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Trigonometrische Mittelwerte

I.

Die trigonometrischen Mittelwerte einfacher Art bilden eine Gruppe der einfachen
quasiarithmetischen Mittel. Unter einem einfachen quasiarithmetischen Mittel M von
n reellen Grossen xx fg x2 ^ fg xn versteht man eine Mittelbildung von der Art

wobei cp die Umkehrfunktion von f(x) bedeutet, und f(x) selbst im Intervall
xx g xt ^ xn eine reelle, eindeutige, stetige, endliche und streng monotone Funktion
ist Steigende Monotonie im strengen Sinne hegt in einem Intervall vor, wenn dort
fur xt< xk stets auch f(xt) < f(xk). Ist umgekehrt fur xt< xk stets f(xt) > f(xk),
so ist die Funktion monoton fallend in strengem Sinne

Setzen wir fur f(x) in (1) eine trigonometrische Funktion ein, so erhalten wir ein
einfaches trigonometrisches Mittel Sei zum Beispiel f(x) — sin x, so ergibt sich das
Sinusmittel

S arcsin — 3^7sm xt \

Wegen der fur die Mittelbildung gemäss (1) erforderlichen Funktionseigenschaften
muss man sich in Anbetracht der periodischen Natur der trigonometrischen
Funktionen auf bestimmte Intervalle beschranken.

II
Bevor wir uns naher mit den trigonometrischen Mitteln beschäftigen, nennen wir

einige Hilfssatze, deren wir in der Folge bedürfen.
a) Die quasiarithmetische Mittelbildung ist invariant gegenüber linearer

Transformation von f(x). Das heisst, wenn m (1) die Funktion f(x) ersetzt wird durch
a f(x) + b, wobei a und b konstant, so ändert sich der Wert des Mittels M nicht

b) Fur das Studium der quasiarithmetischen Mittel ist der Begriff der Konvexität
einer Funktion sehr wichtig. Eine Funktion f(x) ist in einem Intervall konvex im
strengen Sinne, wenn dort fur #t4= xk die Ungleichung gilt

,(__+_!_) <| [/(*,)+ /(,,)]

Gilt die Ungleichung m umgekehrtem Sinne, so ist f(x) konkav. Da f(x) fur die

Mittelbildung gemäss (1) auch monoton sein muss, haben wir zu unterscheiden
zwischen konvex steigenden, konkav steigenden, konvex fallenden und konkav fallenden
Funktionen.
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c) Ist f(x) konvex steigend oder konkav fallend, so ergibt die Mittelbildung nach
(1) einen grösseren Wert als das arithmetische Mittel

*=\Z*i- (2)
t= 1

Ist dagegen f(x) konkav steigend oder konvex fallend, so ist das bezügliche
quasiarithmetische Mittel kleiner als das arithmetische Mittel der x{. Man vergleiche
hiezu die Ausführungen des Verfassers in Bd. 4, Heft 5, dieser Zeitschrift. Wegen
der unter a) vorhin genannten linearen Transformationsmöglichkeit kann man
sich auf die Betrachtung konvex oder konkav steigender Funktionen beschränken.
Sei zum Beispiel f(x) ljx (Mittelbildung nach gleichseitiger Hyperbel), also eine für
0<#<oo konvex fallende Funktion, so ist im gleichen Intervall f(x)=a — b\%

konkav steigend, und somit

was besagt, dass das harmonische Mittel positiver Grössen stets kleiner ist als das
arithmetische Mittel.

d) Aus dem soeben Gesagten folgt, dass wenn f(x) konvex steigend, h(x) aber konkav

steigend ist, die Mittelbildung gemäss (1) mit f(x) einen grösseren Wert liefert
als mit h[x). Sind aber zwischen xx und xn beide Funktionen konvex steigend oder
beide konkav steigend, so ergibt sich eine Vergleichsmöglichkeit durch geeignete
Substitution von x, welche die eine der beiden Funktionen linear werden lässt. Dies
kann einfach erreicht werden durch den Ansatz f(x) =-= z, x <p(z), wobei <p Umkehrfunktion

von /, oder durch den Ansatz h(x) z, x \p(z), wobei xp Umkehrfunktion
von h. Die Grenzen des Intervalls xx und xn ändern sich dabei in f(xx) und f(xn)
bzw. in h(xt) und h(xn). Sei zum Beispiel f(x) ln x (was zum geometrischen Mittel
führt), h(x) — \\x (was zum harmonischen Mittel führt), also zwei im Intervall
0 < x < co konkav steigende Funktionen. Setzt man x <p(z) ez, so erhalten wir
die beiden Funktionen

f[cp{z)] F(z) z und h[xp{z)] H(z) =-c—,

von welchen die letztere konkav steigend ist im Intervall — oo<z <oo. Daraus

folgt schon unmittelbar, dass das harmonische Mittel H kleiner sein muss als das

geometrische Mittel G. Detailliert kann man dies wie folgt zeigen: Der Mittelwert M
nach der Funktion H(z) — e~z ergibt sich aus der Gleichsetzung

»{-e-u) -Ze-«,
i l

also

M=-In(l27«-).

und es ist sicher M < \\n£z im Intervall — oo < z < oo.
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Nun ist aber z ln x, daher

-ln(-T~) < - Y\nx fur 0 < x < oo

oder

was zu zeigen war.

III
Wenn wir uns nun speziell der Betrachtung der trigonometrischen Mittelwerte

zuwenden, so wollen wir uns dabei auf das Intervall 0 bis n\2 beschranken, was
ausdrücklich betont sei In diesem Intervall ist f(x) sin* konkav steigend und
/(*) cos* konkav fallend, somit f(x) —cos* konvex steigend. Aus dieser
Feststellung folgt unmittelbar, dass fur 0 <^ * <^ nj2 das Sinusmittel

» i /
S are sin I —JT* sin xt 1 (4)

kleiner ist als das arithmetische Mittel A, und dieses hinwiederum kleiner als das
Kosinusmittel

C arccos(— ^7 cos*,) (5)

Pratelli1), der sich in anderer Betrachtungsweise mit diesen beiden Mittelwerten
befasst hat, behauptet und glaubt bewiesen zu haben, dass fur 0 5g * 5g n\2 das

geometrische Mittel G stets kleiner sei als das Sinusmittel 5 Diese Behauptung ist
unrichtig Denn setzen wir /(*) sm*, Ä(*)=ln*, beide konkav steigend, und
substituieren * =- xp(z) ez, so erhalten wir die beiden Funktionen F(z) sine2 und
H(z) z, zu betrachten im Intervall — oo < z 5g lnjr/2. In diesem Intervall hat
F(z) einen Wendepunkt Dessen Abszisse erhalten wir bei Nullsetzung der zweiten
Ableitung als Wurzel der Gleichung ctgez ez. Vor dem Wendepunkt ist F(z) konvex
steigend, nachher konkav steigend. Das Sinusmittel 5 und das geometrische Mittel G

lassen sich also in bezug auf das ganze Intervall 0 < * <[ n\2 nicht in eine Grossenordnung

eingliedern, je nach der Verteilung der zu mittelnden x% kann der eine oder
der andere Mittelwert grosser ausfallen. Dagegen lasst sich bestimmt aussagen
bezüglich der beiden Teilmtervalle 0 < * fg xGS und xGS ^ * 5g nß, wobei xGS der
Wendepunktsabszisse von F(z) entspricht, also die Wurzel von ctg* * ist Wir
finden xGS — 49° 17' 36,5", oder als Bogenlänge des Einheitskreises xGS=- 0,8603334,
und es muss gelten G < S fur 0 < * fg xGS, S < G fur xGS 5g * 5g tz/2 Der Beweis
fur das erstgenannte Teilmtervall ergibt sich wie folgt Da F(z) fur — oo < z 5g ln xGS

konvex steigend ist, muss das mit dieser Funktion gebildete Mittel grosser sein als

A Pratelli, Sulle medte trtgonometnehe, Atti I a Riunione sei Soc ital Statistica (Pisa, 9 Oktober
1939)
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das arithmetische Mittel A der zt. M erhält man aus der Gleichsetzung

n sin eM =J>J sin ez

also

M= ln [aresin (—]Tsin*2)] > —£z
oder

aresin ^27sin^2) > ^^> in ° < z lnxcs-

Nun ist aber z lnx, daher

5 aresin (^JT sin x\ > ellnSXfiX }/77*~ G, in 0 < * fg *G^.

Für das zweite Teilintervall läuft der Beweis ganz analog, nur mit umgekehrtem
Ungleichungszeichen, da F(z) hier konkav steigend ist.

Da das harmonische Mittel H kleiner ist als das geometrische Mittel G, müsste als

Folgerung aus der Behauptung Pratellis für 0 < * 5g n\2 stets gelten H < S. Es
ist aber leicht zu zeigen, dass auch hier, je nach Verteilung der zu mittelnden x{, der
eine oder andere Wert grösser sein kann. Wir setzen /(*) sin*, h(x) —1/#,
beide konkav steigend, und substituieren * xp(z) — 1/z. Dann tritt an Stelle der
ersten Funktion

F(z) -siny,
zu betrachten im Intervall 2\n 5g z < oo, in welchem F(z) einen Wendepunkt
aufweist. Und zwar ist F(z) vor dem Wendepunkt konvex steigend, nachher konkav
steigend. Nach Nullsetzen der zweiten Ableitung erhält man die Abszisse des

Wendepunktes als Wurzel der Gleichung tgl/z =- 2z. Der entsprechende Wert im Intervall
0 < * fg n\2 ist also die Wurzel der Gleichung tg* 2/*, wir nennen ihn xHS und
finden ziffernmässig 61° 42'1,2" oder in Bogenlänge 1,0768740. Es gilt H < S für
0 < * 5g xHS und S < H für xHS _g * 5g n\2. Der Beweis lässt sich detailliert in
analoger Weise durchführen wie vorhin bezüglich der Mittelwerte S und G, wobei aber zu
beachten ist, dass beim Übergang vom *- zum ^-Intervall der Richtungssinn umdreht;
was demnach für das zweite Teilintervall der Abbildung gilt, hat im ersten Teil des

Originalintervalls Geltung und umgekehrt. M bestimmt sich aus der Gleichsetzung

.1 v-f l
nsin-^p > sin —M *-* z

und es gilt daher für das zweite Teilintervall der Abbildung, wo F(z) konkav steigt:

M= [aresin(~£sin-i-)]_1< ~£z A, für (x^)'1 _S z < oo,

daher

[aresin(-^^7sin*)]_1< \%~> für 0<x£xHS,
also

S aresin (-^sin*) > (^27t)"= H' für0<^ x»s ¦
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IV.

Der nächstgrössere elementare algebraische Mittelwert nach dem arithmetischen
Mittel A ist bekanntlich das quadratische Mittel Q. Anderseits ist, wie gezeigt, das
Kosinusmittel C in 0 5g * 5g tt/2 ebenfalls grösser als A. Es wäre aber voreilig, in
bezug auf das Verhältnis von C zu Q Analogieschlüsse aus dem Verhältnis von vS zu G

ziehen zu wollen. Im ganzen Intervall 0 bis n\2 ist nämlich C < Q. Setzen wir
/(*) 1 — cos*, h(x) *2, beide konvex steigend im genannten Intervall, und
substituieren * xp(z) =-- \fz, so wird F(z) 1 — cosj/F. Diese Funktion ist im ganzen
Intervall 0 5g z fg (tt/2)2 schwach konkav steigend, also C < Q. Denn das Mittel M
nach F(z) ergibt sich aus der Gleichsetzung

n(\- cos]/M) =JT i.1 ~ cos)/*),

also

M= [arccos(—£ cos/z)] <—£z A

oder

are cos (^JT cos Vz < (i-_T 2)1/2, in 0 ^ * ^ (j)*,
und daher

C are cos (~JT cos *) < ^^7 x*f'2= Q> in ° -£ x -S y •

Die Tatsache, dass C < ersieht man geometrisch auch, wenn man an Stelle

von h(x) x2 die Funktion (2 xjn)2 setzt.

2 *\2
/(*) 1 — cos* und h(x) (——V

verlaufen beide konvex steigend und haben beide für * 0 den Wert Null und für
* n\2 den Wert 1. Dazwischen aber ist durchwegs /(*) > h(x), was besagt, dass

/(*) schwächer konvex verläuft, weshalb C < Q sein muss.

Wenn wir nunmehr den Tangens und den Kotangens als Funktionen, nach welchen

gemittelt werden soll, in Betracht ziehen, so haben wir das Tangensmittel

r=arctg(|2'tg*l) (7)

und das Kotangensmittel

Ct are ctg (±£ ctg xA. (8)

Wegen der in (1) vorausgesetzten Endlichkeit von /(*) gilt unser Intervall 0 bis nj2
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für (7) unter Ausschluss der oberen, für (8) unter Ausschluss der unteren Grenze. Da
in diesem Intervall der Kotangens konvex fallend und der Tangens konvex steigend
ist, muss gelten

Ct<A<T.

Fragen wir nun nach dem Verhältnis zwischen Tangensmittel und quadratischem
Mittel, so lässt sich wiederum bezüglich des ganzen Intervalls keine Reihenfolge
angeben. Setzen wir /(*) tg*, h(x) *2, beide konvex steigend, und substituieren
x \ß, so hat die Funktion F(z) tg^z in 0 5g z 5g (tt/2)2 einen Wendepunkt, vor
welchem die Steigung konkav und nach welchem sie konvex ist. Der der
Wendepunktsabszisse entsprechende Wert xTQ im Intervall 0 5g * < n\2 ist die Wurzel der
Gleichung ctg* 2 *. Man erhält xTQ =- 37° 25'46,8" oder in Bogenlänge 0,6532709.
Es ist somit T < Q für 0 5g * 5g *ro und Q < T für xTq 5g * < n\2.

Um die Stellung des Tangensmittels gegenüber dem Kosinusmittel abzuklären,
setzt man /(*) tg*, h(x) 1 — cos*, und substituiert x arctgz. Es hat
H(z) -= 1 — cos (arctgz) in 0 fg * < oo einen Wendepunkt; vor demselben steigt
H(z) konvex, nachher konkav. Die obere Grenze des Teilintervalls von 0 5^ * < n\2,
innerhalb welchem C grösser sein muss als T, bestimmen wir nach gleichem Verfahren
wie bis anhin und finden, dass der betreffende Wert xTC die Wurzel der Gleichung

tg* 1/1^2 sein muss. Es ist daher T < C für 0 5g * < xTC und C <T für
xTC _S x < n/2, wobei xTC 35° 15' 51,8", in Bogenlänge 0,6154797.

Bleibt noch das Kotangensmittel, wobei wir uns kurz fassen können, denn das
Verfahren ist stets das gleiche. Um Ct mit G zu vergleichen, setzt man /(*) ctg*,
h(x) ln* und substituiert x ez. In — oo < z 5g lnjr/2 hat F(z) ctgez einen

Wendepunkt. Der Wert xctG ist Wurzel der Gleichung tg* 2 *. Es folgt Ct < G

für 0 < * fg xctG, G < Ct für xctG 5g * fg n\2, wobei xctG 66° 46' 54,3" oder
1,1655614. Für den Vergleich von Ct mit S setzen wir /(*) ctg*, h(x) 1 — sin*
und substituieren * arctgz. In 0 5g * < oo hat H(z) 1 — sin (arctgz) einen

Wendepunkt. Der Wert xcts ist die Wurzel von ctg* — 1/K2. Mithin ist Ct < S für
0 < * ^ xcts, S < Ct für xcts -S x^n/2, wobei *as- 54°44'8,2// oder 0,9553166.
Zwecks Vergleich von Ct mit H schliesslich setzen wir /(*) --ctg*, h(x) \\x und
substituieren * \\z. Die Funktion F(z) ctgl/z hat in 2\n 5g z < oo Iceinen

Wendepunkt, sondern steigt konkav, es ist also

M [arcctg^^ctgi)]"^ ±£* A, in | g * < oo,

Htgd^etg*)]"1 < \E^' in 0 < x < f.
Ct areetg (l^ctg.) > (\Z~T= H- » ° < * * T•

das heisst, es ist durchwegs H < Ct.

Abschliessend wollen wir die Ergebnisse in einer tabellarischen Übersicht
zusammenstellen, aus welcher die Position der trigonometrischen Mittelwerte innerhalb der
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Reihe der elementaren algebraischen Mittelwerte zu ersehen ist. Im Intervall
0< * < jr/2 gilt für

H<Ct<G < S <A<T<C<Q,
H<Ct<G <S <A<C<T<Q,
H<Ct<G < S <A<C<Q<T,
H<Ct<S <G <A<C<Q<T,
H<S <Ct<G <A<C<Q<T,
S <H <Ct<G <A<C<Q<T,
S <H <G <Ct<A<C<Q<T,

0 ^v * ___ * TC •

xTC ——» * __« * fO '

xTg S; * Ss XGS'

XGS x xcts-

xcts —a * ___ Xjjc '.

XHS ___ X _ü XCiG

XCtG ^X<7t\2\
wobei

*rc ¦

\JQ-

*GS

-- 35° 15'51,8"= 0,6154797,

37° 25' 46,8" 0,6532709,

49° 17' 36,5"= 0,8603334,

H harmonisches Mittel,
A arithmetisches Mittel,
S Sinusmittel,
Ct Kotangensmittel,

xas 54° 44' 8,2" 0,9553166,

xHS 61° 43' 1,2"= 1,0768740,

%G= 66° 46'54,3" 1,1655614.

G geometrisches Mittel,
Q quadratisches Mittel,
C Kosinusmittel,
T Tangensmittel.

H. Jecklin, Zürich.

Kleine Mitteilungen

Geometrische Darstellung der Dimensionen physikalischer
Grössen und ihre Anwendung

1. Darstellung der Dimensionen in einem Vektorraum

Wir setzen als gegeben voraus, dass sich jede physikalische Grosse A in der folgenden
Weise durch ihre Dimensionen charakterisieren lässt1)

IA]-A*A+...A?, (1)

wo die At die Grunddimensionen und die Exponenten at ganze oder rationale Zahlen
sind. Gewöhnlich ist n 3 oder n =-= 4. Die Dimension lasst sich dann isomorph auf ein
geordnetes Zahlen-w-tupel abbilden, vermöge der Zuordnung

AaiAa* A*n [«1. a an~\ =0. (2)

Es ist nun naheliegend, die at als Koordinaten eines Vektors a in einem affinen
Vektorraum Vn aufzufassen2). Fur diese Vektoren lassen sich nämlich die üblichen
Rechenregeln definieren.

x) E. Bodea, Gtorgis rationales MKS-Maßsystem mit Dtmensionskokärenz (Birkhauser, Basel 1948), S 26.
J) H. Wüger benutzte ein kartesisches Koordinatensystem, was aber nicht nötig ist Vgl. H. Wüger,

Graphische Darstellung von Maßsystemen, Bull Schweiz, elektrotechn Verein 22, 637-640 (1931).
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