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54 H. JeckrLIN: Trigonometrische Mittelwerte

Trigonometrische Mittelwerte

I.

Die trigonometrischen Mittelwerte einfacher Art bilden eine Gruppe der einfachen
quasiarithmetischen Mittel. Unter einem einfachen quasiarithmetischen Mittel M von
n reellen Grossen x; < x, < ... < x, versteht man eine Mittelbildung von der Art

M= (i é‘f(x,-)) , ()

wobei ¢ die Umkehrfunktion von f(x) bedeutet, und f(x) selbst im Intervall
% = x; < x, eine reelle, eindeutige, stetige, endliche und streng monotone Funktion
ist. Steigende Monotonie im strengen Sinne liegt in einem Intervall vor, wenn dort
fiir x; < x; stets auch f(x;) < f(x;). Ist umgekehrt fiir x, << x, stets f(x;) > f(xz),
so ist die Funktion monoton fallend in strengem Sinne.

Setzen wir fiir f(x) in (1) eine trigonometrische Funktion ein, so erhalten wir ein
einfaches trigonometrisches Mittel. Sei zum Beispiel f(x) == sin x, so ergibt sich das
Sinusmittel

(1 &S
S = arcsin <71-i2:51n x,-).

Wegen der fiir die Mittelbildung gemdss (1) erforderlichen Funktionseigenschaften
muss man sich in Anbetracht der periodischen Natur der trigonometrischen Funk-
tionen auf bestimmte Intervalle beschrinken.

II.

Bevor wir uns niher mit den trigonometrischen Mitteln beschiftigen, nennen wir
einige Hilfssitze, deren wir in der Folge bediirfen.

a) Die quasiarithmetische Mittelbildung ist invariant gegeniiber linearer Trans-
formation von f(x). Das heisst, wenn in (1) die Funktion f(x) ersetzt wird durch
a f(x) + b, wobei a und b konstant, so dndert sich der Wert des Mittels M nicht.

b) Fiir das Studium der quasiarithmetischen Mittel ist der Begriff der Konvexitit
einer Funktion sehr wichtig. Eine Funktion f(x) ist in einem Intervall konvex im
strengen Sinne, wenn dort fiirr x,+ x; die Ungleichung gilt

F(Z52E) < [ + fna).

Gilt die Ungleichung in umgekehrtem Sinne, so ist f(x) konkav. Da f(x) fiir die
Mittelbildung gemiss (1) auch monoton sein muss, haben wir zu unterscheiden zwi-
schen konvex steigenden, konkav steigenden, konvex fallenden und konkav fallenden
Funktionen.
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c) Ist f(x) konvex steigend oder konkav fallend, so ergibt die Mittelbildung nach
(1) einen grosseren Wert als das arithmetische Mittel

1 n

Ist dagegen f(x) konkav steigend oder konvex fallend, so ist das beziigliche quasi-
arithmetische Mittel kleiner als das arithmetische Mittel der x;. Man vergleiche
hiezu die Ausfiihrungen des Verfassers in Bd. 4, Heft 5, dieser Zeitschrift. Wegen
der unter a) vorhin genannten linearen Transformationsmoglichkeit kann man
sich auf die Betrachtung konvex oder konkav steigender Funktionen beschrianken.
Sei zum Beispiel f(x) = 1/x (Mittelbildung nach gleichseitiger Hyperbel), also eine fiir
0 < x <oo konvex fallende Funktion, so ist im gleichen Intervall f(x) =a — b/«
konkav steigend, und somit

n

H-(L 3 L)<, ®)

i-1 i

was besagt, dass das harmonische Mittel positiver Grossen stets kleiner ist als das
arithmetische Mittel.

d) Aus dem soeben Gesagten folgt, dass wenn f(x) konvex steigend, k(x) aber kon-
kav steigend ist, die Mittelbildung gemiss (1) mit f(x) einen grosseren Wert liefert
als mit A(x). Sind aber zwischen x; und x, beide Funktionen konvex steigend oder
beide konkav steigend, so ergibt sich eine Vergleichsmoglichkeit durch geeignete
Substitution von x, welche die eine der beiden Funktionen linear werden lésst. Dies
kann einfach erreicht werden durch den Ansatz f(x) == 2z, x = ¢(2), wobei ¢ Umkehr-
funktion von f, oder durch den Ansatz A(x) = z, x = y(2), wobei  Umkehrfunktion
von h. Die Grenzen des Intervalls x, und x, dndern sich dabei in f(x;) und f(x,)
bzw. in k(x,) und A(x,). Sei zum Beispiel f(x) =Inx (was zum geometrischen Mittel
fithrt), A(x) = —1/x (was zum harmonischen Mittel fiihrt), also zwei im Intervall
0 < x < oo konkav steigende Funktionen. Setzt man x = ¢(z) = ¢, so erhalten wir
die beiden Funktionen

flo@]=F@) =z und  hlp@)]=H()= e,

von welchen die letztere konkav steigend ist im Intervall —oo < z < oco. Daraus
folgt schon unmittelbar, dass das harmonische Mittel H kleiner sein muss als das
geometrische Mittel G. Detailliert kann man dies wie folgt zeigen: Der Mittelwert M
nach der Funktion H(z) = —e~# ergibt sich aus der Gleichsetzung

n
n(—e M)y =—)'e",
i=1

also
M= —In (—;—26‘2),

und es ist sicher M < 1/n}z im Intervall —oo < z < oo.
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Nun ist aber z=1Inx, daher

~ln(%2%)<%21nx fir 0 < x < oo

oder

H=— (;1;_2_’1:_) < elinEinx _ V—‘_ G,

was zu zeigen war.

II1.

Wenn wir uns nun speziell der Betrachtung der trigonometrischen Mittelwerte
zuwenden, so wollen wir uns dabei auf das Intervall O bis 7/2 beschrinken, was
ausdriicklich betont sei. In diesem Intervall ist f(x) = sinx konkav steigend und
/(x) = cosx konkav fallend, somit f(x) = —cosx konvex steigend. Aus dieser Fest-
stellung folgt unmittelbar, dass fiir 0 < x < n/2 das Sinusmittel

= arc sm( 2 sin x ) 4)

kleiner ist als das arithmetische Mittel 4, und dieses hinwiederum kleiner als das
Kosinusmittel

1 7”
C = arccos <7i ; cos x,-). (5)

PrATELLIY), der sich in anderer Betrachtungsweise mit diesen beiden Mittelwerten
befasst hat, behauptet und glaubt bewiesen zu haben, dass fiir 0 < x < /2 das
geometrische Mittel G stets kleiner sei als das Sinusmittel S. Diese Behauptung ist
unrichtig. Denn setzen wir f(x) = sinx, A(x) = Inx, beide konkav steigend, und
substituieren x = g(z) = e?, so erhalten wir die beiden Funktionen F(z) = sine?* und
H(2) = 2z, zu betrachten im Intervall —oco < z <lnz/2. In diesem Intervall hat
F(2) einen Wendepunkt. Dessen Abszisse erhalten wir bei Nullsetzung der zweiten
Ableitung als Wurzel der Gleichung ctge?= e Vor dem Wendepunkt ist F(z) konvex
steigend, nachher konkav steigend. Das Sinusmittel S und das geometrische Mittel G
lassen sich also in bezug auf das ganze Intervall 0 < x < n/2 nicht in eine Gréssen-
ordnung eingliedern; je nach der Verteilung der zu mittelnden x; kann der eine oder
der andere Mittelwert grosser ausfallen. Dagegen ldsst sich bestimmt aussagen be-
ziiglich der beiden Teilintervalle 0 < x < x5 und x5 < x < 7/2, wobei x;g der
Wendepunktsabszisse von F(z) entspricht, also die Wurzel von ctgx = x ist. Wir fin-
den x;5==49°17'36,5", oder als Bogenlinge des Einheitskreises x;s= 0,8603334,
und es muss gelten G < S fir 0 <x < 455, S <G fir 255 < ¥ < n/2. Der Beweis
fiir das erstgenannte Teilintervall ergibt sich wie folgt: Da F(z) fir —oo < 2 < Inxgs
konvex steigend ist, muss das mit dieser Funktion gebildete Mittel grosser sein als

1) A. PRATELLI, Sulle medie trigonometriche, Atti 1.2 Riunione sci. Soc. ital. Statistica (Pisa, 9. Oktober
1939).
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das arithmetische Mittel 4 der z;. M erhilt man aus der Gleichsetzung

nsine” = 3 'sine
M = 1n [arcsin (%2 sinez)] > —;—Zz

: 1 : 1nZs :
arcmn(zé‘:sme‘) > e , in 0 <z =<Inxg,.

also

oder

Nun ist aber z =Inx, daher
S = arcsin (%Zsinx> > YITx=G, in0<zx < x,.

Fir das zweite Teilintervall 1duft der Beweis ganz analog, nur mit umgekehrtem
Ungleichungszeichen, da F(z) hier konkav steigend ist.

Da das harmonische Mittel H kleiner ist als das geometrische Mittel G, miisste als
Folgerung aus der Behauptung PRATELLIS fiir 0 < x < /2 stets gelten H < S. Es
ist aber leicht zu zeigen, dass auch hier, je nach Verteilung der zu mittelnden x;, der
eine oder andere Wert grdsser sein kann. Wir setzen f(x) =sinx, A(x) = —1/x,
beide konkav steigend, und substituieren x = y(2) = —1/z. Dann tritt an Stelle der
ersten Funktion

F(z) = —sin%,

zu betrachten im Intervall 2/ < z < oo, in welchem F(z2) einen Wendepunkt auf-
weist. Und zwar ist F(z) vor dem Wendepunkt konvex steigend, nachher konkav
steigend. Nach Nullsetzen der zweiten Ableitung erhilt man die Abszisse des Wende-
punktes als Wurzel der Gleichung tg1/z = 2 2. Der entsprechende Wert im Intervall
0 < x < m/2 ist also die Wurzel der Gleichung tgx = 2/x, wir nennen ihn xys und
finden ziffernmissig 61°42'1,2” oder in Bogenlinge 1,0768740. Es gilt H < S fiir
0<x =< xysund S < H fiir 55 < x < n/2. Der Beweis lisst sich detailliert in ana-
loger Weise durchfiihren wie vorhin beziiglich der Mittelwerte S und G, wobei aber zu
beachten ist, dass beim Ubergang vom x- zum z-Intervall der Richtungssinn umdreht ;
was demnach fiir das zweite Teilintervall der Abbildung gilt, hat im ersten Teil des
Originalintervalls Geltung und umgekehrt. M bestimmt sich aus der Gleichsetzung

nsin—ﬂ—la— =Zsin—§—,
und es gilt daher fiir das zweite Teilintervall der Abbildung, wo F(z) konkav steigt:
. (1 . 1\1! 1 .
M= [arcsm (72 sm;)] < -Qla=4, fir (xy5) "t z2< 00,

daher

[arcsin (%Zsin x)]~l< %—Z%, fir 0 < x < xyg,
also

X

S = arcsin (%Zsinx) > (_:ZZL)—1= H, fir 0<x < xy;.
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IV.

Der néchstgrossere elementare algebraische Mittelwert nach dem arithmetischen
Mittel A4 ist bekanntlich das quadratische Mittel Q. Anderseits ist, wie gezeigt, das
Kosinusmittel C in 0 < x < #/2 ebenfalls grosser als A. Es wire aber voreilig, in
bezug auf das Verhiltnis von C zu Q Analogieschliisse aus dem Verhéltnis von S zu G
ziehen zu wollen. Im ganzen Intervall 0 bis /2 ist ndmlich C < Q. Setzen wir
f(x) =1 — cosx, h(x) = x2, beide konvex steigend im genannten Intervall, und sub-
stituieren x = y(z) = 'z, so wird F(z) =1 — cos)/z. Diese Funktion ist im ganzen
Intervall 0 < z < (m/2)? schwach konkav steigend, also C < (. Denn das Mittel M
nach F(z) ergibt sich aus der Gleichsetzung

n(l— cosV'M) =3'(1- cosV/z),

also
M = [arccos(i—ZcosV;)]2<—;~2z =A
oder
arccos(—;—Z'cosV;) ( Dz )1/_ in 0§Z§<%)2,
und daher

C= arccos(%zcosx) < (—%sz)m: Q, m0<x< izt—

Die Tatsache, dass C < Q, ersiecht man geometrisch auch, wenn man an Stelle
von h(x) = x% die Funktion (2 x/n)?2 setzt.

f(x) =1—cosx und  A(x) = (—Z;—)“’

verlaufen beide konvex steigend und haben beide fiir x = 0 den Wert Null und fiir
x = 7/2 den Wert 1. Dazwischen aber ist durchwegs f(x) > k(x), was besagt, dass
f(x) schwicher konvex verliuft, weshalb C < @ sein muss.

V.

Wenn wir nunmehr den Tangens und den Kotangens als Funktionen, nach welchen
gemittelt werden soll, in Betracht ziehen, so haben wir das Tangensmittel

_arctg< Ztgx) (7)

und das Kotangensmittel

Ctzarcctg( 2ctgx> (8)

1=1

Wegen der in (1) vorausgesetzten Endlichkeit von f(x) gilt unser Intervall 0 bis 7/2
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fiir (7) unter Ausschluss der oberen, fiir (8) unter Ausschluss der unteren Grenze. Da
in diesem Intervall der Kotangens konvex fallend und der Tangens konvex steigend
ist, muss gelten

Ct<ALT.

I'ragen wir nun nach dem Verhiltnis zwischen Tangensmittel und quadratischem
Mittel, so ldsst sich wiederum beziiglich des ganzen Intervalls keine Reihenfolge an-
geben. Setzen wir f(x) = tgx, h(x) = x2, beide konvex steigend, und substituieren
x = }/z, so hat die Funktion F(z) = tg)z in 0 <z < (7/2)? einen Wendepunkt, vor
welchem die Steigung konkav und nach welchem sie konvex ist. Der der Wende-
punktsabszisse entsprechende Wert x im Intervall 0 < x < z/2 ist die Wurzel der
Gleichung ctg x = 2 x. Man erhilt x1¢ == 37°25'46,8" oder in Bogenlinge 0,65327009.
Es ist somit T <<Q fiir 0 < x < x7p und Q < T fiir x7¢ < x < 7/2.

Um die Stellung des Tangensmittels gegeniiber dem Kosinusmittel abzukliren,
setzt man f(x) =tgx, h(x) =1— cosx, und substituiert x = arctgz. Es hat
H(z) =1 — cos(arctgz) in 0 < x < co einen Wendepunkt; vor demselben steigt
H(z) konvex, nachher konkav. Die obere Grenze des Teilintervalls von 0 < x < /2,
innerhalb welchem C grosser sein muss als 7, bestimmen wir nach gleichem Verfahren
wie bis anhin und finden, dass der betreffende Wert x;. die Wurzel der Gleichung

tgx = I/VE sein muss. Es ist daher T< C fir 0 < x < xy¢c und C<T fiir
¥rc = % < /2, wobei x;c = 35°15'51,8", in Bogenlinge 0,6154797.

Bleibt noch das Kotangensmittel, wobei wir uns kurz fassen kénnen, denn das Ver-
fahren ist stets das gleiche. Um Ct mit G zu vergleichen, setzt man f(x) = ctgx,
h(x) = Inx und substituiert x =e€? In —oo < z<Inzn/2 hat F(z) = ctge* einen
Wendepunkt. Der Wert x(,; ist Wurzel der Gleichung tgx =2 x. Es folgt Ct < G
fir 0<x < 2g6, G<Ct fiir 2 < x < w2, wobei xg = 66°46’ 54,3" oder
1,1655614. Fiir den Vergleich von Ct¢ mit S setzen wir f(x) = ctgx, h(x) =1—sinx
und substituieren x = arctgz. In 0 < x < oo hat H(2) =1 — sin (arctgz) einen

Wendepunkt. Der Wert x, s ist die Wurzel von ctgx = I/VE. Mithin ist C¢ < S fiir
0<x=<uxgs, SCtfir x5, < x < /2, wobei x¢; 5 ==54°44'8,2" oder 0,9553166.
Zwecks Vergleich von Ct mit H schliesslich setzen wir f(x) = ctgx, k(x) =1/x und
substituieren x =: 1/z. Die Funktion F(z) = ctgl/z hat in 2/x < z < oo keinen
Wendepunkt, sondern steigt konkav, es ist also

M = [arcctg (_%thgg_)]-1< —11722 =4, in —7?;— <z2<o00,

-1 1 1 . 7T
<727’ mO<x<7,

[arc ctg (—:7 2 ctg x)]

1 1\-1 .
Ct=arcctg(%20tgx)>(;2—;) =H, in 0<x§%,
das heisst, es ist durchwegs H < Ct.

Abschliessend wollen wir die Ergebnisse in einer tabellarischen Ubersicht zusam-
menstellen, aus welcher die Position der trigonometrischen Mittelwerte innerhalb der
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Reihe der elementaren algebraischen Mittelwerte zu ersehen ist. Im Intervall
0<x<m2 gilt fur
0 <sx=x0 HLOLKGE LSS <A4LKTKCLYQ,
¥rc SxSxpp: HLSCOLK<GE LS <A4<CLT<Q,
= gt HSCt<G <S <4<K<CLK<Q9LT,
Xos SxSxgs: HLCOLS <GEL<AKCLKQELT,
Ags=xSxyg: HS <COKG<AK<CLQLT,
s S ¥ S g S<THLKCLKGEG<AL<CLQPLT,
Yoo = x < m/2: SKHLGLSO<AK<CLSQLT,

X1o =x

wobel
Xpc=35°15'51,8" = 0,6154797, x.s = 54°44" 8,2" = 0,9553166,
%ro=37°25"46,8" = 0,6532709, xys = 61°43" 1,2" = 1,0768740,
Xgs = 49°17"36,5" = 0,8603334, x,,,= 66°46"54,3" = 1,1655614.

H = harmonisches Mittel, G = geometrisches Mittel,
A = arithmetisches Mitte], Q = quadratisches Mittel,
S = Sinusmittel, C = Kosinusmittel,
Ct = Kotangensmittel, T = Tangensmittel.

H. JeckLiN, Ziirich.

Kleine Mitteilungen
Geometrische Darstellung der Dimensionen physikalischer
Grossen und ihre Anwendung

1. Darstellung der Dimensionen in einem Vektorraum

Wir setzen als gegeben voraus, dass sich jede physikalische Grosse 4 in der folgenden
Weise durch ihre Dimensionen charakterisieren lisst?)

[A]=Ap AP ... A", (1)
wo die A, die Grunddimensionen und die Exponenten a; ganze oder rationale Zahlen

sind. Gewdhnlich ist # = 3 oder # = 4. Die Dimension lasst sich dann isomorph auf ein
geordnetes Zahlen-n-tupel abbilden, vermége der Zuordnung

AT A .. A ~— [ay, a,, ..., a,] =q. (2)
Es ist nun naheliegend, die a; als Koordinaten eines Vektors a in einem affinen

Vektorraum V, aufzufassen?). Fiir diese Vektoren lassen sich nidmlich die iiblichen
Rechenregeln definieren.

1) E.BoODEA, Giorgis rationales MK S-Mapsystem mit Dimenssonskokdrenz (Birkhiuser, Basel 1948), S. 26.
3) H. WUGER beniitzte ein kartesisches Koordinatensystem, was aber nicht nétig ist. Vgl. H. WUGER,
Graphische Darstellung von Mafsystemen, Bull. Schweiz. elektrotechn. Verein 22, 637-640 (1931).
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