll hier ausgeführt werden -, den Begriff des nirgends
singulären Bogens (Kneser), des Elementarbogens (Juel) oder des einfachen
Elementarbogens (Locher) allein durch eine selbstdual gefasste Verschärfung der Stetigkeit

zu gewinnen, und zwar erweist sich das Kriterium als notwendig und hinreichend.
Während der Begriff der Kurve mit überall eindeutiger und stetiger Tangente (völlig
stetige Kurve [3], § 3) noch zu weit ist2) und durch ein weiteres Kriterium (Konvexität
oder die sogenannten von-Staudtschen Sätze) eingeschränkt werden muss, zeigt es

sich, dass die «Tangente im scharfen Sinn» nach Busemann und Feller [6], [7]
unter Hinzunahme ihres Gegenstückes das gewünschte Kriterium ergibt, das wir
maximale Stetigkeit nennen.

1. Innere Stetigkeit und Ordnung (auf der Kurve)

Es sei eine linear geordnete stetige Menge K von Linienelementen Pp der
projektiven Ebene gegeben. Es gelten in K die Zwischenrelationen und das Schnittaxiom.
Es gibt Intervallschachtelungen.

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis auf Seite 85.
2) Anmerkung bei der Korrektur: Die bei solchen Kurven möglichen Stellen werden in einer gleichzeitig

im «Archiv der Mathematik» erscheinenden Arbeit untersucht: Ein Kriterium für die Kneser-Juelschen

Kurven.
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2. Äussere Stetigkeit

Die Stetigkeit von K überträgt sich durch Schein und Schnitt auf die projizierenden
Büschel A (Aufpunkte) und die schneidenden Geraden a (Testgeraden) der

projektiven Ebene. Sei insbesondere Qt qt eine nach Pp konvergierende Folge von
Linienelementen aus K, so konvergiert die aus dem (festen) Aufpunkt A gebildete
Folge von Projektionsstrahlen (AQt) nach (^4P) und die auf der (festen) Testgeraden a

gebildete Folge von Schnittpunkten (a qt) nach (a p).

P Ri
P

Qi

Fig.l Fig. 2

3. Dualstetige Kurven (Juel: völligstetige Kurven)

Die Linienelemente von K seien ausserdem veYbunden, das heisst, eine Sekante
durch P hat p und ein Tangentenschnittpunkt auf p hat P zur Grenzlage, wenn der

Nachbarpunkt oder die Nachbartangente nach P oder p rücken:

aus Qtqt-+Pfi folgt (PQt)^P und (Pqt)+P.

4. Von-Staudtsche Sätze, RegulaYität (äusseYe ÜYdnung)

Wenn sich durch Schein und Schnitt ausser der Stetigkeit auch die innere Ordnung
auf die projizierenden Büschel und schneidenden Punktreihen überträgt, soll die

Kurve YeguläY heissen. Dies wird durch die sogenannten von-Staudtschen Sätze

(Spezialfall eines auch die Singularitäten enthaltenden Satzes der Geometrie der

Lage, [1] und [2], Nr. 197) formuliert:
Das Element Pp einer dualstetigen Kurve K ist regulär, wenn der Projektionsstrahl

aus A dann und nur dann die Vor- und Nachpunkte von P nicht trennt, wenn A
auf p liegt, ohne mit P identisch zu sein, und wenn - dual dazu - der Schnittpunkt
der Tangente mit a dann und nur dann die Vor- und Nachtangenten von p nicht
trennt, wenn a durch P geht, ohne mit p identisch zu sein (Figur 1).
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5. Maximale Stetigkeit

Eine dualstetige Kurve nach 3. heisse maximalstetig, wenn die Grenzlage irgendeiner

Sekante mit zusammenrückenden Schnittpunkten die Tangente und wenn -
dual dazu - die Grenzlage irgendeines Tangentenschnittpunktes mit zusammenrückenden

Tangenten der Berührungspunkt ist (Figur 2):

aus Q^Ri-^P folgt (QiRt)->p, und aus qiiYi-^p folgt (ftr,)->P.

6. FoYmulieYung deY Behauptung und Beweisgang

Eine maximalstetige KuYve ist regulär und umgekehrt. Zunächst wird der erste Teil
der Behauptung gezeigt, dann wird ein gewisses dyadisches Kontinuum K' von

P
P P>

for- ih-Sate

Fig. 3

Linienelementen eingeführt und von diesem gezeigt, dass reguläre Bögen sich als

Kontinua K' darstellen lassen - was zugleich die allgemeine Parametrisierung und
die Konstruktion der fraglichen Bögen ergibt - und dass es maximalstetig ist.

maximalstetiger Bogen

Kontinuum Kf regulärer Bogen

7. Kurven und Bögen

Es empfiehlt sich, zunächst solche Teile von regulären oder maximalstetigen
Kurven zu betrachten, bei denen keine mehrfachen Punkte oder Tangenten und auch
keine Tangenten durch andere Kurvenpunkte als ihren Berührungspunkt auftreten.
Dass in hinlänglich kleiner Umgebung eines Elementes stets ein solcher elementarer
Bogen abgegrenzt werden kann, ergibt sich unten.

8. Die maximalstetige Kurve ist regulär

a) Der Projektionsstrahl (Figur 3) AP trennt die Vor- und Nachpunkte von P.
Im gegenteiligen Fall gäbe es, etwa auf der Nachseite, in jeder Umgebung von P
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einen Vorpunkt, aus welchem die Folge Qt ausgewählt sei. Nun überschreitet aber in
genügend kleiner Umgebung die stetige Kurve K auf der Nachseite die Strahlen
(AQt), so dass man aus den Schnittpunkten Rt eine Folge von Punktepaaren Qt, Rt
bilden kann, welche nach P strebt, ohne dass die Verbindungsgeraden (QtRt) nach
p konvergieren [sondern nach (AP)], im Widerspruch zur maximalen Stetigkeit.

b) Die maximalstetige Kurve überschreitet nicht in jeder Umgebung von P die
Tangente p. Andernfalls Hesse sich aus einem Punkt A auf p in hinlänglicher Entfernung

eine nach p strebende Folge von Tangenten qt an K bilden, deren Schnittpunkt
A jedoch nicht nach P strebt, wiederum im Gegensatz zur maximalen Stetigkeit.
Es gibt nämlich unter der Beweisannahme aufeinanderfolgende Schnittpunkte, da

P

/f J,
P,

'rtP
P

Ai

Fig 4

eine dichte Menge von Schnittpunkten zur Folge hätte, dass die Kurve mit der
Tangente identisch wäre. Unter den die Kurvenpunkte aus A projizierenden Strahlen
gibt es wegen der aus der Stetigkeit erfliessenden Beschränktheit der Bögen letzte
Strahlen, welche nach der Voraussetzung der maximalen Stetigkeit Tangenten sind.
Diese schneiden sich in A, und A ist fest 4= P (Figur 4 a).

c) Die maximalstetige Kurve durchsetzt auch nicht die Tangente p in P. Andernfalls

gäbe es in einer Umgebung von Pp Vor- und Nachpunkte Q und R auf
verschiedenen Seiten von p; diese sind nach a) auch durch eine von p verschiedene
Gerade g des Büschels P getrennt (Figur 4 b) und werden also aus P durch dasselbe

Büschelsegment bezüglich p, g projiziert. In geeigneter Umgebung liegen deshalb auf
einem Strahl s{ -> p dieses Büschels Q{ und Rt. Ist nun / eine nicht durch P gehende
Gerade mit A (l p) und At (st l), so gibt es, analog wie bei b), von A{ aus zwei

Tangenten qt, y% an die Bögen QtP, PRt. Mit Qt,Rt-+P konvergiert At nach A 4= P,
gegen die maximale Stetigkeit.

Dies macht zusammen mit der analog zu zeigenden dualen Tatsache gerade den

Inhalt der von-Staudtschen Sätze aus. - Aus b) und c) folgt noch die obenerwähnte
Einfachheit der maximalstetigen Kurve in genügender Nähe des betrachteten
Elementes. Damit ist auch in der Umgebung eines Elementes einer maximalstetigen
Kurve die Voraussetzung für den Glättungssatz von Locher ([5], Seite 26) erfüllt,
und man kann um jedes Element einen «einfachen Bogen» ([5], Seite 28) abgrenzen.
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9. PaYamelYisieYung und KonstYuktion des einfachen YeguläYen Bogens

83

Es sei ein einfacher regulärer Bogen K mit Anfangs- und Endelementen Aa und
Bb gegeben. Zxzx sei ein auf K zwischen Aa und Bb befindliches Element. Es sei
weiterhin Sx (ab) und sx (AB) (Figur 5). Dann liegen nach Voraussetzung die
Strahlen (AZX) sQ1 und (BZX) sn «zwischen» a und st bzw. b und s± im Sinn der

s,

s„s„s^ fOfZSaOff
S>. ?ff

tot
7, 0ffOfi

Sff/S/ft
Soof Stfr*

Z/ff
Fig. 5

durch den Bogen induzierten Bewegung und ebenso die Schnittpunkte (azx) S01,

(bzx) 5n zwischen A und Sx bzw. JE? und 5X. Dadurch ist einer der vier dreieckigen
Punktbereiche, in die die projektive Ebene zerfällt, als innerer ausgezeichnet: Gx

bestehend aus den Schnittpunkten innerer Strahlen der Büschel (asx) und (bsx); und
ebenso kann man - dual dazu - die Gesamtheit der Strahlen, welche die inneren
Segmente (ASX) und (SXB) schneiden, als inneren Strahlenbereich gx auszeichnen. -
Es ist hier zweckmässig, die Punkte von Gt und die Strahlen von gx als Elemente
eines Bereiches Gxgx von Linienelementen (Doppelbereich) zusammenzufassen. Es ist
klar, was im folgenden die Wendung besagt: eine Folge von Doppelbereichen konvergiert

gegen ein Linienelement Pp (es sollen die Punktgebiete und Strahlengebiete
sich je für sich zusammenziehen, wobei jeder Punkt eines Gebietes mit mindestens
einem Strahl des entsprechenden Strahlenbereichs und umgekehrt inzidieren soll).
Dabei können die Doppelbereiche geschachtelt sein (wenn wiederum Punkt- und
Strahlenbereiche je für sich in gegenseitiger Inzidenz und geschachtelt sind). - Die
«schwachen Figuren» von Hjelmslev [8] können als Beispiele dienen. - Die Dreiecke

AS01ZX und ZXS1XB bilden zwei in Gxgx liegende Doppelbereiche Golg01, Glxgu
mit dem einzigen gemeinsamen Element Zxzx. Wählt man nun in G01g01 zwischen Aa
und Zxzx das Element Z01z01 und in Gngn das Element Zlxzllt so entstehen vier
weitere Doppelbereiche, deren Bezeichnung in ersichtlicher Weise nach Art der
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Ziffernfolge dyadischer Bruche gewählt ist (zum Beispiel Zx Z10 — Z100 — • • •,
A — Z0 Z00 Z000 — • • •, und entsprechend fur die G, g, S, s)

^001 £001 -^ ^001 ^01 » Ä 5001 Zü\ »

^011 Süll ^01 ^011 ^11 » *01 S011 Zl >

^101^101 ^1 ^101^11» Zl S101^11>

^111 gm ^-11^111^ > ^llslll^

Man sieht, wie sich dieses Verfahren fortsetzen lasst man wählt m jedem Doppelbereich

Gg ein neues Zwischenelement Zz (das heisst in allen Doppelbereichen
derselben Stufe simultan) und bezeichnet es durch dieselbe Indexfolge, deren Lange
die Iterationsstufe angibt Den Indexfolgen entsprechen abbrechende dyadische
Bruche 0,tkl So kann durch unbegrenztes Fortsetzen der Wahlakte eine auf der
Kurve überall dichte Menge von Elementen gewählt werden Dann lassen sich durch
alle endlichen und unendlichen Indexfolgen, das heisst durch alle reellen Zahlen von
<0, 1> in dyadischer Schreibweise alle Elemente der Kurve umkehrbar eindeutig
und ordnungstreu darstellen Denn eine nichtabbrechende Indexfolge bedeutet eine
konvergierende Schachtelung von Doppeigebieten Damit ist der Bogen stetig und
eineindeutig auf das Intervall zwischen 0 und 1 abgebildet und also parametrisiert
Es ist ebenso klar, dass dasselbe Verfahren durch freie Wahlakte, zunächst von Zxzx

m G1g1, dann von Z01z01 und Zlxzlx in den neuentstandenen GQ1gol und Gngn und
so weiter wiederum zu einem dyadischen Kontinuum K' fuhrt und dass dies einen
einfachen regulären Bogen liefert (wenn die einzige Einschränkung beachtet wird,
dass die Elemente, zum Beispiel beurteilt durch die Projektionsstrahlen aus A und B,
und die Schnittpunkte auf a und b dicht zu liegen kommen) - Es ist nicht notig, dies

im einzelnen zu verfolgen, da wir zeigen, dass das Kontinuum K' maximalstetig und
a fortiori regulär ist

10 Das dyadische Kontinuum K' ist maximalstetig

Es ist zu zeigen, dass mit irgend zwei Folgen von Punkten QtRt von K', welche
nach P streben, die Folge ihrer Verbindungsgeraden nach p strebt (durch die
Verwendung der selbstdualen Doppelbereiche ist der Nachweis des dualen Sachverhaltes
mit eingeschlossen)

a) P gehöre nicht der Menge der Z an Dann folgt aus der Konvergenz der Folge
der Q{ Rt, dass die Paare schliesslich in jeder Umgebung, also insbesondere in jedem
der G bleiben Andererseits kann man bei festgehaltenem Index 1 die Einteilung der
G so weit verfeinern, bis zum ersten Male die (ja im allgemeinen verschiedenen)
Punkte Qt und Rt in verschiedenen G liegen Dann gehört ihre Verbindungsgerade
aber dem zugeordneten Strahlenbereich g des letzten G an, m welchem noch Qt und Rt
gemeinsam liegen So gibt es zu jedem 1 em kleinstes Strahlengebiet aus den g,
welches (QtR%) enthalt, und auch diese Strahlengebiete smd geschachtelt und konvergieren

gegen p
b) Im Fall, dass P em Z ist, können Qt und Rt stets in verschiedenen G liegen.

Man kann aber in diesem Fall die beiderseits P liegenden G derselben Stufe vereinigen
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und dadurch gleichfalls eine Schachtelung von Doppeigebieten erhalten, welche sich
nach Pp zusammenzieht

Damit ist die maximale Stetigkeit von K' und nach 9 des regulären, einfachen
Bogens gezeigt Da sich aber um jedes Element Pp einer regulären Kurve ein
einfacher Bogen abgrenzen lasst, folgt daraus die maximale Stetigkeit der regulären
Kurve

Das neue Kriterium erweist sich somit als notwendige und hinreichende, lokale
Charakterisierung der Kneser-Juelschen Kurven

11 Nichtregulare dualstetige Kurven

Die Konstruktion des dyadischen Kontmuums K' ergab die Existenz maximalstetiger

Bogen Ähnlich können triadische Kontmua K" zur Konstruktion recht
allgemeiner nichtregularer dualstetiger Kurven benutzt werden Der Leitgedanke ist, an
einem regulären Bogen eine Einbuchtung hervorzubringen, wodurch drei mit
Wendepunkten anemanderstossende reguläre Bogen entstehen, an welchen das Verfahren
wiederholt wird So entsteht eine Folge dualstetiger Bogen, welche gegen eine
dualstetige Kurve konvergiert, wenn die Variation des Tangentenschnittpunktes auf der
Anfangs- und Endtangente geeignet beschrankt wird Beim resultierenden Bogen
finden sich in jeder Umgebung eines Punktes Wendepunkte Diese Konstruktion1)
lasst sich leicht direkt durch em triadisches Kontinuum bewerkstelligen Man zeigt
dann unschwer, dass die entstehende Kurve dualstetig, aber nirgends maximalstetig
ist, auch ist keines der bei den Wahlakten auftretenden Elemente Zz regulär

12 Zusammenfassung

Durch selbstdual gefasste Verschärfung der Stetigkeit von Beruhrpunkt- und Tan-
gentenexistenz ergibt sich ein notwendiges und hinreichendes Kriterium fur die regulären

Kurven (das heisst die den von-Staudtschen Sätzen genügen) Dabei handelt es

sich um ein lokales Kriterium - Die Anregung zu dieser Untersuchung ging von
Aufgabe Nr 106 dieser Zeitschrift (L Locher) aus Herrn G Balaster verdanke
ich wertvolle Kritik und Hilfe. G Unger, Zürich.
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