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X ist als Grenzlage des Schnittpunktes G = (gp, g,) fiir @ > P der Beriihrungspunkt
der Geraden gp mit der von ihr erzeugten Hiillkurve. Somit erhilt man X als Fuss-
punkt des Lotes vom Kriimmungsmittelpunkt M auf gp.

Denken wir uns fiir jeden Kurvenpunkt P den Kreis kp iiber PM = pp als Durch-
messer konstruiert. Es folgt:

Bei der Umwandlung einer Kurve iiber thre Evolutoiden in thre Evolute liuft jeder
Punkt auf einem Kreise.

Weiter erhilt man sofort:

Dreht sich gp mit konstanter Winkelgeschwindigkeit w aus der Anfangslage tp um x,
so durchliuft der von P ausgehende Punkt X mit konstanter Geschwindigkeit w op den
Kreis kp.

Diese Sitze erlauben, die Umformung im einzelnen zu verfolgen und sich ein
anschauliches Bild von ihr zu verschaffen. L. LocHER-ERrNST, Winterthur.

Sur ’équivalence des polyedres a diedres rationnels

Deux polyédres sont dits équivalents (mod 0) si I'on peut construire I'un avec les
morceaux de 1'autre augmenté d’un cube. Pour que deux polyédres soient équivalents,
il faut qu’ils vérifient les conditions de DEHN. Nous avons montré?) que si deux poly-
édres remplissent ces conditions, leur différence est équivalente a un polyédre dont
tous les diédres sont rationnels. Nous voulons montrer maintenant que:

Un polyédre dont tous les diédres sont rationnels est équivalent a un polyédre dont
tous les diédres sont des multiples de n|4 .

Avant de passer a la démonstration elle-méme, nous établirons deux propriétés
particuliéres dont nous aurons besoin par la suite.

a) Il existe un polyédre
Ple. 3~ < 7]

équivalent a un cube et ayant les propriétés suivantes:

1° Le long d’une aréte CC"C’ (CC"= C"C’), il a un angle diédre égal A « le long de
CC" et égal & (n/2) — o le long de C"C’, ces deux diédres ayant une face commune.

2° Tous les autres diédres sont des multiples de =/4.

En effet, considérons d’abord un prisme droit triangulaire A4’'BB’CC’, la base
étant un triangle isocéle de sommet B, I’angle ABC étant égal a 2 « [nous supposerons
« plus petit que zz/4, ayant le choix entre « et (7/2) —«] (figure 1). Comme « < 7/4,
il est possible de choisir la longueur A4’ de telle sorte que le plan passant par la
diagonale AC’ et perpendiculaire A la face AA'CC’ coupe les faces AA'BB’ et BB'CC’
suivant des angles diédres égaux i 3 x/4 et m/4.

Soient B”, D, D', D", C" les milieux des segments B'B, BC, B'C’, DD', CC’. Le
polyédre ABCB"C’ est équivalent A un cube; il a le long des arétes BB", CC", C"C’

1) J.-P. SYDLER, Sur les conditions nécessaires pour I'équivalence des polyédres euclidiens, El. Math. 7,
49 (1952).
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des angles diédres égaux a 2a, (7/2) — a, (7/2) — «. Posons sur la face BB"DD" un
prisme droit BB"DD"EE" ayant le long de BB” un diédre égal & (7/2) — 2 « et un
diédre droit le long de EE”; enfin enlevons du polyédre DD"CC"FF" le symétrique de
BB"DD"EE" par rapport a DD". Le polyédre ABB"EE"FF"CC"C’ donne un exemple
du polyédre cherché.

A
Fig.1 Fig.2

b) Nous dirons qu’un diédre (ou qu’une aréte) est dégagé lorsqu’il est bordé par
deux plans perpendiculaires a ’aréte (figure 2). Sil’on a plusieurs diédres dégagés le
long de la méme aréte, il est aisé de les séparer en enlevant un prisme droit du polyédre.
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Fig.3 Fig.4

Montrons qu'il est possible de déplacer un dié¢dre dégagé d’une longueur quelconque
le long de son aréte en n’introduisant que des diédres égaux a des multiples de-w/4,
le polyédre final étant équivalent au polyédre initial.

Soit AB I'aréte considérée (figure 3). Supposons d’abord le diédre « suffisamment
petit. Enlevons en 4 un prisme rectangulaire droit que nous rajouterons au dela de
B, ’aréte de ce prisme ayant la longueur du déplacement voulu. Soient CD et C'D’
les deux nouvelles arétes de diédres (7/2) + a et (n/2) — . Rajoutons le long de CD
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une pyramide CDEFG dont la base DEFG est perpendiculaire 3 4B et dont le diédre
CD est égal 4 (m/2) — «, les diédres CE, CF, CG étant droits (ce qui est possible pour
o assez petit, les segments de la base étant également petits, donc en dehors du
polyédre). Nous enléverons un polyédre symétrique le long de C'D’. Afin d’éviter des
complications en F et F’, enlevons encore du polyédre des prismes droits d’arétes
EF, ..., F'G’ qui dégageront les diédres non droits. Soient HK et H'K'les arétes des
nouveaux diédres provoqués par EF et E'F’, dont nous désignerons les grandeurs par
27— B et 3xn/2) + . Le long de HK, nous enlevons un polyedre P[(xz/2) — f3, f1;

Fig.b

nous en enlevons aussi un le long de H'K' de telle sorte que le long d’une moitié d’aréte
les diédres deviennent droits, le long de la seconde moitié, ils deviennent égaux a
2n —2fetam+ 2P, les faces étant paralléles. On peut deés lors enlever un prisme
droit le long de ces demi-arétes et supprimer ainsi tous les diedres qui ne sont pas des
multiples de 7z/4 (figure 4; les parties hachurées représentent les polyédres a enlever).
Remarquons que, s’il le faut pour que toute la construction reste a l'intérieur du
polyédre, on peut diviser les arétes HK en k parties auxquelles on applique la méme
construction.

Nous agirons de méme le long de FG.

Lorsque a est quelconque, il suffit de décomposer ce diedre en » diédres suffisam-
ment petits auxquels on peut appliquer la construction ci-dessus.

Ces deux propriétés permettent d’établir que:

¢) Tout polyédre est équivalent a un polyédre ayant les mémes diédres, mais
dégagés, les arétes correspondantes ayant la méme longueur, et d’autres diédres
égaux a des multiples de z/4.
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Montrons-le tout d’abord pour un tétra¢dre ABCD, AB | BC | CD. Soit ABCD
un tétraédre semblable et deux fois plus grand (linéairement) et soit S le centre de la
spheére inscrite (figure 5). Les plans menés par S perpendiculairement aux arétes
décomposent de fagon naturelle le tétraédre en quatre polyédres contenant chacun un
des sommets 4, B, C, D. Otons du tétraédre & partir de chaque sommet des polyédres
semblables a ces quatre polyédres et (linéairement) deux fois plus petits. Le polyédre
restant est équivalent (mod 0) & ABCD puisque P(2) ~ 2 P(1). Soient A'B'C’'D’ les
homologues de S (donc les milieux de SA4, SB, SC, SD). Le polyédre restant a des
diédres dégagés le long de AB, ..., CD. Par contre, il a de nouveaux diédres complé-
mentaires le long des arétes issues de

1° A’ et B’, perpendiculaires 4 ABC, 3° B’et D’, perpendiculaires & ABD,
2° B’ et D’, perpendiculaires 8 BCD, 4° C’ et D’, perpendiculaires & ACD.

On peut supprimer ces diédres en enlevant du polyédre quatre prismes droits
perpendiculaires a ABC, BCD, ABD, ACD. Nous renvoyons A la figure 6 ou les bases
des prismes a enlever sont indiquées par des hachures.

Le polyédre ainsi obtenu a des diédres dégagés le long des arétes AB, ..., CD. La
longueur des arétes est la moitié de AB, ..., CD. En vertu de la propriété b), il est
possible de les déplacer et de les amener au milieu de 4B, ..., CD.

e) Nous voyons dés lors comment établir la propriété pour un polyédre quelconque:
11 suffit de décomposer réguliérement un polyédre semblable deux fois plus grand en
tétraédres, puis en tétraédres du genre précédent, de faire la construction ci-dessus
pour chaque tétraédre et de les assembler dans I’ordre primitif. Toutes les anciennes
arétes intérieures coincideront a nouveau, de méme que les arétes situées sur les faces.
Seuls les anciens diédres subsisteront, ainsi que des diédres égaux i des multiples de
7/4, ce qui établit la propriété dans le cas général.

Fig.7

f) Considérons maintenant un polyédre ayant tous ses diédres rationnels. Nous
pouvons supposer que tous les diédres différents d'un multiple de 7/4 sont dégagés.
En enlevant des prismes droits, nous pouvons remplacer tout diédre 2zm/n par k
diédres n/n, également dégagés (figure 7).

g) Montrons enfin que: On peut transformer un polyédre ayant un diedre dégagé
f = :/(2 n) en un polyédre équivalent de telle sorte que I’angle f disparaisse et que
n’apparaissent que des diédres égaux & un multiple de 7/4.

En effet, divisons I’aréte en » segments égaux 1, 2, ..., n. Posons sur le diédre le
long de 1-2 un polyédre P[(n/2) — B8, B]. Le diédre le long de 1 est devenu droit; il
devient égal & 2 f# le long de 2. Posons maintenant sous le di¢dre le long de 2-3 un
polyédre P{(m/2) —2 8, 28]. Le diédre 2 devient droit, le diédre 3 devient égal 2
3 B. Il suffit d’ajouter successivement dessus et dessous des polyédres P [(7/2) — kB, k]
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pour éliminer ’angle # au bout de I’aréte si # est impair, au milieu de I’aréte si # est
pair, tous les nouveaux diedres étant des multiples de /4.

Nous avons ainsi transformé un polyédre a diédres rationnels en un polyédre
équivalent dont tous les diédres sont des multiples de @/4. Si 'on pouvait établir
qu’un tel polyédre est équivalent a un cube, on aurait montré que les conditions de
DEHN sont nécessaires et suffisantes pour 1’équivalence des polyédres. Pour I'instant,
nos résultats permettent seulement d’affirmer que: Si deux polyédres vérifient les
conditions de Dehn, leur différence est équivalente a un polyédre dont tous les diédres sont
des multiples de m[4. J.-P. SYDLER, Zurich.

Maximalstetige Kurven

Eine neue Charakterisierung der Kneser - Juelschen Bogen

Die reellen nichtanalytischen Kurven wurden zundchst von A. KNESER[1]}) im
Anschluss an eine Begriffsbildung voN STAUDTS [2] untersucht. CHR. JUEL [3] stiitzt
sich auf den Begriff des konvexen Bogens, von dem J. HJELMSLEV [4] gezeigt hat,
dass er zur Beschreibung der Gestaltverhiltnisse reeller Kurven geeignet ist. Kiirz-
lich hat L. LocHER-ERNST [5] eine Darstellung auf neuer Grundlage gegeben. Der
Kurvenbegriff in diesem Gebiet der Geometrie entspricht der anschaulichen Vorstel-
lung einer frei aufs Papier gezeichneten Linie, also der « Grundvorstellung, dass eine
ebene Kurve durch stetige Bewegung eines Punktes in einer Geraden und gleich-
zeitige Drehung der Geraden um den Punkt erzeugt wird, wobei sich die Richtung
der Bewegung und der Sinn der Drehung nur in einzelnen, singuldren Lagen der er-
zeugenden Elemente dndern» [1].

Es ist nun moglich — und soll hier ausgefithrt werden —, den Begriff des nirgends
singuldren Bogens (KNESER), des Elementarbogens (JUEL) oder des einfachen Ele-
mentarbogens (LOCHER) allein durch eine selbstdual gefasste Verschirfung der Stetig-
keit zu gewinnen, und zwar erweist sich das Kriterium als notwendig und hinreichend.
Wihrend der Begriff der Kurve mit iiberall eindeutiger und stetiger Tangente (vollig
stetige Kurve [3], §3) noch zu weit ist2) und durch ein weiteres Kriterium (Konvexitit
oder die sogenannten von-Staudtschen Sitze) eingeschrinkt werden muss, zeigt es
sich, dass die «Tangente im scharfen Sinn» nach BuseMANN und FELLER (6], [7]
unter Hinzunahme ihres Gegenstiickes das gewiinschte Kriterium ergibt, das wir
maximale Stetigkeit nennen.

1. Innere Stetigkeit und Ordnung (auf der Kurve)

Es sei eine linear geordnete stetige Menge K von Linienelementen Pp der pro-
jektiven Ebene gegeben. Es gelten in K die Zwischenrelationen und das Schnittaxiom.
Es gibt Intervallschachtelungen.

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis auf Seite 85.
%) Anmerkung bei der Korrektur: Die bei solchen Kurven moglichen Stellen werden in einer gleich-

zeitig im «Archiv der Mathematik» erscheinenden Arbeit untersucht: Ein Kritertum fiir die Kneser- Juel-
schen Kurven.



	Sur l'équivalence des polyèdres à dièdres rationnels

