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60 Kleine Mitteilungen

Reihe der elementaren algebraischen Mittelwerte zu ersehen ist. Im Intervall
0<x<m2 gilt fur
0 <sx=x0 HLOLKGE LSS <A4LKTKCLYQ,
¥rc SxSxpp: HLSCOLK<GE LS <A4<CLT<Q,
= gt HSCt<G <S <4<K<CLK<Q9LT,
Xos SxSxgs: HLCOLS <GEL<AKCLKQELT,
Ags=xSxyg: HS <COKG<AK<CLQLT,
s S ¥ S g S<THLKCLKGEG<AL<CLQPLT,
Yoo = x < m/2: SKHLGLSO<AK<CLSQLT,

X1o =x

wobel
Xpc=35°15'51,8" = 0,6154797, x.s = 54°44" 8,2" = 0,9553166,
%ro=37°25"46,8" = 0,6532709, xys = 61°43" 1,2" = 1,0768740,
Xgs = 49°17"36,5" = 0,8603334, x,,,= 66°46"54,3" = 1,1655614.

H = harmonisches Mittel, G = geometrisches Mittel,
A = arithmetisches Mitte], Q = quadratisches Mittel,
S = Sinusmittel, C = Kosinusmittel,
Ct = Kotangensmittel, T = Tangensmittel.

H. JeckLiN, Ziirich.

Kleine Mitteilungen
Geometrische Darstellung der Dimensionen physikalischer
Grossen und ihre Anwendung

1. Darstellung der Dimensionen in einem Vektorraum

Wir setzen als gegeben voraus, dass sich jede physikalische Grosse 4 in der folgenden
Weise durch ihre Dimensionen charakterisieren lisst?)

[A]=Ap AP ... A", (1)
wo die A, die Grunddimensionen und die Exponenten a; ganze oder rationale Zahlen

sind. Gewdhnlich ist # = 3 oder # = 4. Die Dimension lasst sich dann isomorph auf ein
geordnetes Zahlen-n-tupel abbilden, vermége der Zuordnung

AT A .. A ~— [ay, a,, ..., a,] =q. (2)
Es ist nun naheliegend, die a; als Koordinaten eines Vektors a in einem affinen

Vektorraum V, aufzufassen?). Fiir diese Vektoren lassen sich nidmlich die iiblichen
Rechenregeln definieren.

1) E.BoODEA, Giorgis rationales MK S-Mapsystem mit Dimenssonskokdrenz (Birkhiuser, Basel 1948), S. 26.
3) H. WUGER beniitzte ein kartesisches Koordinatensystem, was aber nicht nétig ist. Vgl. H. WUGER,
Graphische Darstellung von Mafsystemen, Bull. Schweiz. elektrotechn. Verein 22, 637-640 (1931).
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Die qualitative Verkniipfung!) der Grossen und damit auch ihrer Dimensionen zeigt,
dass sie in bezug auf diese Operation eine abelsche Gruppe bilden. Diese Gruppe ist
das direkte Produkt von # unendlichen Gruppen, die der Gruppe der rationalen Zahlen
mit der Addition als Zusammensetzungsvorschrift isomorph sind. Dies fiihrt wegen (2)
zur Addition der Vektoren

a+b=[a,+b,...,a,+0b,]. (3)
Ebenso ist die Multiplikation eines Vektors mit einer rationalen Zahl A erklirt:
Aa=[Aay, Aay, ..., Ra,). (4)

Auf Grund der Eigenschaften der qualitativen Verkniipfung erkennt man, dass die
Addition kommutativ und assoziativ und die Multiplikation mit einer Zahl assoziativ ist:
A(p a) = (A u) a. Ebenso gelten fiir die Multiplikation zwei Distributivgesetze

Ala+b)=24a+ 410,
(5)
(A+pa=ratpua,

wie sofort zu besweisen ist. Damit sind aber alle Eigenschaften eines Vektorraumes
erfiillt?), und es folgt:

Die Dimensionen der physikalischen Grissen bilden einen n-dimensionalen affinen
Vektorraum V,, iiber dem Korper der vationalen Zahlen.

2. Ubergang auf neue Grunddimensionen

Der obige Sachverhalt lisst sich dazu ausniitzen, den Ubergang von einem Dimen-
sionssystem ~ das Entsprechende gilt fiir die Einheitensysteme, wenn die Regel der
Dimensionskohidrenz3) beachtet wird — zu einem neuen sehr bequem durchzufiihren.

Es sei zunichst ein bestimmtes Dimensionssystem gegeben. Die Dimension jeder
Grosse wird durch einen Vektor dargestellt:

”

0=2aini=aini, (6)
1

wo die n; die Basisvektoren des V, sind. Vermoge der nichtsinguliren Transformation
T = (¢,;) gehen wir zu einem neuen Koordinatensystem iiber

iy =t . (7)

Die fi; sind dann wieder # linear unabhingige Vektoren des V,. Der Vektor a habe im
neuen System die Koordinaten @;; dann gilt

a=a; i, (8)
und es folgt leicht aus (6) bis (8)
. A= Uiy Ay - (9)
Hier ist
U=T"1 oder UT=E, (10)

wenn U’ die zu U transponierte Matrix und 7! die zu T inverse Matrix bedeutet. Bei
einer Anderung des Dimensionssystems gilt demnach fiir die Dimension der Grossen
eine Transformation von der Form

a'=Ua’|. (11)

1y M. LaNDoOLT, Grisse, Masszahl und Einheit (Rascher, Ziirich 1943), Seite 61-65.
2) Vgl. zum Beispiel B. L. vAN DER WAERDEN, Moderne Algebra, 1. Teil, 2. Aufl. (Springer, Berlin 1937),
Seite 46.

3) E. BoDEa, L. c., Seite 48.
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So lautet die zu T kontragrediente Matrix U fiir den Ubergang von einem MLT-
System (Masse, Linge, Zeit) n,, n,, n; zu einem KLT-System (Kraft, Linge, Zeit)
fi,=[1,1,—2], fig=[0, 1, 0], fig=[0, 0, 1]:

1 0 0
U= 11 01,
-2 01

wie man leicht nachpriift. Zur praktischen Bestimmung der Matrix U beachte man,
dass in den Kolonnen die Koordinaten der alten Basisvektoren, ausgedriickt im neuen
Koordinatensystem, stehen.

Es sei hier noch eine Bemerkung zum LTQ®-System (Linge, Zeit, Elektrizitits-
menge, magnetischer Fluss) von KALANTAROFF!) gemacht. Die rein elektrischen,
magnetischen bzw. mechanischen Gréssen werden durch Vektoren mit den Koordinaten
{a,,a,,1,0], [ay, a;, 0, 1] bzw. [a,, a,, 1, 1] dargestellt, wo die a, fiir die iiblichen Grossen
ganze Zahlen sind. Diese drei Teilgebiete der Physik besitzen demnach Dimensionen,
die je in einen dreidimensionalen Teilraum des Vektorraumes V, abgebildet werden.
Wir konnen sagen, dass die elektrischen und magnetischen Gréssen symmetrisch in
bezug auf die mechanischen Grossen liegen?).

3. Mafstabinderungen

In den obigen Betrachtungen wurden nur die Dimensionen der Gréssen und ihr
Aufbau aus den Grunddimensionen beriicksichtigt. Bei den praktisch verwendeten Ein-
heitensystemen treten aber neben den angegebenen Transformationen h&dufig noch
unbequeme Umrechnungsfaktoren hinzu. Wir konnen uns darauf beschrinken, eine
Mapstabinderung innerhalb eines Einheitensystems zu betrachten. Die gewihlten
Grundeinheiten sollen durch neue, gleichartige Einheiten ersetzt werden gemiss der
Formel:

{A;}=o;{4}}. (12)

Die Einheiten werden durch eine geschweifte Klammer gekennzeichnet, um sie von
den zugehorigen Dimensionen zu unterscheiden. Damit lautet die Einheit einer belie-
bigen Grosse A4

(Ay={A} ... Air}=of ... oGr{d™ ... 40" (13)
oder
”
{ay, ..., a,} =[] «{a,, ..., a,}, (13%)
y=1

wenn fiir die Einheit eine analoge Darstellung wie fiir die Dimension verwendet wird.
Es ist aber zu beachten, dass die Eigenschaften (3) bis (5) fiir die Symbole {...} nicht

”
gelten; JJaj ist der Umrechnungsfaktor. Die Einheiten selber bilden also keinen
y=1
Vektorraum!

Abschliessend konnen wir folgendes feststellen. Die Festlegung eines Dimensions-
systems zum Aufbau eines Einheitensystems kommt darauf hinaus, im affinen Raume
der Dimensionen ein Koordinatensystem auszuwihlen. Damit ergibt sich gleichzeitig
ein Uberblick iiber die Mannigfaltigkeit der moglichen Systeme.

E.Roru-DESMEULES, Luzern.

1) P. KALANTAROFF, Les dquations aux dimensions des grandeurs électrigues el magnétiques, Rev. gén.
Electr. 25, 235 (1929).
2) Vgl. dazu E. BoDEA, 1. c., Tabelle VI, Seite 127.
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Grossengleichungen und die Einheit « Mol»!)

In der Physik ist es heute iiblich, die Definitionen und Gesetze unabhingig von den
Einheiten in Form von Grossengleichungen darzustellen. Wenn dies in der physika-
lischen Chemie bisher nicht gelang, so liegt das zur Hauptsache daran, dass man sich
zu wenig Klarheit verschafft hat iiber die Art oder Dimension der herkémmlicherweise
in Mol (Grammol, Grammolekiil) ausgedriickten Grossen.

Der oft vertretenen Ansicht, das Mol sei eine Masseinheit?), kénnen wir uns nicht
anschliessen. In Angaben wie «3 Mol Chlor» oder «3 Mol Wasserstoff» usf. steht doch
offenbar 3 als Masszahl, Mol als Einheit einer Grosse, in welcher diese gasférmigen
Korper iibereinstimmen. Das einzige iibereinstimmende quantitative Merkmal dieser
Gaskorper ist aber die Anzahl der freien Gasteilchen, der Molekiile. Die Einheit 1 Mol
muss also — dhnlich wie 1 Paar, 1 Dutzend, 1 Gros — ein Ziahlmass sein, das allerdings
seinem Namen nach zunichst noch die Einschrankung in sich schliesst, dass die gezihl-
ten Dinge Molekiile sind.

Man kann sich aber von dieser Einschrinkung frei machen und das Mol auch als
Zahlmass fiir Atome und Ionen verwenden (an Stelle von Grammatom und Grammion),
wenn man die Art der Teilchen ausserhalb der Zihleinheit angibt; zum Beispiel:

1 Mol Cl, oder 1 Mol Chlormolekiile wiegt 71 g;
1 Mol C1 oder 1 Mol Chloratome  wiegt 35,5g;
1 Mol C1- oder 1 Mol Chlorionen wiegt 35,5 g
und trigt die Ladung 96500 Coulomb.

Fiir das im angedeuteten Sinn verallgemeinerte Mol soll folgende Definition gelten:

1 Mol ist eine dimensionslose Zahleinheit, grosser als die natiirliche Zahleinheit 1 Stiick.
Die Zéihleinheit 1 Mol ist festgelegt durch die Anzahl dev Molekiile in 32 g Sauerstoffgas.
Nachdem diese Anzahl indirekt zu 6,02 .1023 Stiick bestimmt wurde, kann man die
Umrechnungsgleichung angeben:

1 Mol = 6,02 - 1023 Stiick3) |.

Es werden auch dekadische Vielfache dieses Zahlmasses als neue Zihleinheiten ver-
wendet, zum Beispiel
1 kMol = 103 Mol = 6,02 - 1028 Stiick.

Dass sich die so festgelegten Einheiten auch bei Elektronen, Lichtquanten usf. als
Zahlmasse eignen, liegt auf der Hand.

Wird eine Anzahl nicht in der natiirlichen Einheit Stiick angegeben, so muss die
verwendete Zihleinheit, zum Beispiel Mol oder Kilomol, unbedingt genannt werden;
bei Angaben in der natiirlichen Einheit kann die Bezeichnung Stiick unterbleiben. Die
folgenden abgeleiteten Grossen geben Anwendungsbeispiele fiir diese Regeln.

Dividiert man die Masse m eines Korpers, sein Volumen v, seine Warmekapazitit &
oder eine andere geeignete Quantitdtsgrosse durch die Anzahl z, seiner Atome bzw.
Molekiile, so erhidlt man neue Grossen gleicher Dimension, aber anderer Bedeutung;
sie sollen atomare bzw. molekulare Grossen heissen. Man wird in diesen Grossen die
bisher ausschliesslich auf die Einheit Grammatom bzw. Grammol bezogenen Begriffe
Atommasse, Atomvolumen, Atomwiarme bzw. Molmasse, Molvolumen, Molwirme usf.
erkennen. Die zugehorigen Definitionsgleichungen sind aber von den Einheiten un-
abhangig; die darin auftretende Anzahl z ist eine in der physikalischen Chemie unent-

1) Dieses Thema wurde anlisslich des letzten Fortbildungskurses des Vereins Schweizerischer Gymna-
siallehrer (El. Math. 8, 20 [1953]) in einer Aussprache iiber Probleme des Physikunterrichts behandelt.

%) Zum Beispiel R. W. PouL, Mechanik, Akustitk und Wdrmelehre, 10. und 11. Auflage (Springer,
Berlin 1947), oder W. H. WEsTPHAL, Physikalisches Worterbuch (Springer, Berlin 1952).

3) Die Umrechnungszahl 6,02 - 1023 (Loschmidtsche oder Avogadrosche Zahl) darf in Grossengleichungen
natiirlich kein besonderes Symbol erhalten.
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behrliche Grundgrissel), die in jeder der oben angefiihrten Zdhleinheiten ausgedriickt
werden kann:

1. Beispiel: Fiir die atomaren bzw. molekularen Massen M =m/z der Elemente
erhilt man

0,: M =32,000 8 — 32,0008

.10-—26 .
Mol Mol ~ 36 (107 ke

O: M=16,000~8— — 16,0008 _ _ 268 .10-26 kg

Mol f kMol
X _ g kg 1128 T -

H: M= 1,008 Mol = 1,008 —kMol = 0,167 -10 kg ;
. _ g kg 10-26

He: M= 4,003 Mol = 4,003 —— Mol = 0,66 .10 kg.

Die iiblichen Atomgewichtstabellen enthalten die zu den Einheiten g/Mol oder kg/kMol
gehorenden Masszahlen der atomaren Massen. Dem Ausdruck Atomgewicht bzw. Mole-
kulargewicht wiirden die benannten Zahlen besser entsprechen.

2. Beispiel: Das molekulare Volumen (abgekiirzt Molvolumen) V = v/z betriagt fiir
ideale Gase im Normalzustand (Druck p = 1 Atm; Temperatur T = 273° K)

v 1 m?3
= —— == = == . —20 3
| 4 > 22,4 ———— ol =224 ——— ol 3,73.10 cm3.

Das Molvolumen lidsst sich folgendermassen aus der molekularen Masse M und der
Dichte d der Substanz berechnen:

v="_

v m
r4 m F4

M
a -

3. Beispiel: Die atomare Wirmekapazitit (kurz Atomwirme) C = k/z misst fiir
Metalle bei hohen Temperaturen ungefihr:

_ cal kcal .. cal —16 erg
C =6 ool =© "RiMor — 10 o = H2°107

Fiir zweiatomige Gase misst die molekulare Wiarmekapazitit (kurz Molwdrme) bei kon-
stantem Druck etwa

cal kcal cal erg
= = = .10-23 = .10-16
“p=7 °K Mol 7 °K kMol 1,16-10 °K 4910 °K ~°

Die Atom- bzw. Molwdarme C einer Substanz hingt eng mit deren spezifischer Warme
¢ = kfm zusammen, hat aber nicht dieselbe Dimension.

Zusammenhang: C= Tz’i = —'k; . L} =c M.

4. Beispiel: Zu jeder abgeschlossenen Menge eines idealen Gases gehort eine indivi-
duelle Gaskonstante » =p v/T. Die entsprechende molekulare Gaskonstante

pv_pV_ P pv .
R‘?‘Tz T ~TaM=Tm™

1) Wir halten es nicht fiir zweckmissig, diese Grundgrésse mit dem vieldeutigen Ausdruck «Stoff-
menge» zu belasten. Vgl. Note 2 auf Seite 63.
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ist unabhédngig von der Menge und der Art des Gases:

Atm 1 erg J
] —_— . — . 1 7 P . 3————-—-——-
R = 0,082 K Mol — o110 KMol — o1 107 =g kMol
cal erg
= s .10-18 S
1,98 spppor = 1,38 10 e

Man erkennt, dass die sogenannte universelle Gaskonstante und die Boltzmannsche
Konstante iibereinstimmen; in Grossengleichungen sollten sie durch dasselbe Symbol
bezeichnet werden.

5. Beispiel: Ahnlich liegen die Verhiltnisse bei der Faradayschen Konstanten und der
Elementarladung: Durch z gleichartige Ionen werde insgesamt die Ladung ¢ und die
Masse m durch einen Leitungsquerschnitt getragen. ¢/m misst dann die spezifische
Ladung, wihrend

- 94_49 ™_9,;
Q*z m z mw

die atomare bzw. molekulare Ladung misst. Diese ist immer ein kleines ganzzahliges
Vielfaches von
C C

== . 4 p— .1 7
Qo= 9,65+ 104 £ = 9,65 107 ——

=1,6-10-1°C.

Wir hoffen, durch diese Betrachtungen die Einfiithrung von Gréssengleichungen im
Gebiet der physikalischen Chemie zu férdern.
W.BANTLE, Winterthur, J. HABLUTZEL, Ziirich.

Ein Satz der elementaren Geometrie!)

Die Strecken a, b, ¢ sind bekanntlich dann und nur dann Seiten eines Dreieckes der
elementaren Geometrie, wenn

16 f2=2 (a® b2+ b2 c®+ c? a?) — (ad+ bé+ c¥)

(Heronsche Gleichung) positiv ist. Ist 16 f2=0, dann sind a, b, ¢ nicht Seiten eines
Dreiecks, sondern Abstinde dreier Punkte einer Geraden. Ist 16 f2 negativ (a = 3,
b=c=1 gibt 16 f2= —45), dann sind a, b, ¢ Seiten eines imaginidren Dreiecks

[a=3, b=c=1 gibt A(—Z—, %Vs”), B(0, 0), C(3,0)].

Sind A4, B, C die Ecken eines gleichseitigen Dreiecks und ist D ein Punkt des Umkreises
dieses Dreiecks, dann ist wegen des Satzes von PTOLEMAUS 16 f2 = 0. Fiir alle anderen
Punkte D der Ebene ist 16 f2+ 0. — Fiir den Mittelpunkt des Umkreises ist 16 f2= 3 4
(r ist der Radius des Umkreises). Fiir eine Ecke des Tangentendreiecks hat man

a?=942 b2=c?=3y? und 16f1=54+4>0.

Das heisst 16f2 ist fiir keinen Punkt der Ebene negativ. Es gilt daher der Satz:
Liegt der Punkt D nicht auf dem Umkreis des gleichseitigen Dreiecks A BC, dann lisst
sich aus den Strecken AD, BD und CD ein Dreieck konstruieren. Liegt D auf dem
Umkreis, dann sind diese Abstinde nicht Seiten eines Dreieckes, sondern lediglich
Abstinde von drei Punkten einer Geraden. R. LAUFFER, Graz.

Anmerkung der Redaktion: Vor Eingang dieser Note sandte uns Herr J.-P. SYDLER
ein Manuskript, in dem der oben behandelte Satz von PompE1vu fiir den R, ausgespro-
chen und bewiesen wird. Diese Abhandlung wird in einem der ndchsten Hefte erscheinen.

1) Siehe S.V.PavLovié, Sur une démonstration géométrique d’un théoréme de M.D. Pompeiu, E1. Math. 8,
13 (1953), und J.-P. SYDLER, Auire démonstration du théoréme de Pompeiu, E1. Math. 8, 15 (1953).
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A propos du pentagone?)

Remarquons d’abord que l'on peut former C3 =10 quadrilatéres inscrits différents
ayant pour sommet commun le point M et pour autres sommets certains sommets
du pentagone ABCDE. A chacun d’eux on peut appliquer le théoréeme de PTOLEMEE
et I'on obtient:

Polygone Relation due au théoréme de Ptolémée
MABC MBy—=MA x + MC , (1)
MABD MBy=MA+y + MD x, (2)
MADBE MB x=MA y + ME x, (3)
MACD MCy=MA x+MD vy, (4)
MACE MC x=MA y + ME vy, (5)
MADE MD x=MA » + ME v, (6)
MBCD MCy=MB x+ MD x, (7)
MBCE MC y=MB y + ME x, (8)
MBDE MDy=MBx+ ME vy, (9)
MCDE MDy=MC x + ME x. (10)

Aprés avoir éliminé x et y entre les relations
(1) et (9) ona MB°=(MA + MC)(MD — ME), (11)
(2) et (10) on a D2 (MB — MA) (MC + ME), (12)
(3) et (4) ona = (MB - ME) (MC — MD), (13)
(5) et (7) ona = (MB + MD) (MA + ME), (14)
(6) et (8) on a ME = (MD — MA) (MC — MB). (15)
Corollaive. M est au milieu de AE. Les formules

(11) et (12) donnent (clolétm‘lé)2 = (Clolconvexe + 2 1’) (clofétoilé_ ClO/convexe), {16)
(13) et (15) (clo/conveu)2 = (27— clO/étoilé) (ﬁoumu“‘ €10/ convexe), (17)
et la formule (14) devient 2= C10/convexe €10 dtoile* (18)

Apres avoir divisé membre & membre les formules (16) et (17), on obtient:
( alO/conve:te)z= 2v— clO/étoile’ (19)

clO/étoilé 27+ clO/com;exe

Remarque: 11 y a d’autres possibilités d’éliminer x et y entre les relations (1) a (10);
mais nous n’avons tenu compte que de celles qui donnent des relations se présentant
sous forme de moyenne géométrique. G.BILGER, Genéve.

Zu einer Frage iiber Mengen von Punkten mit ganzzahliger Entfernung

Schon aus den Mitteilungen von M. ALTWEGG?) und von A. MULLER?) iiber besondere
Punktmengen der Ebene geht hervor, dass ein solches Maximum nicht existiert. Die
folgende Komstruktion zeigt fitvr einen Raum beliebiger Dimensionszahl k, wie man zu

1) Les notations et la méthode sont les mémes que celle de ma note A propos du pentagone, EL. Math. 4,
65 (1949). 4, B, C, D, E sont les sommets d’un pentagone régulier et M un point quelconque de I'arc AE
du cercle circonscrit.

2) El Math. 7, Nr. 8, 56 (1952).

3) El Math. 8, Nr. 2, 37 (1953).
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jeder natiirlichen Zahl N >k ein System von mindestens N Punkten mit lauter ganzzah-
ligen Entfernungen finden kann, die wicht alle demselben linearen Untervaum von k — 1
Dimensionen angehiren.

Folgende Konstruktion beweist, dass fiir keine Dimensionszahl k ein solches Maximum
existiert, sondern dass man zu jeder natiirlichen Zahl N > %k auf mindestens eine Art N
Punkte mit ganzzahligen Entfernungen angeben kann, die nicht alle demselben linearen
Unterraum von %2 — 1 Dimensionen angehdoren.

I. Im Falle der Ebene (k = 2) verwenden wir pythagoreische Dreiecke, deren Katheten
OA; und OB, auf der positiven x-Achse bzw. y-Achse eines rechtwinkligen Koordinaten-
systems mit dem Ursprung O liegen. Dabzi wiahlen wir

0d;=p; wnd 0B, =Pi-L,

also die Hypotenuse A4;B;= (p? + 1)/2, wo Py, Py, s, ... die aufsteigende Reihe der
Primzahlen (= 3) bedeute. Je grésser p;, desto grosser ist der Dreieckswinkel a; bei
A;; denn

1 1
s (P,

Sei nun N > 2 eine natiirliche Zahl. Dann vergrossern wir alle zu den Indizes
1,2,..., N—2 gehorenden Dreiecke durch Streckung vom Zentrum O aus so, dass
ihre auf der x-Achse liegenden Katheten die gleiche Linge OA* = p,-p,--- py _, er-
halten. Die Punkte B¥, B¥, ..., B _, der y-Achse, in welche die Punkte B; iiber-

gegangen sind, zusammen mit O und A*, bilden das gewiinschte System von N Punkten
mit ganzzahligen Abstinden, die nicht alle in einer Geraden liegen.

Ubrigens hat es auf der y-Achse ausser den Punkten B¥ noch weitere Punkte B, B,,...
welche die Bedingung ganzzahliger Abstdnde erfiillen; das gilt erst recht, wenn die
Figur nochmals mit einem ganzzahligen Faktor gestreckt wird. So liefert unsere Kon-
struktionsvorschrift beispielsweise fiir N =4 die Strecke O4* = 3.5 =15 und vorerst
die beiden Punkte B#(0[20) und B¥(0|36). Brauchbar sind aber auch B,(0|8) und
B,(0]112). Streckt man noch mit dem Faktor 8, so existieren zur Kathete

OA* =8.15=120

insgesamt 22 verschiedene pythagoreische Dreiecke. (Natiirlich ldsst sich das Punkte-
system noch an den Achsen spiegeln.)

I1. Im Falle einer beliebigen endlichen Dimensionszahl k > 2 bestimme man zu einer
gegebenen natiirlichen Zahl N> % wie vorhin eine Strecke OA* =p,-p, .- py_,. Mit
OA* als Kante denke man sich ein regulidres Simplex von £ — 1 Dimensionen (das heisst
mit £ Ecken) konstruiert, zum Beispiel im Falle 2 = 3 ein gleichseitiges Dreieck. Normal
zum (k — 1)-dimensionalen Unterraum, der durch das Simplex bestimmt wird, also
normal zu den 2 — 1 von O ausgehenden Kanten, lege man durch O eine Achse, auf
welcher N — % Punkte B¥, B, ..., BY_, durch das in Abschnitt I geschilderte Ver-
fahren festgelegt seien. Ihre Verbindungsstrecken zur Simplexecke O sind jetzt Kathe-
ten, die Strecken von den B¥ nach den andern £ — 1 Ecken Hypotenusen von pytha-
goreischen Dreiecken, so dass in den Simplexecken und den B} wieder insgesamt
N Punkte mit ganzzahligen Entfernungen gefunden sind, die nicht alle demselben
(# — 1)-dimensionalen Unterraum angehoren.

I1I1. Erginzend seien fiir die Ebene durch Angabe von Koordinaten zwei Beispiele mit-
geteilt, die weitere Anordnungsmoglichkeiten illustrieren:

1. 6 Punkte: A, 5(+80]£30), B, 4(0| £30), Cy 4(—11] £30);

auftretende Abstidnde: 11; 60; 61; 80; 91; 100; 109.
2. 7 Punkte: A, 5 4 (42| £40), B, ,(433]0), 0(0|0);
auftretende Abstinde: 33; 41; 58; 66; 80; 84; 85; 116, FrANZ STEIGER, Bern,
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