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Reihe der elementaren algebraischen Mittelwerte zu ersehen ist. Im Intervall
0< * < jr/2 gilt für

H<Ct<G < S <A<T<C<Q,
H<Ct<G <S <A<C<T<Q,
H<Ct<G < S <A<C<Q<T,
H<Ct<S <G <A<C<Q<T,
H<S <Ct<G <A<C<Q<T,
S <H <Ct<G <A<C<Q<T,
S <H <G <Ct<A<C<Q<T,

0 ^v * ___ * TC •

xTC ——» * __« * fO '

xTg S; * Ss XGS'

XGS x xcts-

xcts —a * ___ Xjjc '.

XHS ___ X _ü XCiG

XCtG ^X<7t\2\
wobei

*rc ¦

\JQ-

*GS

-- 35° 15'51,8"= 0,6154797,

37° 25' 46,8" 0,6532709,

49° 17' 36,5"= 0,8603334,

H harmonisches Mittel,
A arithmetisches Mittel,
S Sinusmittel,
Ct Kotangensmittel,

xas 54° 44' 8,2" 0,9553166,

xHS 61° 43' 1,2"= 1,0768740,

%G= 66° 46'54,3" 1,1655614.

G geometrisches Mittel,
Q quadratisches Mittel,
C Kosinusmittel,
T Tangensmittel.

H. Jecklin, Zürich.

Kleine Mitteilungen

Geometrische Darstellung der Dimensionen physikalischer
Grössen und ihre Anwendung

1. Darstellung der Dimensionen in einem Vektorraum

Wir setzen als gegeben voraus, dass sich jede physikalische Grosse A in der folgenden
Weise durch ihre Dimensionen charakterisieren lässt1)

IA]-A*A+...A?, (1)

wo die At die Grunddimensionen und die Exponenten at ganze oder rationale Zahlen
sind. Gewöhnlich ist n 3 oder n =-= 4. Die Dimension lasst sich dann isomorph auf ein
geordnetes Zahlen-w-tupel abbilden, vermöge der Zuordnung

AaiAa* A*n [«1. a an~\ =0. (2)

Es ist nun naheliegend, die at als Koordinaten eines Vektors a in einem affinen
Vektorraum Vn aufzufassen2). Fur diese Vektoren lassen sich nämlich die üblichen
Rechenregeln definieren.

x) E. Bodea, Gtorgis rationales MKS-Maßsystem mit Dtmensionskokärenz (Birkhauser, Basel 1948), S 26.
J) H. Wüger benutzte ein kartesisches Koordinatensystem, was aber nicht nötig ist Vgl. H. Wüger,

Graphische Darstellung von Maßsystemen, Bull Schweiz, elektrotechn Verein 22, 637-640 (1931).
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Die qualitative Verknüpfung1) der Grossen und damit auch ihrer Dimensionen zeigt,
dass sie in bezug auf diese Operation eine abelsche Gruppe bilden Diese Gruppe ist
das direkte Produkt von n unendlichen Gruppen, die der Gruppe der rationalen Zahlen
mit der Addition als Zusammensetzungsvorschrift isomorph sind Dies fuhrt wegen (2)
zur Addition der Vektoren

a + b [a± + blt ,an+bn] (3)

Ebenso ist die Multiplikation eines Vektors mit einer rationalen Zahl A erklart

X<x [la1, ka2, kan] (4)

Auf Grund der Eigenschaften der qualitativen Verknüpfung erkennt man, dass die
Addition kommutativ und assoziativ und die Multiplikation mit einer Zahl assoziativ ist
X(u a) (A u) a Ebenso gelten fur die Multiplikation zwei Distributivgesetze

A(a |-b) Aa-f Ab,
(5)

(Hj«)a Aa L/ta, j

wie sofort zu beweisen ist Damit sind aber alle Eigenschaften eines Vektorraumes
erfüllt2), und es folgt

Die Dimensionen der physikalischen Grossen bilden einen n-dimensionalen affinen
Vektorraum Vn über dem Korper der rationalen Zahlen

2 Übergang auf neue Grunddimensionen

Der obige Sachverhalt lasst sich dazu ausnutzen, den Übergang von einem
Dimensionssystem - das Entsprechende gilt fur die Einheitensysteme, wenn die Regel der
Dimensionskoharenz8) beachtet wird — zu einem neuen sehr bequem durchzufuhren

Es sei zunächst ein bestimmtes Dimensionssystem gegeben Die Dimension jeder
Grosse wird durch einen Vektor dargestellt

n

^=Zatnt atnt (6)
1

wo die nt die Basisvektoren des Vn sind Vermöge der nichtsingularen Transformation
T= (ttk) gehen wir zu einem neuen Koordinatensystem über

nt=tlknk (7)

Die itt sind dann wieder n linear unabhängige Vektoren des Vn Der Vektor a habe im
neuen System die Koordinaten ät, dann gilt

a ätnt, (8)
und es folgt leicht aus (6) bis (8)

ät utkak [9)
Hier ist

U'=T-* oder U'T E, (10)

wenn V die zu U transponierte Matrix und T~x die zu T inverse Matrix bedeutet Bei
einer Änderung des Dimensionssystems gilt demnach fur die Dimension der Grossen
eine Transformation von der Form

ä'=t/a' (11)

*) M Landolt, Grosse, Masszahl und Einheit (Rascher, Zürich 1943), Seite 61-65
2) Vgl zum Beispiel B L van der Waerden, Moderne Algebra, 1 Teil, 2 Aufl (Springer, Berlin 1937),

Seite 46
8) E Bodea, 1 c Seite 48
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So lautet die zu T kontragrediente Matrix U fur den Übergang von einem MLT-
System (Masse, Lange, Zeit) nlf n2, n3 zu einem KLT-System (Kraft, Lange, Zeit)
^=[1, 1, -2], n2=[0, 1, 0], n3=[0, 0, 1]

U

wie man leicht nachprüft Zur praktischen Bestimmung der Matrix U beachte man,
dass in den Kolonnen die Koordinaten der alten Basisvektoren, ausgedruckt im neuen
Koordinatensystem, stehen

Es sei hier noch eine Bemerkung zum LTQ&-System (Lange, Zeit, Elektnzitats-
menge, magnetischer Fluss) \on Kalantaroff1) gemacht Die rein elektrischen,
magnetischen bzw mechanischen Grossen werden durch Vektoren mit den Koordinaten
[alf a2, 1, 0], [ax, a2, 0, 1] bzw [alt a2, 1, 1] dargestellt, wo die at fur die üblichen Grossen
ganze Zahlen smd Diese drei Teilgebiete der Physik besitzen demnach Dimensionen,
die je in einen dreidimensionalen Teilraum des Vektorraumes Vx abgebildet werden
Wir können sagen, dass die elektrischen und magnetischen Grossen symmetrisch in
bezug auf die mechanischen Grossen hegen2)

3 Maßstabanderungen

In den obigen Betrachtungen wurden nur die Dimensionen der Grossen und ihr
Aufbau aus den Grunddimensionen berücksichtigt Bei den praktisch verwendeten
Einheitensystemen treten aber neben den angegebenen Transformationen häufig noch
unbequeme Umrechnungsfaktoren hinzu Wir können uns darauf beschranken, eine
Maßstabanderung innerhalb eines Einheitensystems zu betrachten Die gewählten
Grundeinheiten sollen durch neue, gleichartige Einheiten ersetzt werden gemäss der
Formel

{A,) *,{A't) (12)

Die Einheiten werden durch eine geschweifte Klammer gekennzeichnet, um sie von
den zugehörigen Dimensionen zu unterscheiden Damit lautet die Einheit einer
beliebigen Grosse A

{A}={A"1' <»} <> <n{4a' <""} (")
oder

v l
wenn fur die Einheit eine analoge Darstellung wie fur die Dimension verwendet wird.
Es ist aber zu beachten, dass die Eigenschaften (3) bis (5) fur die Symbole { } nicht

n
gelten, /fa*" ist der Umrechnungsfaktor. Die Einheiten selber bilden also keinen

viVektorraum'
Abschliessend können wir folgendes feststellen. Die Festlegung eines Dimensionssystems

zum Aufbau eines Einheitensystems kommt darauf hinaus, im affinen Räume
der Dimensionen ein Koordinatensystem auszuwählen Damit ergibt sich gleichzeitig
ein Überblick über die Mannigfaltigkeit der möglichen Systeme

E. Roth-Desmeules, Luzern.

*) P. Kalantaroff, Les iquations aux dimensions des grandeurs ilectriques et magnitiques, Rev gen
Electr 25, 235 (1929)

2) Vgl dazu E Bodea, 1 c Tabelle VI, Seite 127
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Grossengleichungen und die Einheit «Mol»1)
In der Physik ist es heute üblich, die Definitionen und Gesetze unabhängig von den

Einheiten in Form von Grossengleichungen darzustellen Wenn dies in der physikalischen

Chemie bisher nicht gelang, so hegt das zur Hauptbache daran dass man sich
zu wenig Klarheit verschafft hat über die Art oder Dimension der herkommhcherweise
in Mol (Grammol, Grammolekul) ausgedruckten Grossen

Der oft vertretenen Ansicht, das Mol sei eine Masseinheit2), können wir uns nicht
anschhessen In Angaben wie «3 Mol Chlor» oder «3 Mol Wasserstoff» usf steht doch
offenbar 3 als Masszahl Mol als Einheit einer Grosse, in welcher diese gasformigen
Korper übereinstimmen Das einzige übereinstimmende quantitative Merkmal dieser
Gaskorper ist aber die Anzahl der freien Gasteilchen, der Moleküle Die Einheit 1 Mol
muss also - ahnlich wie 1 Paar, 1 Dutzend, 1 Gros - ein Zahlmass sein, das allerdings
seinem Namen nach zunächst noch die Einschränkung m sich schhesst, dass die gezahlten

Dinge Moleküle smd
Man kann sich aber von dieser Einschränkung frei machen und das Mol auch als

Zahlmass fur Atome und Ionen verwenden (an Stelle von Grammatom und Grammion),
wenn man die Art der Teilchen ausserhalb der Zahleinheit angibt, zum Beispiel

1 Mol Cl2 oder 1 Mol Chlormolekule wiegt 71 g,
1 Mol Cl oder 1 Mol Chloratome wiegt 35,5 g,
1 Mol Cl" oder 1 Mol Chlononen wiegt 35,5 g

und tragt die Ladung 96 500 Coulomb

Fur das im angedeuteten Sinn verallgemeinerte Mol soll folgende Definition gelten
7 Mol ist eine dimensionslose Zahlemheit grosser als die natürliche Zahlemheit 1 Stuck

Die Zahlemheit 1 Mol ist festgelegt durch die A nzahl der Moleküle in 32 g Sauerstoffgas
Nachdem diese Anzahl indirekt zu 6,02 1023 Stuck bestimmt wurde, kann man die
Umrechnungsgleichung angeben

1 Mol 6,02 1023 Stuck3)

Es werden auch dekadische Vielfache dieses Zahlmasses als neue Zahlemheiten
verwendet, zum Beispiel

1 kMol 103 Mol 6,02 1026 Stuck

Dass sich die so festgelegten Einheiten auch bei Elektronen, Lichtquanten usf als
Zahlmasse eignen, hegt auf der Hand

Wird eine Anzahl nicht in der natürlichen Einheit Stuck angegeben, so muss die
verwendete Zahlemheit, zum Beispiel Mol oder Kilomol, unbedingt genannt werden,
bei Angaben in der natürlichen Einheit kann die Bezeichnung Stuck unterbleiben Die
folgenden abgeleiteten Grossen geben Anwendungsbeispiele fur diese Regeln

Dividiert man die Masse m eines Korpers, sein Volumen v, seine Wärmekapazität k
oder eine andere geeignete Quantitatsgrosse durch die Anzahl z seiner Atome bzw
Moleküle, so erhalt man neue Grossen gleicher Dimension, aber anderer Bedeutung,
sie sollen atomare bzw molekulare Grossen heissen Man wird in diesen Grossen die
bisher ausschliesslich auf die Einheit Grammatom bzw Grammol bezogenen Begriffe
Atommasse, Atomvolumen, Atomwarme bzw Molmasse, Molvolumen, Molwarme usf
erkennen Die zugehörigen Definitionsgieichungen sind aber von den Einheiten
unabhängig, die dann auftretende Anzahl z ist eine xn deY physikalischen Chemie unent-

x) Dieses Thema wurde anlasslich des letzten Fortbildungskurses des Vereins Schweizerischer Gynina
siallehrer (El Math 8, 20 [1953]) in einer Aussprache über Probleme des Physikunterrichts behandelt

2) Zum Beispiel R W Pohl, Mechanik, Akustik und Wärmelehre, 10 und 11 Auflage (Springer,
Berlin 1947), oder W H Westphal, Physikalisches Wörterbuch (Springer, Berlin 1952)

3) Die Umrechnungszahl 6,02 1023 (Loschmidtsche oder Avogadrosche Zahl) darf in Grossengleichungen
natürlich kein besonderes Symbol erhalten
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behYliche GYundgYösse1), die in jeder der oben angeführten Zähleinheiten ausgedrückt
werden kann:

1. Beispiel: Für die atomaren bzw. molekularen Massen M m/z der Elemente
erhält man

O«: M 32,000 -^jL-. 32,000 j^g 5,36 -10-26kg;2 Mol kMol 5

O: M 16,000 -J^r 16,000 *
_ 2,68 -10-26kg;Mol kMol ö

H: M 1,008—|v 1,008-^^r 0,167-10"26 kg;Mol kMol

He: M= 4,003 —5_ 4,003 ^, 0,66 .10"2«kg.Mol kMol

Die üblichen Atomgewichtstabellen enthalten die zu den Einheiten g/Mol oder kg/kMol
gehörenden Masszahlen der atomaren Massen. Dem Ausdruck Atomgewicht bzw.
Molekulargewicht würden die benannten Zahlen besser entsprechen.

2. Beispiel: Das molekulare Volumen (abgekürzt Molvolumen) V v/z beträgt für
ideale Gase im Normalzustand (Druck p 1 Atm; Temperatur T 273° K)

V=—= 22,4 —Lp 22,4
ra*

=- 3,73 i0-2o cms
z Mol kMol

Das Molvolumen lässt sich folgendermassen aus der molekularen Masse M und der
Dichte d der Substanz berechnen:

T/_ v _ v m M
z m z d

3. Beispiel: Die atomare Wärmekapazität (kurz Atomwärme) C =¦ k/z misst für
Metalle bei hohen Temperaturen ungefähr:

™l * kCal _ 1 n-23__Sf_L _ A <?. 1 n-16 ^16 -5-^-rTF-r 1°~23^tF- 4,2 .10"°KMol °KkMol °K ' °K '

Für zweiatomige Gase misst die molekulare Wärmekapazität (kurz Molwärme) bei
konstantem Druck etwa

cal kcal =116.10-_3^ 49.1()-i«_g£g,°" °KMol ' °KkMol ' Ö U
°K *'y iU °K *

Die Atom- bzw. Molwärme C einer Substanz hängt eng mit deren spezifischer Wärme
c kjm zusammen, hat aber nicht dieselbe Dimension.

Zusammenhang: C — -= — • —> c M.
z m z

4. Beispiel: Zu jeder abgeschlossenen Menge eines idealen Gases gehört eine individuelle

Gaskonstante y — p v/T. Die entsprechende molekulare Gaskonstante

z Tz T Td Tm

x) Wir halten es nicht für zweckmässig, diese Grundgrösse mit dem vieldeutigen Ausdruck t
Stoffmenge» zu belasten. Vgl. Note 2 auf Seite 63.
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ist unabhängig von der Menge und der Art des Gases

R o 082 J?™ \ 8,31 10' *\gr =8 31 103 J
°KMol ' °KMol °K kMol

Man erkennt, dass die sogenannte universelle Gaskonstante und die Boltzmannsche
Konstante übereinstimmen, in Grossengleichungen sollten sie durch dasselbe Symbol
bezeichnet werden

5 Beispiel Ähnlich liegen die Verhaltnisse bei der Faradayschen Konstanten und der
Elementarladung Durch z gleichartige Ionen werde insgesamt die Ladung q und die
Masse m durch einen Leitungsquerschnitt getragen q/m misst dann die spezifische
Ladung, wahrend

X X m_q_M
z m z m

die atomare bzw molekulare Ladung misst Diese ist immer em kleines ganzzahliges
Vielfaches von

0O=9,65 10* 1£LT 9 65 107 —£—=1,6 10-"C*u Mol kMol

Wir hoffen, durch diese Betrachtungen die Einfuhrung von Grossengleichungen im
Gebiet der physikalischen Chemie zu fordern

W Bantle Winterthur, J Hablutzfl Zürich

Ein Satz der elementaren Geometrie1)
Die Strecken a, b, c sind bekanntlich dann und nur dann Seiten eines Dreieckes der

elementaren Geometrie, wenn

16 f2= 2 (a2 b2+ b2 c2 + c2 a2) - (a«+&* + c4)

(Heronsche Gleichung) positiv ist Ist 16/2=0, dann sind a, b, c nicht Seiten eines
Dreiecks, sondern Abstände dreier Punkte einer Geraden Ist 16 f2 negativ (a 3,
b c 1 gibt 16 f2 —45), dann sind a, b, c Seiten eines imaginären Dreiecks

[a 3, b c l gibt a(j, yV*). ß(°'°)' C(3'0)]

Sind A, B, C die Ecken eines gleichseitigen Dreiecks und ist D ein Punkt des Umkreises
dieses Dreiecks, dann ist wegen des Satzes von PtolEmaus 16/2= 0 Fur alle anderen
Punkte D der Ebene ist 16/2 + 0 - Fur den Mittelpunkt des Umkreises ist 16/2 3 r*
(r ist der Radius des Umkreises). Fur eine Ecke des Tangentendreiecks hat man

a2=9r2, b2=c2=3r2 und 16/2=54r4>0
Das heisst 16/a ist fur keinen Punkt der Ebene negativ Es gilt daher der Satz

Liegt der Punkt D nicht auf dem Umkreis des gleichseitigen Dreiecks ABC, dann lasst
sich aus den Strecken AD, BD und CD em Dreieck konstruieren Liegt D auf dem
Umkreis, dann sind diese Abstände nicht Seiten eines Dreieckes, sondern lediglich
Abstände von drei Punkten einer Geraden R Lauffer, Graz

Anmerkung der Redaktion Vor Eingang dieser Note sandte uns Herr J -P Sydler
ein Manuskript, m dem der oben behandelte Satz von Pompeiu für den Rn ausgespro
chen und bewiesen wird Diese Abhandlung wird in einem der nächsten Hefte erscheinen

*) Siehe S V Pavlovic, Sur une demonstration geomitrique d'un thdorlme de M D Pompeiu, El Math 8,
13 (1953), und J P Sydler, Autre demonstration du thioüme de Pompeiu, El Math 8, 15 (1953)
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A propos du pentagone1)
Remarquons d'abord que l'on peut former G3 10 quadrilateres mscrits differents

ayant pour sommet commun le point M et pour autres sommets certains sommets
du pentagone ABCDE A chacun d'eux on peut apphquer le theoreme de Ptolemee
et l'on obtient

Polygone Relation due au theoreme de Ptolemie

MABC MBy=MÄ x + MC x, (1)

MABD MB y MA y + MD x, (2)

MABE MB x MÄy+MEx, (3)

MACD MCy MÄ x-rMDy, (4)

MACE MC x MÄ y +MEy, (5)

MADE MDx=MÄ x + MEy, (6)

MBCD MC y MB x + MD x, (7)

MBCE MCy MBy-rMEx, (8)

MBDE MDy=MB x-\-MEy, (9)

MCDE MDy MC x -\-ME x (10)

Apres avoir elimin6 x et y entre les relations

(1) et (9) ona MB2 (MÄ + MC) {MD - ME), (11)

(2) et (10) on a MD2 [MB - MA) (MC + ME), (12)

(3) et (4) ona MÄ2 [MB - ME) [MC- MD), (13)

(5) et (7) on a MC2 (MB -+ MB) (MA + ME), (14)

(6) et (8) on a ME2= (MD - MA) (MC - MS) (15)

Corollaire M est au miheu de AE Les formules

(11) et (12) donnent (C\Qläo%u) (C101convexe + 2 r) (c101 äoil*~~ C10/convexe), (16)

(13) et (15) (Cl0/convexe) (2 V ~ C10/äotle) (C10/Aoilf~ C10/convexe), (17)

et la formule (14) devient r cioIconvexeciofdoit (18)

Apres avoir divis6 membre ä membre les formules (16) et (17), on obtient

C10[convexe\ _
2 Y C\Q(äoiU

C10litotli I 2Y + C
10/convexe

(19)

RemaYque II y a d'autres possibiht6s d'ehminer x et y entre les relations (1) ä (10),
mais nous n'avons tenu compte que de Celles qui donnent des relations se presentant
sous forme de moyenne g6om6tnque. G Bilger, Geneve

Zu einer Frage über Mengen von Punkten mit ganzzahliger Entfernung
Schon aus den Mitteilungen von M Altwegg2) und von A Muller3) über besondere

Punktmengen der Ebene geht hervor, dass em solches Maximum nicht existiert Die
folgende KonstYuktion zeigt fuY einen Raum behebigeY Dimensionszahl k, wie man zu

x) Les notations et la methode sont les memes que celle de ma note A propos du pentagone, El Math 4,

65 (1949) A, B,C,D,E sont les sommets d'un pentagone regulier et M un point quelconque de l'arc AE
du cercle circonscnt

2) El. Math 7, Nr 3, 56 (1952)
8) El Math 8, Nr 2, 37 (1953)
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'jeder natürlichen Zahl N > k ein System von mindestens N Punkten mit lauter ganzzah
hgen Entfernungen finden kann, die nicht alle demselben linearen Unterraum von k — 1

Dimensionen angehören
Folgende Konstruktion beweist, dass fur keine Dimensionszahl k ein solches Maximum

existiert, sondern dass man zu jeder natürlichen Zahl N > k auf mindestens eine Art N
Punkte mit ganzzahhgen Entfernungen angeben kann die nicht alle demselben linearen
Unterraum von k — 1 Dimensionen angehören

I Im Falle der Ebene (k 2) verwenden wir pythagoreische Dreiecke, deren Katheten
OAt und OBt auf der positiven x Achse bzw y-Achse eines rechtwinkligen Koordinatensystems

mit dem Ursprung 0 liegen Dabai wählen wir

OAt pt und OB% &^y
also die Hypotenuse AtBt= (p\ +1)/2, wo plt p2, pz, die aufsteigende Reihe der
Primzahlen (^ 3) bedeute Je grosser pt, desto grosser ist der Dreieckswmkel 0Lt bei
A., denn

tga,= H*~k)
Sei nun N > 2 eine natürliche Zahl Dann vergrossern wir alle zu den Indizes

12, N — 2 gehörenden Dreiecke durch Streckung vom Zentrum O aus so, dass
ihre auf der x Achse liegenden Katheten die gleiche Lange OA * px p2 PN 2 er~
halten Die Punkte Bf,B$, B% 2 der y Achse, in welche die Punkte Bt über
gegangen sind, zusammen mit O und A*, bilden das gewünschte System von N Punkten
mit ganzzahhgen Abstanden, die nicht alle in einer Geraden liegen

Übrigens hat es auf der y-Achse ausser den Punkten Bf noch weitere Punkte Blt B2,
welche die Bedingung ganzzahhger Abstände erfüllen, das gilt erst recht, wenn die
Figur nochmals mit einem ganzzahhgen Faktor gestreckt wird So liefert unsere
Konstruktionsvorschrift beispielsweise fur 2V=4 die Strecke OA* 3 5 15 und vorerst
die beiden Punkte £f(0|20) und B*(0\36) Brauchbar sind aber auch Bx(0\S) und
J92(0 1112) Streckt man noch mit dem Faktor 8 so existieren zur Kathete

OA* S 15 120

insgesamt 22 verschiedene pythagoreische Dreiecke (Natürlich lasst sich das Punktesystem

noch an den Achsen spiegeln
II Im Falle einer beliebigen endlichen Dimensionszahl k> 2 bestimme man zu einer

gegebenen naturlichen Zahl_V>& wie vorhin eine Strecke OA*=pt p2 P^-k ^it
OA * als Kante denke man sich em reguläres Simplex von k — 1 Dimensionen (das heisst
mit k Ecken) konstruiert, zum Beispiel im Falle k 3 ein gleichseitiges Dreieck Normal
zum (k — l)-dimensionalen Unterraum, der durch das Simplex bestimmt wird, also
normal zu den k — 1 von 0 ausgehenden Kanten, lege man durch O eine Achse, auf
welcher N — k Punkte Bf, B*, B*j k durch das in Abschnitt I geschilderte
Verfahren festgelegt seien Ihre Verbindungsstrecken zur Simplexecke 0 sind jetzt Katheten,

die Strecken von den Bf nach den andern k — 1 Ecken Hypotenusen von
pythagoreischen Dreiecken, so dass in den Simplexecken und den Bf wieder insgesamt
N Punkte mit ganzzahhgen Entfernungen gefunden sind, die nicht alle demselben
(k — l)-dimensionalen Unterraum angehören

III Ergänzend seien fur die Ebene durch Angabe von Koordinaten zwei Beispiele
mitgeteilt, die weitere Anordnungsmoghchkeiten illustrieren

1 6 Punkte _41>2(+80 | ±30), Blf2(0\ ±30), C1>2(-111 ±30),
auftretende Abstände 11, 60,61, 80, 91, 100, 109

2 7 Punkte v4]>2jM(±42| ±40), B1>2(±33 |0), 0(0 |0),
auftretende Abstände 33, 41, 58, 66, 80, 84, 85, 116 Fr\nz Steige, Bern.
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