Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 8 (1953)

Heft: 2

Rubrik: Aufgaben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

6º Proposition: La distance OM de la corde XY du centre () peut être construite avec la règle et le compas, par les formules approchées:

$$OM \equiv \frac{3}{4} OG \equiv 0,463\,525\,491\,5$$
 (diff. 0,000 274 3);
 $OM \equiv 2\left(\sqrt{2} + \sqrt{6} - \sqrt{3}\right) - \frac{4}{5} - 3 \equiv 0,463\,306\,995$ (diff. 0,000 055 86);
 $OM \equiv 4 L_{15} - \frac{6}{5} \equiv 0,463\,293\,5264$ (diff. 0,000 042 15);
 $OM \equiv \frac{1}{8}(3 d - 2) \equiv 0,463\,292\,387\,2$ (diff. 0,000 041 01);

 $d=2\sin 72^{\circ}$ est la diagonale du pentagone régulier inscrit dans le cercle de rayon OA=1.

7º Proposition: La distance GM de la corde XY du point G peut être construite, avec règle et compas, par les formules approchées:

$$GM \equiv \frac{2}{3} L_3 - 1 \equiv 0,1547005384 \quad \text{(difff. 0,00008267)};$$

$$GM \equiv 14 L_{15} - 6 + \frac{1}{3} \equiv 0,1548606757 \quad \text{(diff. 0,00007806)};$$

$$GM \equiv \frac{20}{27} L_{30} \equiv 0,15485698 \quad \text{(diff. 0,00007437)};$$

$$GM \equiv \frac{1}{4} (L_3 - L_{20}) - \frac{1}{5} \equiv 0,1547954694 \quad \text{(diff. 0,00001285)};$$

$$GM \equiv \frac{8}{9} (L_3 - L_5 + L_{12}) - \frac{4}{5} \equiv 0,1547719051 \quad \text{(diff. 0,00001070)}.$$

8º Proposition: Si D est le diamètre du cercle (D=2), d et l la diagonale et le côté du pentagone régulier inscrit dans le même cercle, on a

$$XY = \sqrt{\pi} = 1,7724538509...,$$

$$XY \equiv \frac{3}{4} \left[D + \frac{1}{2} (d - l) \right] \equiv 1,7724534480 \quad \text{(diff. } 0,0000004029\text{)}.$$

Remarque: Cette formule importante donne plus directement la corde XY avec une grande approximation et avec rapidité constructive.

VINCENZO G. CAVALLARO, Cefalù (Sicile).

Aufgaben

Aufgabe 144. B. VAN DER POL findet als Nebenresultat tiefliegender Untersuchungen¹) folgende Identitäten zwischen unendlichen Summen und den entsprechenden unendlichen Integralen

$$\sum_{k=0}^{\infty} \frac{k^{4m+1}}{e^{2\pi k} - 1} = \int_{0}^{\infty} \frac{x^{4m+1}}{e^{2\pi x} - 1} dx. \qquad (m = 1, 2, 3, ...)$$

Man gebe einen direkten Beweis.

E. TROST, Zürich.

¹⁾ B. VAN DER POL, On a non-linear partial differential equation satisfied by the logarithm of the Jacobian thetafunctions, with arithmetical applications, Indagationes math. 13, 276 (1951).

Aufgaben 41

Lösung: Es sei

$$f(x) = \sum_{k=1}^{\infty} \frac{k^{4m+1}}{e^{kx} - 1} , \qquad (\text{Re } x > 0)$$

dann hat man

$$f(x) = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} k^{4m+1} e^{-knx} = -\sum_{n=1}^{\infty} \frac{1}{n^{4m+1}} \left(\frac{d}{dx} \right)^{4m+1} \sum_{k=1}^{\infty} e^{-knx} = -\sum_{n=1}^{\infty} \frac{1}{n^{4m+1}} \lambda(x),$$

wo

$$\lambda(x) = \left(\frac{d}{dx}\right)^{4m+1} \sum_{k=1}^{\infty} e^{-k n x} = \left(\frac{d}{dx}\right)^{4m+1} \left(\frac{1}{e^{nx}-1}\right)$$
$$= \left(\frac{d}{dx}\right)^{4m+1} \left\{\frac{1}{n x} - \frac{1}{2} + \sum_{k=-\infty}^{+\infty} \frac{1}{n x + 2 \pi i k}\right\}^{1}.$$

Daraus folgt

$$\lambda(x) = -(4 m + 1)! \left\{ \frac{1}{n x^{4m+2}} + \sum_{k=-\infty}^{+\infty} \frac{n^{4m+1}}{(n x + 2 \pi i k)^{4m+2}} \right\}.$$

Wenn $x = 2\pi$ genommen wird, ergibt sich

$$f(2\pi) = \frac{(4m+1)!}{(2\pi)^{4m+2}} \left\{ \sum_{n=1}^{\infty} \frac{1}{n^{4m+2}} + \sum_{n=1}^{\infty} \sum_{k=-\infty}^{+\infty} \frac{1}{(n+i \ k)^{4m+2}} \right\}.$$

Die Doppelsumme lässt sich wie folgt in zwei Teile spalten:

$$\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{(n+i \ k)^{4m+2}} + \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{(n-i \ k)^{4m+2}}.$$

Vertauscht man n und k im zweiten Teil und beachtet, dass

$$(n+ik)^{4m+2} = -(k-in)^{4m+2}$$

so erkennt man, dass sich beide Teile gegenseitig aufheben. Es bleibt dann

$$f(2 \pi) = \frac{1}{(2 \pi)^{4m+2}} \sum_{n=1}^{\infty} \int_{0}^{\infty} t^{4m+1} e^{-nt} dt = \frac{1}{(2 \pi)^{4m+2}} \int_{0}^{\infty} \frac{t^{4m+1}}{e^{t}-1} dt = \int_{0}^{\infty} \frac{x^{4m+1}}{e^{2\pi x}-1} dx,$$

und die unendliche Summe ist identisch mit dem unendlichen Integral.

B. VAN DER POL, Genf.

Aufgabe 146. Ein geometrisches Kriterium für reelle algebraische und transzendente Zahlen. Es sei ein quadratisches Punktgitter gegeben. Die beiden Hauptrichtungen des Gitters nennen wir die horizontale und vertikale Richtung. g sei eine gegebene Gerade durch den Gitterpunkt O, s ihre Steigung. Nun denke man sich einen in O beginnenden rechtwinkligen Streckenzug $OP_1P_2P_3\ldots$, dessen Ecken P_1 , P_3 , P_5 , \ldots auf vertikalen Gittergeraden liegen, während P_2 , P_4 , P_6 , \ldots horizontalen Gittergeraden angehören.

¹) Der Strich bedeutet, dass bei der Summation k=0 ausgelassen wird. Die geschweifte Klammer ergibt sich zum Beispiel aus der leicht mit dem Satz von Moivre zu verifizierenden Beziehung $2i/(e^t-1)=$ ctg(t/2i)-i, wenn man den Kotangens durch seine Partialbruchreihe ersetzt, die zum Beispiel durch logarithmische Differentiation des Sinusproduktes gewonnen werden kann.

E. Trost

42 Aufgaben

Die erste Strecke OP_1 liege auf der gegebenen Geraden g. Die Zahl s ist algebraisch von n-tem Grade, wenn man durch einen n-gliedrigen Streckenzug, aber nicht durch einen solchen mit weniger als n Gliedern, einen Gitterpunkt erreichen kann.

L. LOCHER-ERNST, Winterthur.

Lösung: Bezeichnungen: $O(x_{-1}, y_0)$, $P_i(x_i, y_i)$ (i = 1, 2, ...); x_{2k-1} , y_{2k} für k = 0, 1, ... ganz. Für den genannten Streckenzug gelten dann die Beziehungen:

$$s = \frac{y_1 - y_0}{x_1 - x_{-1}}$$
 und $s = \frac{y_{2k+1} - y_{2k}}{x_{2k+1} - x_{2k}}$ bzw. $s = \frac{x_{2k} - x_{2k-1}}{y_{2k-1} - y_{2k}}$. $(k = 1, 2, ...)$

Daraus gelangt man rekursiv zu:

$$x_{2k} = s^{0} x_{2k-1} + s^{1} (y_{2k-2} - y_{2k}) - s^{2} (x_{2k-3} - x_{2k-1})$$

$$- s^{3} (y_{2k-4} - y_{2k-2}) + s^{4} (x_{2k-5} - x_{2k-3})$$

$$+ s^{5} (y_{2k-6} - y_{2k-4}) - \cdots$$

$$\cdots \pm s^{2k-1} (y_{0} - y_{2}) \mp s^{2k} (x_{-1} - x_{1}).$$

$$y_{2k+1} = s^{0} y_{2k-1} - s^{1} (x_{2k-1} - x_{2k+1}) - s^{2} (y_{2k-2} - y_{2k})$$

$$+ s^{3} (x_{2k-3} - x_{2k-1}) + s^{4} (y_{2k-4} - y_{2k-2})$$

$$- s^{5} (x_{2k-5} - x_{2k-3}) - \cdots$$

$$\cdots \mp s^{2k} (y_{0} - y_{2}) \pm s^{2k+1} (x_{-1} - x_{1}).$$

Weitere Lösungen sandten A. Bager (Hjørring, Dänemark), F. Goldner (London), R. Lauffer (Graz), B. Marzetta (Basel).

Aufgabe 147. Zwei konzentrische Kugeln drehen sich mit konstanten Winkelgeschwindigkeiten um zwei Durchmesser, welche einen gegebenen Winkel bilden. Zwischen beiden Kugelflächen rollt, ohne zu gleiten, eine dritte Kugel, indem sie die beiden ersten berührt. Wie gross ist die Geschwindigkeit des Zentrums der dritten Kugel, und welche Kurve beschreibt die Spitze seines Ortsvektors?

G. Tordion, Zürich.

Lösung: K_i (i=1,2) seien die Kugeln mit der Mitte O. K_i wird der Drehung um die durch O gehende Achse l_i unterworfen. Auf l_i liege der Vektor \mathfrak{o}_i , dessen Längenmasszahl die Winkelgeschwindigkeit der Drehung angibt. K_i habe den Radius r_i , und es sei $r_1 > r_2 > 0$. Eine Kugel K berühre K_1 in P_1 von innen und K_2 in P_2 von aussen. Die Gerade OP_2P_1 trage den Einheitsvektor \mathfrak{x} , so dass $\mathfrak{x}_i = r_i$ \mathfrak{x} der Ortsvektor von P_i ist. Durch die Drehung von K_i wird P_i nach Euler die Geschwindigkeit $\mathfrak{v}_i = \mathfrak{o}_i \times \mathfrak{x}_i$ erteilt. Die Bewegung der Zwischenkugel K setzt sich zusammen aus einer Drehung von K in sich, wobei die diametralen Punkte P_1 und P_2 entgegengesetzt gleiche Geschwindigkeiten \mathfrak{w}_1 und \mathfrak{w}_2 besitzen, und aus einer Fortbewegung von K, wobei jeder Punkt von K dieselbe Geschwindigkeit \mathfrak{v} aufweist. Es ist also $\mathfrak{w}_i + \mathfrak{v} = \mathfrak{v}_i$ (i=1,2). Der Mittelpunkt von K besitzt nur die Geschwindigkeit \mathfrak{v} ; wegen $\mathfrak{w}_1 + \mathfrak{w}_2 = 0$ ist

$$v = \frac{1}{2} (v_1 + v_2) = \frac{r_1 \, o_1 + r_2 \, o_2}{r_1 + r_2} \times \frac{r_1 + r_2}{2} \, x.$$

Aufgaben 43

Der Mittelpunkt $[(r_1 + r_2) x]/2$ von K rotiert also mit der Winkelgeschwindigkeit $|(r_1 o_1 + r_2 o_2) : (r_1 + r_2)|$ um die Trägergerade des Ortsvektors $r_1 o_1 + r_2 o_2$.

Ersetzt man r_2 durch $-r_2$, so folgt, dass die Mittelpunkte der Kugeln, die K_1 von innen berühren und von K_2 von innen berührt werden, mit der Winkelgeschwindigkeit $|(r_1 \ \mathfrak{o}_1 - r_2 \ \mathfrak{o}_2) : (r_1 - r_2)|$ um die Trägergerade des Ortsvektors $r_1 \ \mathfrak{o}_1 - r_2 \ \mathfrak{o}_2$ rotieren.

F. HOHENBERG, Graz.

Weitere Lösungen sandten P. Bolli (Petit-Lancy), R. Lauffer (Graz), A.Unterberger (Bludenz).

Aufgabe 148. U sei der Mittelpunkt des Umkreises eines Dreiecks $A_1A_2A_3$ oder kurz (A_i) , \vec{x} ein beliebiger Strahl (= Gerade mit Durchlaufungssinn) und \vec{x}_i sein Spiegelbild in bezug auf eine Normale zur Gegenseite von A_i (i=1,2,3). Ferner seien F der Mittelpunkt des Feuerbach-Kreises von (A_i) und G_i seine ein gleichseitiges Dreieck bildenden «Grundpunkte», welche die äusseren Feuerbach-Kreisbogen von der Mitte bis zum Höhenfusspunkt der i-ten Seite-im Verhältnis 1:2 teilen. Dann gilt:

- 1. Die drei Strahlenpaare \vec{x}_i , UA_i haben parallele Winkelhalbierende.
- 2. Dank 1 gehört zu jedem Strahl \vec{x} bis auf Translationen eindeutig eine Gerade $g(\vec{x})$, und zu jeder Geraden x gehört bis auf Translationen eindeutig ein rechtwinkliges Achsenkreuz k(x).
- 3. \vec{x} und $g(\vec{x})$ sind dann und nur dann parallel, wenn \vec{x} gegenläufig parallel ist zu einem der Strahlen FG_i .
- 4. Es gibt, abgesehen von Translationen, ein einziges rechtwinkliges Achsenkreuz k(e), in bezug auf welches die Richtungskosinus a_i , b_i der Seiten von (A_i) , unabhängig von deren Durchlaufungssinn, der Bedingung $\sum a_i b_i = 0$ genügen. Es entspricht der Euler-Geraden e von (A_i) und wird nur dann unbestimmt, wenn (A_i) gleichseitig ist.

A. STOLL, Zürich.

Lösung des Aufgabenstellers: 1. α_i seien die mod 2π bestimmten Richtungswinkel der Strahlen UA_i , ξ derjenige von \vec{x} . Dann ist der Richtungswinkel von \vec{x}_1 2 $(\alpha_2 + \alpha_3)/2 - \xi$. Somit hat die Winkelhalbierende von \vec{x}_1 und UA_1 den mod π bestimmten Richtungswinkel $(\sum \alpha_i - \xi)/2$. Er ist von i unabhängig.

- 2. Zu ξ gehört $\eta \equiv (\sum \alpha_i \xi)/2 \pmod{\pi}$. Geht ξ über in $\xi + \pi$, so geht η über in $\eta \pi/2$.
- 3. Soll $\eta \equiv \xi \pmod{\pi}$ sein, so folgt $\xi \equiv (\sum \alpha_i)/3 \pmod{2\pi/3}$. Es ist aber der Richtungswinkel von FG_1 :

$$\frac{2(\alpha_2+\alpha_3)/2+(\alpha_1+\pi)}{3}\equiv \frac{\Sigma\alpha_i}{3}+\pi\ \left(\mathrm{mod}\ \frac{2\pi}{3}\right).$$

4. Die genannte Bedingung ist gleichbedeutend mit $\sum \sin 2 \varphi_i = 0$, wo φ_i die mod π bestimmten Richtungswinkel der Seiten sind. Nun ist derjenige von A_2A_3 :

$$\frac{\alpha_2 + \alpha_3}{2} + \frac{\pi}{2}$$
, also $2 \varphi_1 \equiv \alpha_2 + \alpha_3 \pmod{2\pi}$.

Dreht man nun eine Achse des Koordinatenkreuzes in die Richtung von $g(\vec{x})$, so hat man noch 2η zu subtrahieren: $2 \varphi_1 - 2 \eta \equiv \xi - \alpha_1 \pmod{2 \pi}$. Die fragliche Bedingung wird daher

$$\sum \sin (\xi - \alpha_i) = \sin \xi \sum \cos \alpha_i - \cos \xi \sum \sin \alpha_i = 0.$$

Setzt man $\sum \cos \alpha_i = 3 s \cos \sigma$ und $\sum \sin \alpha_i = 3 s \sin \sigma$, so sind, mit dem Umkreisradius als Längeneinheit, s, σ die Koordinaten des Schwerpunktes von (A_i) , und es muss sein $\sin (\xi - \sigma) = 0$, also $\xi \equiv \sigma \pmod{\pi}$.

Weitere Lösungen sandten R. Lauffer (Graz), A. Unterberger (Bludenz).

Aufgabe 150. Man bestimme eine Parabel, die zwei gegebene Kreise doppelt berührt. Die Aufgabe hat Bedeutung für die Festigkeitslehre (Sicherheitsparabel zu zwei Mohrschen Spannungskreisen, Vergleich zweier Werkstoffe). F. HOHENBERG, Graz.

Lösung: Wir wählen die Zeichenebene als Grundrissebene π_1 , die Zentrale m der beiden gegebenen Kreise k_i (i=1, 2) als Achse einer Zweitafelprojektion (π_1 , π_2). Denkt man sich durch k_i eine Kugel K_i gelegt, die eine zu π_1 parallele Ebene berührt, so hüllen die gemeinsamen äusseren Tangentialebenen von K_1 und K_2 einen Rotationskegel ein, der von π_1 in der gesuchten Parabel geschnitten wird. K_i stellt sich in π_2 als Kreis \bar{k}_i durch die Endpunkte des Durchmessers von k_i dar, der eine zu m parallele Gerade berührt. Die andere gemeinsame äussere Tangente von \bar{k}_1 und \bar{k}_2 schneidet m im Scheitel der Parabel. Der Brennpunkt ergibt sich sofort mit der Dandelinschen Kugel. Der Schnittpunkt der zu den Umrissmantellinien in π_2 gehörenden Berührungssehne von \bar{k}_i mit m liegt auf der Berührungssehne durch die Berührungspunkte von k_i mit der Parabel.

Weitere Lösungen sandten F. Goldner (London), L. Kieffer (Luxemburg), A. Schwarz (Seuzach), H. Wagner (Karlsruhe), A. Unterberger (Bludenz).

Neue Aufgaben

- 177. L'orthocentre H d'un tétraèdre orthocentrique ABCD se confond avec le centre radical des premières sphères des douze points des tétraèdres HBCD, HCDA, HDAB, HABC, et ces sphères sont orthogonales à la sphère conjuguée au tétraèdre ABCD.

 V. Thébault, Tennie, Sarthe (France).
- 178. In einer Urne befinden sich a_1 Zettel mit der Nummer 1, a_2 Zettel mit Nummer 2, ..., a_k Zettel mit dem Aufdruck k. Ein Zettel wird gezogen. Enthält derselbe die Nummer 1, so wird er in die Urne zurückgelegt. Enthält aber der Zettel den Aufdruck $b \neq 1$, so wird dafür ein Zettel mit der Nummer b-1 in die Urne gelegt. Diese Operation wird n-mal ausgeführt. Wie gross ist alsdann die Wahrscheinlichkeit, einen Zettel mit der Zahl 1 zu ziehen?

 P. Buchner, Basel.
- 179. Man gebe in expliziter Form zwei Klassen von Lösungen des Kongruenzensystems

$$x^2 + 1 \equiv 0 \pmod{y}, \quad y^2 + 1 \equiv 0 \pmod{x};$$

eine für ungerade x, y und eine für gerades x und ungerades y.

L. Bernstein, Tel Aviv.

180. Zeige, dass neben dem bekannten Satz von Wallis (1616-1703)

$$\prod_{k=1}^{\infty} \left(1 - \frac{1}{(2 k)^2} \right) = \frac{2}{\pi}$$

auch gilt

$$\prod_{k=1}^{\infty} \left(1 - \frac{1}{(2k+1)^2}\right) = \frac{\pi}{4}.$$

B. VAN DER POL, Genf.

181. Démontrer pour x naturels > 1 la formule

$$\pi(x) = 1 + \sum_{n=3}^{x} \left\{ 1 - \lim_{m=\infty} \left[1 - \prod_{k=2}^{n-1} \left(\sin \frac{n \pi}{k} \right)^{2} \right]^{m} \right\}$$

 $[\pi(x)]$ est le nombre de nombres premiers inférieurs à x].

W. Sierpiński, Varsovie.