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X ist als Grenzlage des Schnittpunktes G (gp, gQ) für Q -> P der Berührungspunkt
der Geraden gP mit der von ihr erzeugten Hüllkurve. Somit erhält man X als Fuss-
punkt des Lotes vom Krümmungsmittelpunkt M auf gP.

Denken wir uns für jeden Kurvenpunkt P den Kreis kP über PM qp als Durchmesser

konstruiert. Es folgt:
Bei deY Umwandlung eineY KuYve übeY ihYe Evolutoiden in ihve Evolute läuft jedeY

Punkt auf einem KYeise.

Weiter erhält man sofort:
DYeht sich gP mit konstanteY Winkelgeschwindigkeit oj aus deY Anfangslage tP um tz,

so duYchläuft deY von P ausgehende Punkt X mit konstanteY Geschwindigkeit oj qp den
KYeis kP.

Diese Sätze erlauben, die Umformung im einzelnen zu verfolgen und sich ein
anschauliches Bild von ihr zu verschaffen. L. Locher-Ernst, Winterthur.

Sur l'equivalence des polyedres a diedres rationnels

Deux polyedres sont dits equivalents (mod 0) si Ton peut construire Tun avec les

morceaux de l'autre augmente d'un cube. Pour que deux polyedres soient equivalents,
il faut qu'ils verifient les conditions de Dehn. Nous avons montre1) que si deux
polyedres remplissent ces conditions, leur difference est equivalente ä un polyedre dont
tous les diedres sont rationnels. Nous voulons montrer maintenant que:

Un polyedve dont tous les diedves sont Yationnels est equivalent ä un polyedYe dont
tous les diedYes sont des multiples de rc/4.

Avant de passer ä la demonstration elle-meme, nous etablirons deux proprietes
particulieres dont nous aurons besoin par la suite.

a) II existe un polyedre

P(a,f-a) [«<»]

equivalent ä un cube et ayant les proprietes suivantes:
1° Le long d'une arete CC"C (CC" C"C), il a un angle diedre egal ä a le long de

CC" et egal ä (n\7) — a le long de C"C, ces deux diedres ayant une face commune.
2° Tous les autres diedres sont des multiples de n\\.
En effet, considerons d'abord un prisme droit triangulaire AA'BB'CC, la base

etant un triangle isocele de sommet B, l'angle ABC etant egal ä 2 a [nous supposerons
a plus petit que jr/4, ayant le choix entre a et (nj2) — a] (figure 1). Comme a < njA,
il est possible de choisir la longueur AA' de teile sorte que le plan passant par la
diagonale AC et perpendiculaire ä la face AA'CC coupe les faces AA'BB' et BB'CC
suivant des angles diedres egaux ä 3 tz/4 et n\\.

Soient B", D, D', D", C" les milieux des segments B'B, BC, B'C, DD', CC. Le
polyedre ABCB"C est equivalent ä un cube; il a le long des aretes BB", CC", C"C

1) J.-P. Sydler, Sur les conditions necessaires pour Vdquivalence des polyidres euclidiens, El. Math. 7,
49 (1952).
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des angles diedres egaux ä 2 a, (tz/2) — a, (tz/2) — a. Posons sur la face BB"DD" un
prisme droit BB"DD"EE" ayant le long de BB" un diedre egal ä (tz/2) - 2 a et un
diedre droit le long de EE"; enfin enlevons du polyedre DD"CC"FF" le symetrique de

BB"DD"EE" par rapport ä DD". Le polyedre ABB"EE"FF"CC"C donne un exemple
du polyedre cherche.
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b) Nous dirons qu'un diedre (ou qu'une arete) est degage lorsqu'il est borde par
deux plans perpendiculaires ä l'arete (figure 2). Si l'on a plusieurs diedres degages le

long de la meme arete, il est aise de les separer en enlevant un prisme droit du polyedre.
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Montrons qu'il est possible de deplacer un diedre degage d'une longueur quelconque
le long de son ar£te en n'introduisant que des diedres 6gaux k des multiples de-jr/4,
le polyedre final etant äquivalent au polyedre initial.

Soit AB Tarnte consider^e (figure 3). Supposons d'abord le diedre oc suffisamment
petit. Enlevons en A un prisme rectangulaire droit que nous rajouterons au delä de

B, Tarnte de ce prisme ayant la longueur du d6placement voulu. Soient CD et CD'
les deux nouvelles aretes de diedres (tt/2) + oc et (nj2) —ol. Rajoutons le long de CD
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une pyramide CDEFG dont la base DEFG est perpendiculaire ä AB et dont ie diedre
CD est egal ä (nj2) — oc, les diedres CE, CF, CG etant droits (ce qui est possible pour
01 assez petit, les segments de la base etant egalement petits, donc en dehors du
polyedre). Nous enleverons un polyedre symetrique le long de CD''. Afin d'eviter des

comphcations en F et F', enlevons encore du polyedre des prismes droits d'aretes
EF, F'C qui degageront les diedres non droits. Soient HK et H'K' les aretes des

nouveaux diedres provoques par EF et E'F', dont nous designerons les grandeurs par
2 tz -ß et (3tt/2) + ß. Le long de HK, nous enlevons un polyedre P\(tzJ2) - ß, ß],

,D

\\
\ \

/ vr

it— —

"\

NV'fl

hP

B B

^B
Fig r, Fig 6

nous en enlevons aussi un le long de H'K' de teile sorte que le long d'une moitie d'arete
les diedres deviennent droits, le long de la seconde moitie, ils deviennent egaux ä
2 tz - 2 ß et ä tz -f- 2 ß, les faces etant paralleles On peut des lors enlever un prisme
droit le long de ces demi-aretes et supprimer ainsi tous les diedres qui ne sont pas des

multiples de tz\\ (figure 4, les parties hachurees representent les polyedres ä enlever).
Remarquons que, s'il le faut pour que toute la construction reste ä Tinteneur du
polyedre, on peut diviser les aretes HK en k parties auxquelles on applique la meme
construction.

Nous agirons de meme le long de FG.
Lorsque a est quelconque, il suffit de decomposer ce diedre en n diedres suffisam-

ment petits auxquels on peut apphquer la construction ci-dessus.
Ces deux proprietes permettent d'etabhr que •

c) Tout polyedre est equivalent ä un polyedre ayant les memes diedres, mais
degages, les aretes correspondantes ayant la meme longueur, et d'autres diedres

egaux ä des multiples de tz/4
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Montrons-le tout d'abord pour un tetraedre ABCD, AB _L BC _1_ CD. Soit ABCD
un tetraedre semblable et deux fois plus grand (lineairement) et soit S le centre de la
sphere inscrite (figure 5). Les plans menes par S perpendiculairement aux aretes
decomposent de facon naturelle le tetraedre en quatre polyedres contenant chacun un
des sommets A, B, C, D. Otons du tetraedre k partir de chaque sommet des polyedres
semblables ä ces quatre polyedres et (lineairement) deux fois plus petits. Le polyedre
restant est equivalent (modO) k ABCD puisque P(2) ~ 2P(1). Soient A'B'CD' les

homologues de S (donc les milieux de SA, SB, SC, SD). Le polyedre restant a des

diedres degages le long de AB, CD. Par contre, il a de nouveaux diedres comple-
mentaires le long des aretes issues de

1° A' et B', perpendiculaires ä ABC, 3° B' et D', perpendiculaires k ABD,
2° B' et D', perpendiculaires ä BCD, 4° C et D', perpendiculaires ä ACD.

On peut supprimer ces diedres en enlevant du polyedre quatre prismes droits
perpendiculaires ä ABC, BCD, ABD, ACD. Nous renvoyons k la figure 6 oü les bases
des prismes ä enlever sont indiquees par des hachures.

Le polyedre ainsi obtenu a des diedres degages le long des aretes AB, CD. La
longueur des aretes est la moitie de AB, CD. En vertu de la propriete b), il est

possible de les deplacer et de les amener au milieu de AB, CD.
e) Nous voyons des lors comment etablir la propriete pour un polyedre quelconque:

II suffit de decomposer regulierement un polyedre semblable deux fois plus grand en
tetraedres, puis en tetraedres du genre precedent, de faire la construction ci-dessus

pour chaque tetraedre et de les assembler dans l'ordre primitif. Toutes les anciennes
aretes interieures comcideront k nouveau, de meme que les aretes situees sur les faces.
Seuls les anciens diedres subsisteront, ainsi que des diedres egaux ä des multiples de

tz/4, ce qui etablit la propriete dans le cas general.

-~j-J-— __£4

Fig. 7

/) Considerons maintenant un polyedre ayant tous ses diedres rationnels. Nous

pouvons supposer que tous les diedres differents d'un multiple de n\\ sont degages.
En enlevant des prismes droits, nous pouvons remplacer tout diedre knjn par k

diedres njn, egalement degages (figure 7).
g) Montrons enfin que: On peut transformer un polyedre s^yant un diedre degage

ß tt1(2 n) en un polyedre equivalent de teile sorte que l'angle ß disparaisse et que
n'apparaissent que des diedres egaux k un multiple de n\A.

En effet, divisons l'arete en n segments egaux 1,2,...,«. Posons suy le diedre le

long de 1-2 un polyedre P [(nj2) — ß, ß]. Le diedre le long de 1 est devenu droit; il
devient egal k 2 ß le long de 2. Posons maintenant sous le diedre le long de 2-3 un
polyedre P [(nß) —2ß,2ß~\. Le diedre 2 devient droit, le diedre 3 devient egal k
3 ß. II suffit d'ajouter successivement dessus et dessous des polyedres P[(tt/2) — hß, kß]
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pour eliminer l'angle ß au bout de l'arete si n est impair, au milieu de l'arete si n est

pair, tous les nouveaux diedres etant des multiples de tz/4.
Nous avons ainsi transforme un polyedre k diedres rationnels en un polyedre

equivalent dont tous les diedres sont des multiples de n\\. Si l'on pouvait etablir
qu'un tel polyedre est equivalent k un cube, on aurait montre que les conditions de

Dehn sont necessaires et süffisantes pour l'equivalence des polyedres. Pour l'instant,
nos resultats permettent seulement d'affirmer que: Si deux polyedres verifient les

conditions de Dehn, Uuy difference est equivalente ä un polyedre dont tous les diedres sont
des multiples de ix\\. J.-P. Sydler, Zürich.

Maximalstetige Kurven
Eine neue Charakterisierung der Kneser-Juelschen Bögen

Die reellen nichtanalytischen Kurven wurden zunächst von A. Kneser[1]x) im
Anschluss an eine Begriffsbildung von Staudts [2] untersucht. Chr. Juel [3] stützt
sich auf den Begriff des konvexen Bogens, von dem J. Hjelmslev [4] gezeigt hat,
dass er zur Beschreibung der GestaltVerhältnisse reeller Kurven geeignet ist. Kürzlich

hat L. Locher-Ernst [5] eine Darstellung auf neuer Grundlage gegeben. Der
Kurvenbegriff in diesem Gebiet der Geometrie entspricht der anschaulichen Vorstellung

einer frei aufs Papier gezeichneten Linie, also der « Grundvorstellung, dass eine
ebene Kurve durch stetige Bewegung eines Punktes in einer Geraden und gleichzeitige

Drehung der Geraden um den Punkt erzeugt wird, wobei sich die Richtung
der Bewegung und der Sinn der Drehung nur in einzelnen, singulären Lagen der
erzeugenden Elemente ändern» [1].

Es ist nun möglich - und soll hier ausgeführt werden -, den Begriff des nirgends
singulären Bogens (Kneser), des Elementarbogens (Juel) oder des einfachen
Elementarbogens (Locher) allein durch eine selbstdual gefasste Verschärfung der Stetigkeit

zu gewinnen, und zwar erweist sich das Kriterium als notwendig und hinreichend.
Während der Begriff der Kurve mit überall eindeutiger und stetiger Tangente (völlig
stetige Kurve [3], § 3) noch zu weit ist2) und durch ein weiteres Kriterium (Konvexität
oder die sogenannten von-Staudtschen Sätze) eingeschränkt werden muss, zeigt es

sich, dass die «Tangente im scharfen Sinn» nach Busemann und Feller [6], [7]
unter Hinzunahme ihres Gegenstückes das gewünschte Kriterium ergibt, das wir
maximale Stetigkeit nennen.

1. Innere Stetigkeit und Ordnung (auf der Kurve)

Es sei eine linear geordnete stetige Menge K von Linienelementen Pp der
projektiven Ebene gegeben. Es gelten in K die Zwischenrelationen und das Schnittaxiom.
Es gibt Intervallschachtelungen.

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis auf Seite 85.
2) Anmerkung bei der Korrektur: Die bei solchen Kurven möglichen Stellen werden in einer gleichzeitig

im «Archiv der Mathematik» erscheinenden Arbeit untersucht: Ein Kriterium für die Kneser-Juelschen

Kurven.
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